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Aliasing? 



Aliasing 

• Aliasing comes from in-adequate 

sampling rates of the continuous signal 

• The theoretical foundation of anti-

aliasing has to do with frequency 

analysis 

• It’s always easier to look at 1D cases, 

so let’s first look at a few of those. 



Example of Sampling 



Fourier Analysis 

• By looking at F(u), we get a feel for the 
“frequencies” of the signal. 

• We also call this frequency space. 

• Intuitively, you can envision, the sharper an 
edge, the higher the frequencies. 

• From a numerical analysis standpoint, the 
sharper the edge the greater the tangent 
magnitude, and hence the interpolation 
errors. 



Fourier Analysis 

• Bandlimited 

– We say a function is bandlimited, if F(u)=0 

for all frequencies u>c and u<-c.  

• Amplitude Spectrum 

– The magnitude, |F(u)|, is called the 

amplitude spectrum or simply the 

spectrum. 

• Phase Spectrum or Phase 
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Fourier Properties 

• Linearity 

• Scaling 
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Convolution 

• Definition: 
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Convolution 

• Pictorially 

f(x) 

h(x) 



Convolution 

f(t) 

x 

h(t-x) 



Convolution 

• Consider the function (box filter): 
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Convolution 

• This function windows our function f(x). 
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Convolution 

• This particular convolution smooths out 

some of the high frequencies in f(x). 

f(x) g(x) f(t) 



Another Look At Convolution 



Filtering and Convolution 

Different functions  

achieve different  

Results. 



Aliasing 

• What this says, is that any frequencies 

greater than a certain amount will 

appear intermixed with other 

frequencies. 

• In particular, the higher frequencies for 

the copy at 1/T intermix with the low 

frequencies centered at the origin. 



Aliasing and Sampling 

• Note, that the sampling process 

introduces frequencies out to infinity. 

• We have also lost the function f(x), and 

now have only the discrete samples. 

• This brings us to our next powerful 

theory. 



Sampling Theorem 

• The Shannon Sampling Theorem 

A band-limited signal f(x), with a cutoff frequency of 

, that is sampled with a sampling spacing of T 

may be perfectly reconstructed from the discrete 

values f[nT] by convolution with the sinc(x) 

function, provided: 

 is called the Nyquist limit. 
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Sampling Theory 

• Why is this? 

• The Nyquist limit will ensure that the 

copies of F(u) do not overlap in the 

frequency domain. 

• I can completely reconstruct or 

determine f(x) from F(u) using the 

Inverse Fourier Transform. 



Sampling Theory 

• In order to do this, I need to remove all 

of the shifted copies of F(u) first. 

• This is done by simply multiplying F(u) 

by a box function of width 2 . 

F(u) 

T

1

S(u) 



Sampling Theory 

• In order to do this, I need to remove all 

of the shifted copies of F(u) first. 

• This is done by simply multiplying F(u) 

by a box function of width 2 . 
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General Process 
Original function Sampled function 

Reconstructed 

Function 

Acquisition 

Re-sampled function 

Resampling 



Interpolation (an example) 
• Very important; regardless of algorithm 

• expensive => done very often for one image 

• Requirements for good reconstruction 
– performance 

– stability of the numerical algorithm 

– accuracy 

Nearest 
neighbor 

Linear 



Sampling and Anti-aliasing 

• The images were calculated as follows: 

– A 2Kx2K image was constructed  

and smoothly rotated into 3D. 

– For Uniform Sampling, it was  

downsampled to 
a 512x512 image. 

– Noise was added to the image,  

sharpened and then 
downsampled for the other one. 

– Both were converted to B&W. 



Sampling and Anti-aliasing 

• The problem: 

– The signal is not band-limited. 

– Uniform sampling can pick-up higher 

frequency patterns and represent them as 

low-frequency patterns. 
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Quality considerations 

• So far we just mapped one point 
• results in bad aliasing (resampling 

problems) 
• we really need to integrate over 

polygon 
• super-sampling is not a very good 

solution (slow!) 
• most popular (easiest) - mipmaps 



Quality considerations 

• Pixel area maps to “weird” (warped) 
shape in texture space 

pixel 

u 
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Quality considerations 

• We need to: 
– Calculate (or approximate) the integral 

of the texture function under this area 
– Approximate: 

• Convolve with a wide filter around the center 
of this area 

• Calculate the integral for a similar (but 
simpler) area. 



Quality considerations 

• the area is typically approxiated by a 
rectangular region (found to be good 
enough for most applications) 

• filter is typically a box/averaging 
filter - other possibilities 

• how can we pre-compute this? 



Mip-maps 

• An image-pyramid is built. 
256 pixels          128  64      32   16 8 4 2 1 



Mip-maps 

• Find level of the mip-map where the 

area of each mip-map pixel is closest to 

the area of the mapped pixel. 

pixel 
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2x2 pixels level selected 



Mip-maps 

• Pros 

– Easy to calculate: 
• Calculate pixels area in texture space 

• Determine mip-map level 

• Sample or interpolate to get color 

• Cons 
– Area not very close – restricted to square 

shapes (64x64 is far away from 128x128).  

– Location of area is not very tight. 



Summed Area Table (SAT) 

• Use an axis aligned rectangle, rather 

than a square 

• Precompute the sum of all texels to the 

left and below for each texel location 

– For texel (u,v), replace it with: 

     sum (texels(i=0…u,j=0…v)) 



Summed Area Table (SAT) 

• Determining the rectangle: 

– Find bounding box and calculate its aspect 

ratio 
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Summed Area Table (SAT) 

• Determine the rectangle with the same aspect 

ratio as the bounding box and the same area 

as the pixel mapping. 
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Summed Area Table (SAT) 

• Center this rectangle around the 
bounding box center. 

• Formula: 
• Area = aspect_ratio*x*x 

• Solve for x – the width of the rectangle 

• Other derivations are also possible 
using the aspects of the diagonals, … 



Summed Area Table (SAT) 

• Calculating the color 

– We want the average of the texel colors 

within this rectangle 
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Summed Area Table (SAT) 

• To get the average, we need to divide 
by the number of texels falling in the 
rectangle. 
– Color = SAT(u3,v3)-SAT(u4,v4)-SAT(u2,v2)+SAT(u1,v1) 

– Color = Color / ( (u3-u1)*(v3-v1) ) 

• This implies that the values for each 
texel may be very large: 
– For 8-bit colors, we could have a maximum SAT value of 

255*nx*ny 

– 32-bit pixels would handle a 4kx4k texture with 8-bit values. 

– RGB images imply 12-bytes per pixel. 



Summed Area Table (SAT) 

• Pros 
– Still relatively simple 

• Calculate four corners of rectangle 

• 4 look-ups, 5 additions, 1 mult and 1 divide. 

– Better fit to area shape 

– Better overlap 

• Cons 
– Large texel SAT values needed 

– Still not a perfect fit to the mapped pixel. 


