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Looking Back

« Ray-tracing and radiosity both computes
global illumination

* |s there a more general methodology?
 |t’s a game of light transport.



Radiance

Radiance (L): for a point in 3D space, L is the light flux per
unit projected area per unit solid angle, measured in W/(sr-

m?)
— sr — steradian: unit of solid angle
A cone that covers r? area on the radius-r hemisphere
A total of 25t sr on a hemisphere Q. ny

— power density/solid angel ,
— The fundamental radiometric quantity

P= J jL(x—)@)-cosH-da)@-dA

Area Solid
Angle

L(x — ©): radiance leaving point x in direction ©
L(x <« ©): radiance arriving at point x from direction ©®



Irradiance and Radiosity

 Irradiance (E)

— Integration of incoming radiance over all directions, measured in
W/m?

— Incident radiant power (Watt) on per unit projected surface area

« Radiance distribution is generally discontinuous, irradiance
distribution is generally continuous, due to the integration
— ‘shooting’, distribute radiance from a surface
— ‘gathering’, integrating irradiance and accumulate light flux on
surface
« Radiosity (B) is
— Exitant radiant power (Watt) on per unit projected surface area,
measured in W/m? as well



Relationships among the
Radiometric Units

Flux: ®(x —» 0©)
Irradiance: E(x < ©) = dd(x (: ©)
dA
Radiant exitance or radiosity: B(x — ©) = dP(x _f ©)
dA
2 2
Radiance: L(x — ©) = d D(x _1@) _d (x> 0)
dodA dwdAcosO

O = L(x— ©)cosOdwdA .
IA IQ " x

E(x) = | L(x < ©)cosBdw

YQ

B(x) = | L(x — ©)cosBdw
v Q)




Path Notation

* A non-mathematical way to categorize the
behavior of global illumination algorithm
— Diffuse to diffuse transfer
— Specular to diffuse transfer
— Diffuse to specular transfer
— Specular to specular transfer
e Heckbert’s string notation (1990): as light ray
travels from source (L) to eye (E):
— LDDE, LDSE+LDDE, LSSE+LDSE, LSDE, LSSDE



BRDF

Materials interact with light in different ways, and different materials
have different appearances given the same lighting conditions.

The reflectance properties of a surface are described by a reflectance
function, which models the interaction of light reflecting at a surface.

The bi-directional reflectance distribution function (BRDF) is the most
general expression of reflectance of a material

The BRDF is defined as the ratio between differential radiance
reflected in an exitant direction, and incident irradiance through a
differential solid angle

dL(x — 0,) dL(x —> 0O))
dE(x < ©,) L(x <« 0,)cos8.dog

f(x, 0,50 ) =



BRDF

* The geometry of BRDF




BRDF properties

Positive, and variable in regard to wave-length

Reciprocity: the value of the BRDF will remain
unchanged if the incident and exitant directions

are interchanged.
f(x,0.50)=f(x,0. -0)

Generally, the BRDF is anisotropic.

BRDF behaves as a linear function with respect to
all incident directions.

L(x—©,) = [f(x,0¢ 0,)L(x < O)cos(n,, ©)dog
Q.



BRDF Examples

Diffuse surface (Lambertian)

f(x,0,-50, = %d p, varies from 0 to 1

Perfect specular surface
— BRDF is non-zero in only one exitant direction

Glossy surfaces (non ideally specular)
— Difficult to model analytically

Transparent surfaces
— Need to model the full sphere (hemi-sphere is not enough)

— BRDF is not usually enough, need BSSRDF (bi-directional sub-
surface scattering reflectance distribution function)

— The transparent side can be diffuse, specular or glossy



Reflectance

e 3 forms

Ideal diffuse ldeal Directional
(Lambertian) specular diffuse

~ Xp




The Rendering Equation

* Proposed by Jim Kajiya in his SIGGRAPH’1986
paper
— Light transport equation in a general form

— Describes not only diffuse surfaces, but also ones with
complex reflective properties

— Goal of computer graphics: solution of the rendering
equation!

— Looks simple and natural, but really is too complex to
be solved exactly; various techniques to nd approximate
solutions are used



The Rendering Equation

1(x,X”) = Intensity passing from X’ to X
g(x,x’) = geometry term (1, or 1/r2, if x visible
from x’, 0 otherwise)

g(x,X’) = Intensity emitted from x’ In the direction
of X

o(x,x’,x*”) = scattering term for x’ (fraction of
Intensity arriving at x’ from the direction of x’’
scattered in the direction of x)

S = union of all surfaces
I(e,2') = gle,a) [e(e,a") + g ple,o! e I( 2o




Linear Operator

e Define a linear operator, M.
M(I)(x, I,) = [gp(, o ‘J.‘”)I (1, J.-‘”)

* The rendering equation:
I'=ge+ gM(I)
e How to solve It?




Neumann Series Solution

Start with an initial guess |,
Compute a better solution
I1 = ge+ gM(Ip)
Computer an even better solution
Iy = ge+ gM(Iy) = ge + gMge+ gMgM (1)
Then, I = ge+gMge+gMgMge+gMgMgMge+. ..
In practice one needs to truncate it somewhere



Examples

* No shading/illumination, just draw surfaces
as emitting themselves:

I = ge
e Direct illumination, no shadows:
I = ge+ gMe

e Direct illumination with shadows:
I = ge + gM ge



Implications

* How successful is a global illumination algorithm?
— The first term is simple, just visibility

— How an algorithm handles the remaining terms and the
recursion?

— How does it handle the combinations of diffuse and
specular reflectivity
e The rendering equation Is a view-independent
statement of the problem

* How are the radiosity algorithm and the ray-
tracing algorithm?



Monte Carlo Techniques In
Global Hlumination

 Monte Carlo Is a general class of estimation
method based on statistical sampling

— The most famous example: to estimate

* Monte Carlo techniques are commonly used
to solve integrals with no analytical or
numerical solution
— The rendering equation has one such integral



Basic Monte Carlo Integration

Suppose we want to numerically integrate a function over an
integration domain D (of dimension d), i.e., we want to compute the
value of the integral I:

[ = Ij'(x)a’x
D

D = [o...B]x[0,...0] x... x[o...5 ] (o, B, € NR)

Common deterministic approach: construct a number of sample points,
and use the function values at those points to compute an estimate of 1.

Monte Carlo integration basically uses the same approach, but uses a
stochastic process to generate the sample points. And would like to
generate N sample points distributed uniformly over D.



Basic Monte Carlo Integration

* The mean of the evaluated function values at each randomly generated
sample point multiplied by the area of the integration domain, provides

an unbiased estimator for I:

N d
(I = []%/'Zf(xl)} [H (Bial’)}

=1 i=1

* Monte Carlo methods provides an un-biased estimator

» The variance reduces as N increases
o Usually, given the same N, deterministic approach produces less error
than Monte Carlo methods



When to Use Monte Carlo?

« High dimension integration — the sample points
needed in deterministic approach exponential
Increase

e Complex integrand: practically can’t tell the error
bound for deterministic approaches

 Monte Carlo is always un-biased, and for
rendering purpose, it converts errors into noise!!



Two Types of Monte Carlo

* Monte Carlo integration methods can roughly be

subdivided In two categories:.
— those that have no information about the function to be integrated:
‘blind Monte Carlo’
— those that do have some kind of information available about the
function: ‘informed Monte Carlo’

 Intuitively, one expects that informed Monte Carlo
methods to produce more accurate results as opposed to

blind Monte Carlo methods.

* The basic Monte Carlo integration is a blind Monte Carlo
method



Importance Sampling

An Informed Monte Carlo

Importance sampling uses a non-uniform probability
function, pdf(x), for generating samples.

— By choosing the probability function pdf(x) wisely on the basis of
some knowledge of the function to be integrated, we can often
reduce the variance

— Can prove: if can get the pdf(x) to match the exact shape of the
function to be integrated, f(x), the variance of the integration
estimation is 0.

Practically, can use a sample table to generate a ‘good’
pdf.

Intuitively, want to send more rays into the more detailed
areas In space



Stratified Sampling

 Importance sampling (probability) using a limited number
of samples, which is the case for graphics rendering, does

not have a guarantee.

o Stratified sampling address this further: the basic idea of
stratified sampling is to split up the integration domain in
m disjunct subdomains (also called strata), and evaluate
the integral in each of the subdomains separately with one
or more samples.

* More precisely:

1 o o, o 1

[fydx = [foode+ [foode+ ..+ [ foydc+ | flods

0 0 a‘l am -2 am— |



More On Ray-Tracing

» Already discussed recursive ray-tracing!

e |mprovements to ray-tracing!

— Area sampling variations to address aliasing

« Cone tracing (only talk about this)
e Beam tracing
 Pencil tracing

 Distributed ray-tracing!



Cone Tracing (1984)

Generalize linear rays into cones

One cone is fired from eye into each pixel
— Have a wide angle to encompass the pixel

The cone is intersected with objects in its path

Reflection and refraction are modeled as spherical mirrors
and lenses
— Use the curvature of the object intersecting that cone
— Broaden the reflected and refracted cones to simulate further
scattering

Shadow: proportion of the shadow cone that remains un-
blocked



Distributed Ray-Tracing

Another way to address aliasing
By Cook, Porter, and Carpenter in 1984.

A stochastic approach to supersampling that trades
objectionable aliasing artifacts for the less
offensive artifacts of noise

‘Distributed’: rays are stochastically distributed to
sample the quantities

This method was covered during our recursive ray
tracing lecture as extension to correct aliasing



Sampling Other Dimensions

 Other than stochastic spatial sampling for anti-aliasing, can
sample in other dimensions
— Motion blur (distribute rays in time)
— Depth of field (distribute rays over the area of the camera lens)

— Rough surfaces: blurred specular reflections and translucent
refraction (distribute rays according to specular reflection and
transmission functions)

— Soft shadow: distribute shadow feeler rays over the solid angle
span by the area light source

 In all cases, use stochastic sampling to perturb rays



