
OpenGL Shading Language

Jian Huang

Why the need?

• Until late 90’s, when it comes to OpenGL programming
(hardware accelerated graphics), an analogy as below was
mostly true:
– A machinery operator turns a few knobs and sets a few switches,

and then push a button called “render”. Out of the other end of a
magical black box, images come out

• All the controls offered by the OpenGL API comes as just
knobs and switches

• Although knowing more about the intrinsic OGL states,
one could (become a professional knob operator and)
achieve better performance (but few new functionality
could the operator discover)

Why the need? (cont.)

• But the graphics industry is mostly driven to create “new”

and “newer” effects, so to get more leverage on graphics

hardware, programmers started to perform multi-pass

rendering and spend more and more time to tweak a few

standard knobs for tasks beyond the original scope of

design, e.g.

– to compute shading using texture transformation

matrices

– to combine multi-texture unit lookups using equations

beyond just blending or modulating

Software Renders

• During the early days of graphics special effects creation
(when there was no OpenGL), Pixar developed their own
in-house software renderer, RenderMan

• What’s unique about RenderMan is its interface that allows
highly programmable control over the appearance of each
fragment

• This part of RenderMan was later opened up to public and
is nowadays widely known as RenderMan shading
language

Cg

• When graphics hardware vendors started to develop an
interface to expose inner controls/programmability of their
hardware …
– Like the birth of every domain specific programming/scripting

language, a shading language seemed to be a logical choice

• nVidia was the first vendor to do so, and their shading
language is called Cg.

• Cg was an immense success and became a widely adopted
cutting edge tool throughout the whole industry

OpenGL Shading Language

(GLSL)
• A few years after the success of Cg, in loom of a highly

diverse and many times confusing set of languages or
extensions to write shaders with, the industry started its
effort of standardization.

• The end result is OpenGL Shading Language, which is a
part of the OpenGL 2.0 standard

• GLSL is commonly referred to as “GLslang”

• GLSL and Cg are quite similar, with GLSL being a lot
closer to OpenGL

The Graphics Pipeline

• If GLSL and Cg are both just an interface, what do they

expose?

– The graphics pipeline

• Here is a very simplified view

Fixed Functionality – Vertex

Transformation
• A vertex is a set of attributes such as its location in space,

color, normal, texture coordinates, etc.

• Inputs: individual vertices attributes.

• Operations:

– Vertex position transformation

– Lighting computations per vertex

– Generation and transformation of texture coordinates

Fixed Functionality – Primitive

Assembly and Rasterization
• Inputs: transformed vertices and connectivity information

• Op 1: clipping against view frustum and back face culling

• Op 2: the actual rasterization determines the fragments,

and pixel positions of the primitive.

• Output:

– position of the fragments in the frame buffer

– interpolated attributes for each fragment

Fixed Functionality – Fragment

Texturing and Coloring
• Input: interpolated fragment information

• A color has already been computed in the previous stage

through interpolation, and can be combined with a texel

• Texture coordinates have also been interpolated in the

previous stage. Fog is also applied at this stage.

• Output: a color value and a depth for each fragment.

Fixed Functionality – Raster

Operations
• Inputs:

– pixels location

– fragments depth and color values

• Operations:

– Scissor test

– Alpha test

– Stencil test

– Depth test

Fixed Functionality

• A summary (common jargons: T&L, Texturing etc.)

Replacing Fixed Functionalities

• Vertex Transformation stage: vertex shaders

• Fragment Texturing and Coloring stage: fragment shaders

• Obviously, if we are replacing fixed functionalities with

programmable shaders, “stage” is not a proper term any

more

• From here on, let’s call them vertex processors and

fragment processors

Vertex Processors

• The vertex processor is where the vertex shaders are run

• Input: the vertex data, namely its position, color, normals,

etc, depending on what the OpenGL application sends
• A piece of code that sends the inputs to vertex shader:

glBegin(...);

glColor3f(0.2,0.4,0.6);

glVertex3f(-1.0,1.0,2.0);

glColor3f(0.2,0.4,0.8);

glVertex3f(1.0,-1.0,2.0);

glEnd();

Vertex Processors

• In vertex shaders, sample tasks to perform include:
– vertex position transformation using the modelview and projection

matrices

– normal transformation, and if required its normalization

– texture coordinate generation and transformation

– lighting per vertex or computing values for lighting per pixel

– color computation

• Note:
– it is not required that your vertex shader
does any particular task

– no matter what vertex shader is provided,
you have already replaced the entire fixed
functionality for vertex transformation stage

Vertex Processors

• The vertex processor processes vertices individually and has
no information regarding connectivity, no operations that
require topological knowledge can't be performed in here.
– for example, no back face culling

• The vertex shader must write at least a variable: gl_Position
– often transforming with modelview and projection matrices

• A vertex processor has access to OpenGL states

– so it can do lighting and use materials.

• A vertex processor can access textures (not on all hardware).

• A vertex processor cannot access the frame buffer.

Fragment Processors

• Inputs: the interpolated values computed in the previous

stage of the pipeline

– e.g. vertex positions, colors, normals, etc...

• Note, in the vertex shader these values are computed per

vertex. Here we're interpolating for the fragments

• When you write a fragment shader it replaces all the fixed

functionality. The programmer must code all effects that the

application requires.

• A fragment shader has two output options:
– to discard the fragment, hence outputting nothing

– to compute either gl_FragColor (the final color of the
fragment), or gl_FragData when rendering to multiple
targets.

Fragment Processors
• The fragment processor operates on single fragments, i.e. it

has no clue about the neighboring fragments.

• The shader has access to OpenGL states

– Note: a fragment shader has access to but cannot change the pixel

coordinate. Recall that modelview, projection and viewport

matrices are all used before the fragment processor.

• Depth can also be written but not required

• Note the fragment shader has no access to the framebuffer

• Operations such as blending occur only after the fragment

shader has run.

Using GLSL

• If you are using OpenGL 2.0, GLSL is part of it

• If not, you need to have two extensions:
GL_ARB_fragment_shader

GL_ARB_vertex_shader

• In OGL 2.0, the involved functions and symbolic

constants do not have “ARB” in the name any

more.

The Overall Process

Creating a Shader

• The first step is creating an object which will act as a

shader container. The function available for this purpose

returns a handle for the container

• You can create as many shaders as needed, but there can

only be one single main function for the set of vertex

shaders and one single main function for the set of

fragment shaders in each single program.

GLhandleARB glCreateShaderObjectARB(GLenum shaderType);

Parameter:

shaderType - GL_VERTEX_SHADER_ARB or

GL_FRAGMENT_SHADER_ARB.

Creating a Shader

• The second step is to add some source code (like this is a

surprise).

– The source code for a shader is a string array, although you can use

a pointer to a single string.

• The syntax of the function to set the source code for a

shader is
void glShaderSourceARB(GLhandleARB shader, int numOfStrings,

const char **strings, int *lenOfStrings);

Parameters:

 shader - the handler to the shader.

 numOfStrings - the number of strings in the

array.

 strings - the array of strings.

 lenOfStrings - an array with the length of each

string, or NULL,

 meaning that the strings are

NULL terminated.

Creating a Shader

• The final step, the shader must be compiled.

• The function to achieve this is:

void glCompileShaderARB(GLhandleARB program);

Parameters:

program - the handler to the program.

Creating a Program

• The first step is creating an object which will act as a

program container.

• The function available for this purpose returns a handle for

the container

• One can create as many programs as needed. Once

rendering, you can switch from program to program, and

even go back to fixed functionality during a single frame.

– For instance one may want to draw a teapot with refraction and

reflection shaders, while having a cube map displayed for

background using OpenGL's fixed functionality.

GLhandleARB glCreateProgramObjectARB(void);

Creating a Program

• The 2nd step is to attach the shaders to the program you've just created.

• The shaders do not need to be compiled nor is there a need to have src

code. For this step only the shader container is required

• If you have a pair vertex/fragment of shaders you'll need to attach both to

the program (call attach twice).

• You can have many shaders of the same type (vertex or fragment)

attached to the same program (call attach many times)

void glAttachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameters:

program - the handler to the program.

shader - the handler to the shader you want to attach.

•As in C, for each type of shader there can only be one shader
with a main function. You can attach a shader to multiple
programs, e.g. to use the same shader in several programs.

Creating a Program

• The final step is to link the program. In order to carry out

this step the shaders must be compiled as described in the

previous subsection.

• After link, the shader's source can be modified and

recompiled without affecting the program.

void glLinkProgramARB(GLhandleARB program);

Parameters:

program - the handler to the program.

Using a Program

• After linking, the shader's source can be modified and

recompiled without affecting the program.

• Because calling the function that actually load and use the

program , glUseProgramObjectARB, causes a program to be

actually loaded (the latest version then) and used.

• Each program is assigned an handler, and you can have as

many programs linked and ready to use as you want (and

your hardware allows).

void glUSeProgramObjectARB(GLhandleARB prog);

Parameters:

prog - the handler to the program to use, or zero to return to fixed functionality

A program in use, if linked again, will automatically be placed in use

again. No need to useprogram again.

Setting up - setShaders
• Here is a sample function to setup shaders. You can call

this in your main function
GLhandleARB p,f,v; are declared as globals */

textFileRead is provided

in the class directory

Cleaning Up

• A function to detach a shader from a program is:

• Only shaders that are not attached can be deleted

• To delete a shader use the following function:

void glDetachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameter:

program - The program to detach from.

shader - The shader to detach.

void glDeleteShaderARB(GLhandleARB shader);

Parameter:

shader - The shader to delete.

Getting Error

• There is alos an info log function that returns compile &

linking information, errors

void glGetInfoLogARB(GLhandleARB object,

 GLsizei maxLength,

 GLsizei *length,G

 GLcharARB *infoLog);

GLSL Data Types

• Three basic data types in GLSL:
– float, bool, int

– float and int behave just like in C,and bool types can take on the
values of true or false.

• Vectors with 2,3 or 4 components, declared as:

– vec{2,3,4}: a vector of 2, 3,or 4 floats

– bvec{2,3,4}: bool vector

– ivec{2,3,4}: vector of integers

• Square matrices 2x2, 3x3 and 4x4:

– mat2

– mat3

– mat4

GLSL Data Types
• A set of special types are available for texture access,

called sampler

– sampler1D - for 1D textures

– sampler2D - for 2D textures

– sampler3D - for 3D textures

– samplerCube - for cube map textures

• Arrays can be declared using the same syntax as in C, but

can't be initialized when declared. Accessing array's

elements is done as in C.

• Structures are supported with exactly the same syntax as C
struct dirlight

{

 vec3 direction;
 vec3 color;

};

GLSL Variables
• Declaring variables in GLSL is mostly the same as in C

• Differences: GLSL relies heavily on constructor for

initialization and type casting

• GLSL is pretty flexible when initializing variables using other

variables

GLSL Variables

• Matrices also follow this pattern

• The declaration and initialization of structures is

demonstrated below

GLSL Variables

• Accessing a vector can be done using letters as well as

standard C selectors.

• One can the letters x,y,z,w to access vectors components;

r,g,b,a for color components; and s,t,p,q for texture

coordinates.

• As for structures the names of the elements of the structure

can be used as in C

GLSL Variable Qualifiers

• Qualifiers give a special meaning to the variable. In GLSL

the following qualifiers are available:

– const - the declaration is of a compile time constant

– attribute – (only used in vertex shaders, and read-only in shader)

global variables that may change per vertex, that are passed from

the OpenGL application to vertex shaders

– uniform – (used both in vertex/fragment shaders, read-only in

both) global variables that may change per primitive (may not be

set inside glBegin,/glEnd)

– varying - used for interpolated data between a vertex shader and a

fragment shader. Available for writing in the vertex shader, and

read-only in a fragment shader.

GLSL Statements

• Control Flow Statements: pretty much the same as in C.

Note: only “if” are available on most current hardware

GLSL Statements

• A few jumps are also defined:
•continue - available in loops, causes a jump to the next iteration of the loop

•break - available in loops, causes an exit of the loop

•Discard - can only be used in fragment shaders. It causes the termination of the

shader for the current fragment without writing to the frame buffer, or depth.

GLSL Functions
• As in C, a shader is structured in functions. At least each type of

shader must have a main function declared with the following syntax:
void main()

• User defined functions may be defined.

• As in C a function may have a return value, and use the
return statement to pass out its result. A function can be
void. The return type can have any type, except array.

• The parameters of a function have the following qualifiers:

– in - for input parameters

– out - for outputs of the function. The return statement is also an
option for sending the result of a function.

– inout - for parameters that are both input and output of a function

– If no qualifier is specified, by default it is considered to be in.

GLSL Functions

• A few final notes:

– A function can be overloaded as long as the list of parameters is

different.

– Recursion behavior is undefined by specification.

• Finally, let’s look at an example

GLSL Varying Variables
• Let’s look at a real case, shading

– Current OGL does Gouraud Shading

– Phong shading produces much higher visual quality, but turns out

to be a big deal for hardware

• Illumination takes place in vertex transformation, then

shading (color interpolation) goes in the following stage

• But Phong shading basically requires per fragment

illumination

GLSL Varying Variables
• Varying variables are interpolated from vertices, utilizing

topology information, during rasterization

• GLSL has some predefined varying variables, such as

color, texture coordinates etc.

• Unfortunately, normal is not one of them

• In GLSL, to do Phong shading, let’s make normal a

varying variable

GLSL Varying Variables

• Define varying variables in both vertex and fragment

shaders

• Varying variables must be written in the vertex shader

• Varying variables can only be read in fragment shaders

More Setup for GLSL- Uniform

Variables
• Uniform variables, this is one way for your C program to

communicate with your shaders (e.g. what time is it since the

bullet was shot?)

• A uniform variable can have its value changed by primitive

only, i.e., its value can't be changed between a glBegin /

glEnd pair.

• Uniform variables are suitable for values that remain

constant along a primitive, frame, or even the whole scene.

• Uniform variables can be read (but not written) in both

vertex and fragment shaders.

More Setup for GLSL- Uniform

Variables
• The first thing you have to do is to get the memory

location of the variable.

– Note that this information is only available after you link the

program. With some drivers you may be required to be using the

program, i.e. glUSeProgramObjectARB is already called

• The function to use is:

GLint glGetUniformLocationARB(GLhandleARB program, const char *name);

Parameters:

program - the handler to the program

name - the name of the variable.

The return value is the location of the variable, which can be used to assign values to it.

More Setup for GLSL- Uniform

Variables
• Then you can set values of uniform variables with a family

of functions.

• A set of functions is defined for setting float values as

below. A similar set is available for int’s, just replace “f”

with “i”
void glUniform1fARB(GLint location, GLfloat v0);

void glUniform2fARB(GLint location, GLfloat v0, GLfloat v1);

void glUniform3fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2);
void glUniform4fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3);

GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei count, GLfloat *v);

Parameters:

 location - the previously queried location.

 v0,v1,v2,v3 - float values.

 count - the number of elements in the array

 v - an array of floats.

More Setup for GLSL- Uniform

Variables
• Matrices are also an available data type in GLSL, and a set

of functions is also provided for this data type:

GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei count, GLboolean transpose, GLfloat *v);

Parameters:

 location - the previously queried location.

 count - the number of matrices. 1 if a single matrix is being set, or n for an array of n

matrices.

 transpose - wheter to transpose the matrix values. A value of 1 indicates that the matrix

values are specified in row major order, zero is column major order

 v - an array of floats.

More Setup for GLSL- Uniform

Variables
• Note: the values that are set with these functions will keep

their values until the program is linked again.

• Once a new link process is performed all values will be

reset to zero.

More Setup for GLSL- Uniform

Variables
• A sample:

Assume that a shader with the following

variables is being used:

uniform float specIntensity;

uniform vec4 specColor;
uniform float t[2];

uniform vec4 colors[3];

In the OpenGL application, the code for setting the variables could

be:

GLint loc1,loc2,loc3,loc4;

float specIntensity = 0.98;
float sc[4] = {0.8,0.8,0.8,1.0};

float threshold[2] = {0.5,0.25};

float colors[12] = {0.4,0.4,0.8,1.0, 0.2,0.2,0.4,1.0, 0.1,0.1,0.1,1.0};

loc1 = glGetUniformLocationARB(p,"specIntensity");

glUniform1fARB(loc1,specIntensity);
loc2 = glGetUniformLocationARB(p,"specColor");

glUniform4fvARB(loc2,1,sc);

loc3 = glGetUniformLocationARB(p,"t");

glUniform1fvARB(loc3,2,threshold);

loc4 = glGetUniformLocationARB(p,"colors");
glUniform4fvARB(loc4,3,colors);

More Setup for GLSL- Attribute

Variables
• Attribute variables also allow your C program to

communicate with shaders

• Attribute variables can be updated at any time, but can

only be read (not written) in a vertex shader.

• Attribute variables pertain to vertex data, thus not useful in

fragment shader

• To set its values, (just like uniform variables) it is

necessary to get the location in memory of the variable.

– Note that the program must be linked previously and some drivers

may require the program to be in use.

GLint glGetAttribLocationARB(GLhandleARB program,char *name);
Parameters:

program - the handle to the program.

name - the name of the variable

More Setup for GLSL- Attribute

Variables
• As uniform variables, a set of functions are provided to set

attribute variables (replacing “f” with “i” gives the API for int’s)

void glVertexAttrib1fARB(GLint location, GLfloat v0);

void glVertexAttrib2fARB(GLint location, GLfloat v0, GLfloat v1);

void glVertexAttrib3fARB(GLint location, GLfloat v0, GLfloat v1,GLfloat v2);
void glVertexAttrib4fARB(GLint location, GLfloat v0, GLfloat v1,,GLfloat v2, GLfloat v3);

or

GLint glVertexAttrib{1,2,3,4}fvARB(GLint location, GLfloat *v);

Parameters:

 location - the previously queried location.

 v0,v1,v2,v3 - float values.

 v - an array of floats.

More Setup for GLSL- Attribute

Variables
• A sample snippet

Appendix

• Sample Shaders

• List of commonly used Built-in’s of GLSL

Ivory – vertex shader

uniform vec4 lightPos;

varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
 vec4 vert = gl_ModelViewMatrix * gl_Vertex;

 normal = gl_NormalMatrix * gl_Normal;
 lightVec = vec3(lightPos - vert);
 viewVec = -vec3(vert);

}

Ivory – fragment shader

varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
 vec3 norm = normalize(normal);

 vec3 L = normalize(lightVec);
 vec3 V = normalize(viewVec);
 vec3 halfAngle = normalize(L + V);

 float NdotL = dot(L, norm);
 float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);

 // "Half-Lambert" technique for more pleasing diffuse term
 float diffuse = 0.5 * NdotL + 0.5;
 float specular = pow(NdotH, 64.0);

 float result = diffuse + specular;

 gl_FragColor = vec4(result);
}

Gooch – vertex shader

uniform vec4 lightPos;

varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
 gl_Position = gl_ModelViewProjectionMatrix *
gl_Vertex;

 vec4 vert = gl_ModelViewMatrix * gl_Vertex;

 normal = gl_NormalMatrix * gl_Normal;
 lightVec = vec3(lightPos - vert);
 viewVec = -vec3(vert);

}

Gooch – fragment shader

uniform vec3 ambient;

varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
 const float b = 0.55;
 const float y = 0.3;
 const float Ka = 1.0;
 const float Kd = 0.8;
 const float Ks = 0.9;

 vec3 specularcolor = vec3(1.0, 1.0, 1.0);

 vec3 norm = normalize(normal);
 vec3 L = normalize (lightVec);
 vec3 V = normalize (viewVec);
 vec3 halfAngle = normalize (L + V);

Gooch – fragment shader (2)

 vec3 orange = vec3(.88,.81,.49);
 vec3 purple = vec3(.58,.10,.76);

 vec3 kCool = purple;
 vec3 kWarm = orange;

 float NdotL = dot(L, norm);
 float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);
 float specular = pow(NdotH, 64.0);

 float blendval = 0.5 * NdotL + 0.5;
 vec3 Cgooch = mix(kWarm, kCool, blendval);

 vec3 result = Ka * ambient + Kd * Cgooch + specularcolor * Ks *
specular;

 gl_FragColor = vec4(result, 1.0);
}

Built-in variables

• Attributes & uniforms

• For ease of programming

• OpenGL state mapped to variables

• Some special variables are required to be

written to, others are optional

Special built-ins

• Vertex shader
vec4 gl_Position; // must be written

vec4 gl_ClipPosition; // may be written

float gl_PointSize; // may be written

• Fragment shader
float gl_FragColor; // may be written

float gl_FragDepth; // may be read/written

vec4 gl_FragCoord; // may be read

bool gl_FrontFacing; // may be read

Attributes

• Built-in
attribute vec4 gl_Vertex;

attribute vec3 gl_Normal;

attribute vec4 gl_Color;

attribute vec4 gl_SecondaryColor;

attribute vec4 gl_MultiTexCoordn;

attribute float gl_FogCoord;

• User-defined
attribute vec3 myTangent;

attribute vec3 myBinormal;

Etc…

Built-in Uniforms

uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat3 gl_NormalMatrix;
uniform mat4 gl_TextureMatrix[n];

struct gl_MaterialParameters {
 vec4 emission;
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 float shininess;
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Built-in Uniforms

struct gl_LightSourceParameters {
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 vec4 position;
 vec4 halfVector;
 vec3 spotDirection;
 float spotExponent;
 float spotCutoff;
 float spotCosCutoff;
 float constantAttenuation
 float linearAttenuation
 float quadraticAttenuation
};
Uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

Built-in Varyings

varying vec4 gl_FrontColor // vertex
varying vec4 gl_BackColor; // vertex
varying vec4 gl_FrontSecColor; // vertex
varying vec4 gl_BackSecColor; // vertex

varying vec4 gl_Color; // fragment
varying vec4 gl_SecondaryColor; // fragment

varying vec4 gl_TexCoord[]; // both
varying float gl_FogFragCoord; // both

Built-in functions

• Angles & Trigonometry

– radians, degrees, sin, cos, tan, asin, acos,
atan

• Exponentials

– pow, exp2, log2, sqrt, inversesqrt

• Common

– abs, sign, floor, ceil, fract, mod, min, max,
clamp

Built-in functions

• Interpolations

– mix(x,y,a) x*(1.0-a) + y*a)

– step(edge,x) x <= edge ? 0.0 : 1.0

– smoothstep(edge0,edge1,x)

 t = (x-edge0)/(edge1-edge0);

 t = clamp(t, 0.0, 1.0);

 return t*t*(3.0-2.0*t);

Built-in functions

• Geometric

– length, distance, cross, dot, normalize, faceForward,

reflect

• Matrix

– matrixCompMult

• Vector relational

– lessThan, lessThanEqual, greaterThan,

greaterThanEqual, equal, notEqual, notEqual, any,

all

Built-in functions

• Texture

– texture1D, texture2D, texture3D,
textureCube

– texture1DProj, texture2DProj,
texture3DProj, textureCubeProj

– shadow1D, shadow2D, shadow1DProj,
shadow2Dproj

• Vertex

– ftransform

