
Anti-Aliasing

Jian Huang

CS456

Aliasing?

Aliasing

• Aliasing comes from in-adequate

sampling rates of the continuous signal

• The theoretical foundation of anti-

aliasing has to do with frequency

analysis

• It’s always easier to look at 1D cases,

so let’s first look at a few of those.

Example of Sampling

Fourier Analysis

• By looking at F(u), we get a feel for the
“frequencies” of the signal.

• We also call this frequency space.

• Intuitively, you can envision, the sharper an
edge, the higher the frequencies.

• From a numerical analysis standpoint, the
sharper the edge the greater the tangent
magnitude, and hence the interpolation
errors.

Fourier Analysis

• Bandlimited

– We say a function is bandlimited, if F(u)=0

for all frequencies u>c and u<-c.

• Amplitude Spectrum

– The magnitude, |F(u)|, is called the

amplitude spectrum or simply the

spectrum.

• Phase Spectrum or Phase

)
)Re(

)Im(
(tan)(1

u

u
u =

Fourier Properties

• Linearity

• Scaling

)()()()(ubGuaFxbgxaf ++

)(
1

)(
a

u
F

a
axf

Convolution

• Definition:

= dtxthtfxhxf)()()()(

Convolution

• Pictorially

f(x)

h(x)

Convolution

f(t)

x

h(t-x)

Convolution

• Consider the function (box filter):

>

<

=

2
1

2
1

2
1

2
1

0

1

0

)(

x

x

x

xh

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This function windows our function f(x).

f(t)

Convolution

• This particular convolution smooths out

some of the high frequencies in f(x).

f(x) g(x) f(t)

Another Look At Convolution

Filtering and Convolution

Different functions

achieve different

Results.

Aliasing

• What this says, is that any frequencies

greater than a certain amount will

appear intermixed with other

frequencies.

• In particular, the higher frequencies for

the copy at 1/T intermix with the low

frequencies centered at the origin.

Aliasing and Sampling

• Note, that the sampling process

introduces frequencies out to infinity.

• We have also lost the function f(x), and

now have only the discrete samples.

• This brings us to our next powerful

theory.

Sampling Theorem

• The Shannon Sampling Theorem

A band-limited signal f(x), with a cutoff frequency of

, that is sampled with a sampling spacing of T

may be perfectly reconstructed from the discrete

values f[nT] by convolution with the sinc(x)

function, provided:

 is called the Nyquist limit.
T2

1
<

Sampling Theory

• Why is this?

• The Nyquist limit will ensure that the

copies of F(u) do not overlap in the

frequency domain.

• I can completely reconstruct or

determine f(x) from F(u) using the

Inverse Fourier Transform.

Sampling Theory

• In order to do this, I need to remove all

of the shifted copies of F(u) first.

• This is done by simply multiplying F(u)

by a box function of width 2 .

F(u)

T

1

S(u)

Sampling Theory

• In order to do this, I need to remove all

of the shifted copies of F(u) first.

• This is done by simply multiplying F(u)

by a box function of width 2 .

F(u) S(u)

T

1

General Process
Original function Sampled function

Reconstructed

Function

Acquisition

Re-sampled function

Resampling

Interpolation (an example)
• Very important; regardless of algorithm

• expensive => done very often for one image

• Requirements for good reconstruction
– performance

– stability of the numerical algorithm

– accuracy

Nearest
neighbor

Linear

Sampling and Anti-aliasing

• The images were calculated as follows:

– A 2Kx2K image was constructed

and smoothly rotated into 3D.

– For Uniform Sampling, it was

downsampled to
a 512x512 image.

– Noise was added to the image,

sharpened and then
downsampled for the other one.

– Both were converted to B&W.

Sampling and Anti-aliasing

• The problem:

– The signal is not band-limited.

– Uniform sampling can pick-up higher

frequency patterns and represent them as

low-frequency patterns.

F(u)

T

1

S(u)

Quality considerations

• So far we just mapped one point
• results in bad aliasing (resampling

problems)
• we really need to integrate over

polygon
• super-sampling is not a very good

solution (slow!)
• most popular (easiest) - mipmaps

Quality considerations

• Pixel area maps to “weird” (warped)
shape in texture space

pixel

u

v

xs

ys

Quality considerations

• We need to:
– Calculate (or approximate) the integral

of the texture function under this area
– Approximate:

• Convolve with a wide filter around the center
of this area

• Calculate the integral for a similar (but
simpler) area.

Quality considerations

• the area is typically approxiated by a
rectangular region (found to be good
enough for most applications)

• filter is typically a box/averaging
filter - other possibilities

• how can we pre-compute this?

Mip-maps

• An image-pyramid is built.
256 pixels 128 64 32 16 8 4 2 1

Mip-maps

• Find level of the mip-map where the

area of each mip-map pixel is closest to

the area of the mapped pixel.

pixel

u

v

xs

ys

2x2 pixels level selected

Mip-maps

• Pros

– Easy to calculate:
• Calculate pixels area in texture space

• Determine mip-map level

• Sample or interpolate to get color

• Cons
– Area not very close – restricted to square

shapes (64x64 is far away from 128x128).

– Location of area is not very tight.

Summed Area Table (SAT)

• Use an axis aligned rectangle, rather

than a square

• Precompute the sum of all texels to the

left and below for each texel location

– For texel (u,v), replace it with:

 sum (texels(i=0…u,j=0…v))

Summed Area Table (SAT)

• Determining the rectangle:

– Find bounding box and calculate its aspect

ratio

pixel

u

v

xs

ys

Summed Area Table (SAT)

• Determine the rectangle with the same aspect

ratio as the bounding box and the same area

as the pixel mapping.

pixel

u

v

xs

ys

Summed Area Table (SAT)

• Center this rectangle around the
bounding box center.

• Formula:
• Area = aspect_ratio*x*x

• Solve for x – the width of the rectangle

• Other derivations are also possible
using the aspects of the diagonals, …

Summed Area Table (SAT)

• Calculating the color

– We want the average of the texel colors

within this rectangle

u

v
+

+ -

-

(u3,v3)

(u2,v2) (u1,v1)

(u4,v4)

+ -

+ -

Summed Area Table (SAT)

• To get the average, we need to divide
by the number of texels falling in the
rectangle.
– Color = SAT(u3,v3)-SAT(u4,v4)-SAT(u2,v2)+SAT(u1,v1)

– Color = Color / ((u3-u1)*(v3-v1))

• This implies that the values for each
texel may be very large:
– For 8-bit colors, we could have a maximum SAT value of

255*nx*ny

– 32-bit pixels would handle a 4kx4k texture with 8-bit values.

– RGB images imply 12-bytes per pixel.

Summed Area Table (SAT)

• Pros
– Still relatively simple

• Calculate four corners of rectangle

• 4 look-ups, 5 additions, 1 mult and 1 divide.

– Better fit to area shape

– Better overlap

• Cons
– Large texel SAT values needed

– Still not a perfect fit to the mapped pixel.

