Color Models

Jian Huang
CS456

Main Color Spaces

- CIE XYZ, xyY
- RGB, CMYK
- HSV (Munsell, HSL, IHS)
- Lab, UVW, YUV, YCrCb, Luv,

Differences in Color Spaces

- What is the use? For display, editing, computation, compression, ...?
- Several key (very often conflicting) features may be sought after:
- Additive (RGB) or subtractive (CMYK)
- Separation of luminance and chromaticity
- Equal distance between colors are equally perceivable

CIE Standard

- CIE: International Commission on Illumination (Comission Internationale de l'Eclairage).
- Human perception based standard (1931), established with color matching experiment
- Standard observer: a composite of a group of 15 to 20 people

CIE Experiment

CIE Experiment Result

- Three pure light source: $\mathrm{R}=700$ $\mathrm{nm}, \mathrm{G}=546 \mathrm{~nm}$, $B=436 \mathrm{~nm}$.

$$
\mathbf{C}_{\lambda}=\mathrm{r}(\lambda)+\mathrm{g}(\lambda)+\mathrm{b}(\lambda)
$$

CIE Color Space

- 3 hypothetical light sources, X, Y, and Z, 1.5 which yield positive matching curves
- Y: roughly corresponds to luminous efficiency characteristic of human eye

CIE Color Space

CIE xyY Space

- Irregular 3D volume shape is difficult to understand
- Chromaticity diagram (the same color of the varying intensity, Y , should all end up at the same point)

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z}
\end{aligned}
$$

Color Gamut

- The range of color representation of a display device

RGB (monitors)

- The de facto standard

$$
\mathbf{C}=\mathrm{r} \mathbf{R}+\mathrm{g} \mathbf{G}+\mathrm{b} \mathbf{B}
$$

The RGB Cube

- RGB color space is perceptually non-linear
- RGB space is a subset of the colors human can perceive
- Con: what is 'bloody red' in RGB?

CMY(K): printing

- Cyan, Magenta, Yellow (Black) - CMY(K)
- A subtractive color model

dye color	absorbs	reflects
cyan	red	blue and green
magenta	green	blue and red
yellow	blue	red and green
black	all	none

RGB and CMY

- Converting between RGB and CMY

The RGB Cube
The CMY Cube

RGB and CMY

HSV

- This color model is based on polar coordinates, not Cartesian coordinates.
- HSV is a non-linearly transformed (skewed) version of RGB cube
- Hue: quantity that distinguishes color family, say red from yellow, green from blue (what color?)
- Saturation (Chroma): color intensity (strong to weak). Intensity of distinctive hue, or degree of color sensation from that of white or grey (what purity?)
- Value (luminance): light color or dark color (what strength?)

HSV Hexcone

- Intuitive interface to color

Lab: photoshop

- Photoshop uses this model to get more control over color
- It's named CIE Lab model (refined from the original CIE model
- Liminance: L
- Chrominance: a - ranges from greeı to red and b ranges from blue to yellow

Lab model

Luv and UVW

- A color model for which, a unit change in luminance and chrominance are uniformly perceptible

$$
\begin{aligned}
& U=13 W^{*}\left(u-u_{o}\right) ; V=13 W^{*}\left(v-v_{o}\right) ; W=25(100 Y)^{1 / 3}-17 \\
& \text { where } Y, u \text { and } v \text { can be calculated from : } \\
& \boldsymbol{X}=\boldsymbol{O . 6 0 7} \boldsymbol{R} \boldsymbol{n}+\boldsymbol{0 . 1 7 4} \mathbf{G n}+\mathbf{0 . 2 0 0 B \boldsymbol { n }} \\
& Y=0.299 \mathrm{Rn}+0.587 \mathrm{Gn}+0.114 B n \\
& Z=0.066 \mathrm{Gn}+1.116 \mathrm{Bn} \\
& x=X /(X+Y+Z) \\
& y=Y /(X+Y+Z) \\
& z=Z /(X+Y+Z) \\
& u=4 x /(-2 x+12 y+3) \\
& v=6 y /(-2 x+12 y+3)
\end{aligned}
$$

- Luv is derived from UVW and Lab, with all components guaranteed to be positive

Yuv and YCrCb : digital video

- Initially, for PAL analog video, it is now also used in CCIR 601 standard for digital video
- Y (luminance) is the CIE Y primary.

$$
Y=0.299 R+0.587 G+0.114 B
$$

- Chrominance is defined as the difference between a color and a reference white at the same luminance. It can be represented by U and V -- the color differences.

$$
U=B-Y ; V=R-Y
$$

- YCrCb is a scaled and shifted version of YUV and used in JPEG and MPEG (all components are positive)

$$
\mathrm{Cb}=(\mathrm{B}-\mathrm{Y}) / 1.772+0.5 ; \mathrm{Cr}=(\mathrm{R}-\mathrm{Y}) / 1.402+0.5
$$

Examples (RGB, HSV, Luv)

Color Matching on Monitors

- Use CIE XYZ space as the standard

$$
\left\lceil\begin{array}{c}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right\rceil=\left[\begin{array}{ccc}
X_{R} & X_{G} & X_{B} \\
Y_{R} & Y_{G} & Y_{B} \\
Z_{R} & Z_{G} & Z_{B}
\end{array}\right]\left[\begin{array}{l}
R\rceil \\
G \\
B
\end{array}\right.
$$

- Use a simple linear conversion

$$
\mathbf{C}_{2}=\mathbf{M}_{2}^{-1} \mathbf{M}_{1} \mathbf{C}_{1}
$$

- Color matching on printer is more difficult, approximation is needed (CMYK)

Gamut Mapping

- Negative RGB: add white (maintains hue, de-saturate)
- >1 RGB, scale down (in what space?)
- Not a trivial question (sometimes known as tone mapping)

Tone mapping

- Real scene: large range of luminance (from $10-6$ to $106 \mathrm{~cd} / \mathrm{m}^{2}$)
- Limitation of the display $1-100 \mathrm{~cd} / \mathrm{m}^{2}$
- cd : candela, unit for measuring intensity of flux of light

Gamma Correction

- The phosphor dots are not a linear system (voltage vs. intensity)

$$
\begin{aligned}
R_{\mathrm{m}} & =K\left(R_{\mathrm{i}}^{\prime}\right)^{y_{\mathrm{r}}} \\
R_{\mathrm{i}}^{\prime} & =k\left(R_{\mathrm{i}}\right)^{1 / \gamma_{\mathrm{r}}}
\end{aligned}
$$

TV monitor
(a)

(b)

Gamma correction

- Without gamma correction, how will $(0,255,127)$ look like?
- Normally gamma is within 1.7 and 2.8
- Who is responsible for Gamma correction?
- SGI does it for you
- PC/Mac etc, you should do it yourself

No gamma correction

Gamma corrected to 1.7

Residual Gamma or System

Gamma

- Systems such as SGI monitor has a gamma of 2.4, but they only gamma correct for 1.7.
- The residue gamma is $2.4 / 1.7=1.4$, why?
- Depends on how you see it? Bright screen, dark room causes changes in your eye transfer function too.
- What about web pages? Which screen do you intend for?

Raster Displays

- Display synchronized with CRT sweep
- Special memory for screen update
- Pixels are the discrete elements displayed
- Generally, updates are visible

Double Buffer

- Adds a second frame buffer
- Swaps during vertical blanking
- Updates are invisible
- Costly

Memory Rasterizer

- Maintains a copy of the screen (or some part of it) in memory
- Relies on a fast copy
- Updates are nearly invisible

True Color and Indexed Color FB

High Color FB

- Popular $P C /(S V G A)$ standard (popular with Gamers)
- Each pixel can be one of $2^{\wedge} 15$ colors
- Can exhibit worse quantization (banding) effects than indexed- color

