
Advanced OpenGL Topics

Jian Huang, CS456

Alpha: the 4th Color Component

• Measure of Opacity

– simulate translucent objects

• glass, water, etc.

– composite images

– antialiasing

– ignored if blending is not enabled
 glEnable(GL_BLEND)

Compositing for Semi-transparency

• Requires sorting! (BTF vs. FTB)

• “over” operator - Porter & Duff 1984

• : opacity

Fragment

• Fragment in OGL: after the rasterization

stage (including texturing), the data are not

yet pixel, but are fragments

– Fragment is all the data associated with a pixel,

including coordinate, color, depth and texture

coordinates.

Blending in OGL

• If a fragment makes it to FB, the pixel is read out and

blended with the fragment’s color and then written

back to FB

• The contributions of fragment and FB pixel is

specified: glBlendFunc(src, dst)

Blending Function

• Four choices:

– GL_ONE

– GL_ZERO

– GL_SRC_ALPHA

– GL_ONE_MINUS_SRC_ALPHA

• Blending is enabled using glEnable(GL_BLEND)

• Note: If your OpenGL implementation supports the

GL_ARB_imaging extension, you can modify the

blending equation as well.

3D Blending with Depth Buffer

• A scene of opaque and translucent objects

– Enable depth buffering and depth test

– Draw opaque objects

– Make the depth buffer read only, with

glDepthMask(GL_FALSE)

– Draw the translucent objects (sort those triangles

still, but which order, FTB or BTF?)

How Many Buffers Are There?

• In OpenGL:
– Color buffers: front, back, front-left, front-right, back-left,

back-right and other auxiliaries

– Depth buffer

– Stencil buffer

– Accumulation buffer

• Exactly how many bits are there in each buffer,
depends on
– OGL implementation

– what you choose

• Each buffer can be individually cleared

Selecting Color Buffer for Writing

and Reading

• Drawing and reading can go into any of front, back,

front-left, front-right, back-left, back-right and other

auxiliaries

• glDrawBuffer: select buffer to be written or drawn into

– Can have multiple writing buffer at the same time

• glReadBuffer: select buffer as the source for

– glReadPixels

– glCopyPixels

– glCopyTexImage (copy from FB to a texture image)

– glCopyTexSubImage

Accumulation Buffer

• Problems of compositing into color buffers

– limited color resolution (e.g. 8 bits/channel)

• clamping

• loss of accuracy

• Accumulation buffer acts as a “floating point”

color buffer

– accumulate into accumulation buffer

– transfer results to frame buffer

Accumulation Buffer

• OGL don’t directly write into A-buffer

• Typically, a series of images are rendered to

a standard color buffer and then

accumulated, one at a time, into the A-buffer.

• Then, the result in A-buffer has to be copied

back to a color buffer for viewing

• A-buffer may have more bits/color

Accessing Accumulation Buffer

• glAccum(op, value) operations
– within the accumulation buffer:

• GL_ADD, GL_MULT

– from read buffer
• GL_ACCUM, GL_LOAD

– transfer back to write buffer
• GL_RETURN

– glAccum(GL_ACCUM, 0.5) multiplies each value
in read buffer by 0.5 and adds to accumulation
buffer

– How do you average N images?!

Accumulation Buffer Applications

• Compositing

• Full Scene Anti-aliasing

• Depth of Field

• Filtering

• Motion Blur

Full Scene Antialiasing

• Jittering the view (how??)

• Each time we move the viewer, the image shifts

• Different aliasing artifacts in each image

• Averaging images using accumulation buffer

averages out these artifacts

• Like super-sampling in ray-tracing

Depth of Focus

• Keeping a Plane in Focus

• Jitter the viewer to keep one plane

unchanged

Move the camera in a plane parallel to the focal plane.

How do you jitter

the viewer ????

What else?

• Can you do soft shadows?

– Jitter the light sources

• What about motion blur

– Jitter the moving object in the scene

– glAccum(GL_MULT, decayFactor)

A Fragment’s Journey Towards FB

• Many Tests (on/off with glEnable)

– scissor test - an additional clipping test

– alpha test - a filtering test based on alpha

– stencil test - a pixel mask test

– depth test - fragment occlusion test

Scissor Box

• Additional Clipping test

– glScissor(x, y, w, h)

• any fragments outside of box are clipped

• useful for updating a small section of a

viewport

• affects glClear() operations

Alpha Test

• Reject pixels based on their alpha value

• glAlphaFunc(func, value)
– GL_NEVER GL_LESS

– GL_EQUAL GL_LEQUAL

– GL_GREATER GL_NOTEQUAL

– GL_GEUQAL GL_ALWAYS

• For instance, use as a mask for texture

– How would you render a fence?

Stencil Test

• Used to control drawing based on values in

the stencil buffer

• Fragments that failt the stencil test are not

drawn

– Example: create a mask in stencil buffer and draw

only objects not in mask area

Stencil Buffer

• Don’t render into stencil buffer

– Control stencil buffer values with stencil

function

– Can change stencil buffer values with each

fragment passing or failing the test

Controlling Stencil Buffer

• For each pixel, what do I do? Look:

– glStencilFunc(func, ref, mask)

• compare value in buffer with (ref AND mask) and

(stencil_pixel AND mask) using func

• func is one of standard comparison functions

– glStencilOp(fail, zfail, zpass)

• Allows changes in stencil buffer based on:

• Failing stencil test

• Failing depth test

• Passing depth test

• GL_KEEP, GL_INCR, GL_REPLACE, GL_DECR,
GL_INVERT, GL_ZERO

Creating a Mask

• Initialize Mask
glInitDisplayMode(…|GLUT_STENCIL|…);

glEnable(GL_STENCIL_TEST);

glClearStencil(0x0);

glStencilFunc(GL_ALWAYS, 0x1, 0x1);

glStencilOp(GL_REPLACE, GL_REPLACE,

GL_REPLACE);

Using Stencil Mask

• glStencilFunc(GL_EQUAL, 0x1, 0x1)

 draw objects where stencil = 1

• glStencilFunc(GL_NOT_EQUAL, 0x1, 0x1);

• glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

 draw objects where stencil != 1

Immediate Mode vs Display Lists

• Immediate Mode Graphics

– Primitives are sent to pipeline and display right away

– No memory of graphical entities

• Display Listed Graphics

– Primitives placed in display lists

– Display lists kept on graphics server

– Can be redisplayed with different state

– Can be shared among OpenGL graphics contexts (in X

windows, use the glXCreateContext()routine)

Immediate Mode vs Retained Mode

• In immediate mode, primitives (vertices, pixels) flow

through the system and produce images. These data are

lost. New images are created by reexecuting the display

function and regenerating the primitives.

• In retained mode, the primitives are stored in a display list

(in “compiled” form). Images can be recreated by

“executing” the display list. Even without a network

between the server and client, display lists should be more

efficient than repeated executions of the display function.

Immediate Mode vs Display Lists

Display Lists

Creating a display list
GLuint id;

void init(void)

{
id = glGenLists(1);

glNewList(id, GL_COMPILE);

/* other OpenGL routines */

glEndList();

}

Call a created list
void display(void)

{
glCallList(id);

}

Instead of GL_COMPILE,

glNewList also accepts constant

GL_COMPILE_AND_EXECUE,

which both creates and executes a

display list.

If a new list is created with the same

identifying number as an existing

display list, the old list is replaced

with the new calls. No error occurs.

Display Lists

• Not all OpenGL routines can be stored in
display lists
– If there is an attempt to store any of these routines in a

display list, the routine is executed in immediate mode.
No error occurs.

• State changes persist, even after a display
list is finished

• Display lists can call other display lists

• Display lists are not editable, but can fake it
– make a list (A) which calls other lists (B, C, and D)

– delete and replace B, C, and D, as needed

Some Routines That Cannot be

Stored in a Display List

An Example

Vertex Arrays

• Pass arrays of vertices, colors, etc to OpenGL in a
large chunk
glVertexPointer(3,GL_FLOAT,0,coords)

glColorPointer(4,GL_FLOAT,0,colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)

glDrawArrays(GL_TRIANGLE_STRIP,0,numVerts);

• All active arrays are used in rendering

– On: glEnalbleClientState()

– Off: glDisableClientState()

Vertex Arrays

• Vertex Arrays allow vertices, and their attributes to
be specified in chunks,

– Not sending single vertices/attributes one call at a time.

• Three methods for rendering using vertex arrays:

– glDrawArrays(): render specified primitive type by
processing nV consecutive elements from enabled arrays.

– glDrawElements(): indirect indexing of data elements in
the enabled arrays. (shared data elements specified once in
the arrays, but accessed numerous times)

– glArrayElement(): processes a single set of data elements
from all activated arrays. As compared to the two above,
must appear between a glBegin()/glEnd() pair.

Vertex Arrays

• glDrawArrays(): draw a sequence

• glDrawElements(): methodically hop around

• glArrayElement(): randomly hop around

• glInterleavedArrays(): advanced call

– can specify several vertex arrays at once.

– also enables and disables the appropriate arrays

• Read Chapter 2 in Redbook for details of using vertex
array

Why use Display lists or Vertex

Arrays?
• May provide better performance than immediate mode

rendering

– Both are principally performance enhancements. On
some systems, they may provide better performance
than immediate mode because of reduced function call
overhead or better data organization

• format data for better memory access

– Display lists can also be used to group similar sets of
OpenGL commands, like multiple calls to glMaterial()
to set up the parameters for a particular object

• Display lists can be shared between multiple OGL contexts

– reduce memory usage or multi-context applications

Optimizing an OGL Application

• Which part of the OpenGL pipeline is performance bottleneck
for your application

• Three possibilities:

– Fill limited (check with reducing viewport size)

– Geometry (transform) limited(check by replacing glVertex** calls to
glNormal** calls)

– Application limited (ogl commands don’t come fast enough, your data
structure and data formats are at fault)

Reducing Per-pixel Operations

(For fill-limited cases)
• Reduce the number of bits of resolution per color component.

– E.g., reducing framebuffer depth from 24 bits to 15 bits for a
1280x1024 window, 37.5% reduction of the number of bits to fill
(1.25 MBs)

• Reduce the number of pixels that need to be filled for
geometric objects
– Back face culling for convex shapes

• Utilize a lesser quality texture mapping minification filter
– Use nearest filter

• Reduce the number of depth comparisons required for a pixel
– ‘Hot spot’ analysis, use occlusion culling

• Utilize per-vertex fog, as compared to per-pixel fog

Reducing Per-Vertex Operations

(For geometry-limited cases)
• The amount of computation done for a vertex can

vary greatly depending upon which modes are
enabled.

• Every vertex is

– transformed

– perspective divided

– clip-tested

– lighting

– texture coordinate generation

– user-defined clipping planes

Reducing Per-Vertex Operations

(For geometry-limited cases)
• Determining the best way to pass geometry to the pipe

– immediate mode, display list, vertex array, interleaved v-array?

• Use OpenGL transformation routines

– ogl tracks the nature of top matrix on stack (don’t do full
4x4 if it’s just a 2D rotation)

– So, use ogl transformation calls: glTranslate, glRotate, etc,
instead of glMultiMatrix()

• Use connected primitives to save computation on OGL side

– To avoid processing shared vertices repeatedly

• Or,… just don’t

– Because minimizing number of validations that OGL has
to do will save big time as well

Validation

• OpenGL is a state machine

• Validation is the operation that
OpenGL utilizes to keep its
internal state consistent with
what the application has
requested. Additionally,
OpenGL uses the validation
phase as an opportunity to
update its internal caches, and
function pointers to process
rendering requests appropriately.

• For instance, glEnable requests a
validation on the next rendering
stage

Validation
• OGL ops that invoke validation

• Object-oriented programming is a tremendous step
in the quality of software engineering.

– Unfortunately, OOP’s “encapsulation” paradigm can
cause significant performance problems if one chooses
the obvious implementation for rendering geometric
objects.

Example: say, we need to draw 10k

squares in space

General Techniques

• State sorting

– Sort the render requests and state settings based upon

the penalty for setting that particular part of the

OpenGL state.

– For example, loading a new texture map is most likely a

considerably more intensive task than setting the

diffuse material color, so attempt to group objects based

on which texture maps they use, and then make the

other state modifications to complete the rendering of

the objects.

General Techniques (2)

• When sending pixel type data down to the OpenGL pipeline,

try to use pixel formats that closely match the format of the

framebuffer, or requested internal texture format.

– Conversion takes time

General Techniques (3)

• Pre-transform static objects

– For objects that are permanently positioned in

world coordinates pre-transforming the

coordinates of such objects as compared to

calling glTranslate*() or other modeling

transforms can represent a saving.

General Techniques (4)

• Use texture objects (ogl v1.1)

• Use texture proxies to verify that a given

texture map will fit into texture memory

• Reload textures using

glTexSubImage*D()
– Calls to glTexImage*D() request for a texture

to be allocated, and if there is a current texture

present, deallocate it

Graphics Architecture

• Computer Architecture (the theoretical one)

PC Architecture - Buses
• The Processor Bus: highest-level bus that the chipset uses to send information

to and from the processor.

• The Cache Bus: a dedicated bus for accessing the system cache. Aka backside
bus.

• The Memory Bus: a system bus that connects the memory subsystem to the
chipset and the processor. In some systems, processor bus and memory bus
are basically the same thing

• The Local I/O Bus: a high-speed input/output bus (closer or even on the
memory bus directly, so local to proc) used for connecting performance-
critical peripherals (video card/high speed disks/high speed NIC) to the
memory, chipset, and processor. (e.g. PCI, VESA)

• The Standard I/O Bus: used for slower peripherals (mice, modems, regular
sound cards, low-speed networking) and also for compatibility with older
devices, say, ISA, EISA

• Another classification: internal/external (expansion) bus

Some Buses

ISA Industry Standard Architecture 8, 16 1980

MCA Micro Channel Architecture 16, 32 1987

EISA Extended ISA 32 1988

VESA Video Electronics Standard Association 32 1992

PDS Processor Direct Slot (Macintosh) 32 1993

PCI Peripheral Component Interconnect 32, 64 1993

PCMCIA Personal Computer Memory Card International

Association 8,16,32 1992

System Chipset

• The system chipset and controllers are the logic circuits that
are the intelligence of the motherboard

• A chipset is just a set of chips.

• At one time, most of the functions of the chipset were
performed by multiple, smaller controller chips. There was a
separate chip (often more than one) for each function:
controlling the cache, performing DMA, handling interrupts,
transferring data over the I/O bus, etc.

• Over time these chips were integrated to form a single set of
chips, or chipset, that implements the various control
features on the motherboard

A New Addition to the Bus

Family -AGP
• Advanced Graphic Port devised in 1997 by Intel

• AGP: 32-bit Bus designed for the high demands of
3-D graphics, based on the PCI 2.1 standard.

– deliver a peak bandwidth higher than the PCI bus using
pipelining, sideband addressing, and more data
transfers per clock.

– also enables graphics cards to execute texture maps
directly from system memory instead of forcing it to
pre-load the texture data to the graphics card's local
memory.

Bus Specs

BUS Bits Clock Bandwidth (MB/s)

8-bit ISA 8 8.3 7.9

16-bit ISA 16 8.3 15.9

EISA 32 8.3 31.8

VLB 32 33 127.2

PCI 32 33 127.2

64-bit PCI 2.1 64 66 508.6

AGP 32 66 254.3

AGP (x2 mode) 32 66x2 508.6

AGP (x4 mode) 32 66x4 1,017.3

PCIe v3.0 x16 (lanes): 8x16 bits, 4GHz, 16GB/s

Pre-AGP times, say we want to

do a texture mapping

With AGP, in a PIII system

Rules of Thumb

• The underlying architecture have impacts

on the application development

• New applications drive the evolution of

architecture

