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Polygon Mesh

• Vertex coordinates 
list, polygon table 
and (maybe) edge 
table

• Auxiliary:
– Per vertex normal
– Neighborhood 

information, 
arranged with regard 
to vertices and edges



Transformations – Need ?
• Modeling transformations

• build complex models by positioning simple components
• Viewing transformations

• placing virtual camera in the world
• transformation from world coordinates to eye coordinates

• Animation: vary transformations over time to create motion

WORLD

OBJECT
EYE



Viewing Pipeline

• Object space: coordinate space where each component is defined
• World space: all components put together into the same 3D scene 

via affine transformation. (camera, lighting defined in this space)
• Eye space: camera at the origin, view direction coincides with the 

z axis. Hither and Yon planes perpendicular to the z axis
• Clipping space: do clipping here. All point is in homogeneous 

coordinate, i.e., each point is represented by (x,y,z,w)
• 3D image space (Canonical view volume): a parallelpipied shape 

defined by (-1:1,-1:1,0,1). Objects in this space is distorted
• Screen space: x and y coordinates are screen pixel coordinates
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Spaces
Object Space and World Space:

Eye-Space:



Spaces

Clip Space:

Image Space:





2D Transformation

• Translation

• Rotation



Homogeneous Coordinates

• Matrix/Vector format for translation:



Translation in Homogenous 
Coordinates

• There exists an inverse mapping for each 
function

• There exists an identity mapping



Why these properties are 
important

• when these conditions are shown for any class of 
functions it can be proven that such a class is closed 
under composition

• i. e. any series of translations can be composed to a 
single translation.



Rotation in Homogeneous Space

The two properties 
still apply.



Putting Translation and Rotation 
Together

• Order matters !!



Affine Transformation

• Property: preserving parallel lines
• The coordinates of three corresponding 

points uniquely determine any Affine 
Transform!!



Affine Transformations

• Translation
• Rotation
• Scaling
• Shearing

T



How to determine an Affine 2D 
Transformation?

• We set up 6 linear equations in terms of our 6 
unknowns. In this case, we know the 2D coordinates 
before and after the mapping, and we wish to solve 
for the 6 entries in the affine transform matrix



Affine Transformation in 3D

• Translation

• Rotate

• Scale

• Shear



More Rotation

• Which axis of rotation is this?



Viewing

• Object space to World space: affine 
transformation

• World space to Eye space: how?
• Eye space to Clipping space involves 

projection and viewing frustum



Perspective Projection

• Projection point sees anything on ray through pinhole F
• Point W projects along the ray through F to appear at I

(intersection of WF with image plane)
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Image Formation

F

Image

World

Projecting shapes
• project points onto image plane
• lines are projected by projecting its end points only



Orthographic Projection
• focal point at infinity 
• rays are parallel and orthogonal to the image plane
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Comparison



Simple Perspective Camera
• camera looks along z-axis
• focal point is the origin
• image plane is parallel to xy-plane at distance d
• d is call focal length for historical reason



Similar Triangles
Y

Z
[0, d][0, 0]

[Y, Z]

[(d/Z)Y, d]

• Similar situation with  x-coordinate
• Similar Triangles: 

point [x,y,z] projects to [(d/z)x, (d/z)y, d]



Projection Matrix
Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]

• 2-D image point:
• discard third coordinate
• apply viewport transformation to obtain physical pixel 

coordinates

d 0 0 0
0 d 0 0
0 0 d 0
0 0 1 0
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Divide by 4th coordinate
(the “w” coordinate)



View Volume
• Defines visible region of space, pyramid edges are clipping planes
• Frustum :truncated pyramid with near and far clipping planes

– Near (Hither) plane ?  Don’t care about behind the camera 
– Far (Yon) plane, define field of interest, allows z to be scaled to a 

limited fixed-point value for  z-buffering. 



Difficulty

• It is difficult to do clipping directly in the 
viewing frustum



Canonical View Volume

• Normalize the viewing frustum to a cube, canonical view 
volume

• Converts perspective frustum to 
orthographic frustum – perspective 
transformation



Perspective Transform

• The equations
alpha = yon/(yon-hither)

beta = yon*hither/(hither - yon)

s: size of window on the 
image plane
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About Perspective Transform

• Some properties



About Perspective Transform

• Clipping can be performed against the 
rectilinear box

• Planarity and linearity are preserved
• Angles and distances are not preserved
• Side effects: objects behind the observer are 

mapped to the front. Do we care?



Perspective + Projection Matrix

• AR: aspect ratio correction, ResX/ResY
• s= ResX,
• Theta: half view angle, tan(theta) = s/d



Camera Control and Viewing
Focal length (d), image size/shape and clipping planes included in 

perspective transformation
§ r Angle or Field of view (FOV) 

§ AR Aspect Ratio of view-port

§ Hither, Yon Nearest and farthest vision limits (WS).

Lookat - coi

Lookfrom - eye

View angle - FOV



Complete Perspective

• Specify near and far clipping planes -
transform z between znear and zfar on to a 
fixed range

• Specify field-of-view (fov) angle
• OpenGL’s glFrustum and gluPerspective do 

these



More Viewing Parameters

Camera, Eye or Observer:
lookfrom:location of focal point or camera
lookat: point to be centered in image

Camera orientation about the lookat-lookfrom axis

vup: a vector that is pointing straight up in 
the image. This is like an orientation.



Implementation … Full Blown

• Translate by -lookfrom, bring focal point to origin
• Rotate lookat-lookfrom to the z-axis with matrix R:

• v = (lookat-lookfrom) (normalized) and z = [0,0,1]
• rotation axis: a = (vxz)/|vxz|
• rotation angle: cosq = a•z and sinq = |rxz|

• OpenGL: glRotate(q, ax, ay, az)
• Rotate about z-axis to get vup parallel to the y-axis



Viewport mapping

• Change from the image coordinate system (x,y,z) 
to the screen coordinate system (X,Y).

• Screen coordinates are always non-negative 
integers.

• Let (vr,vt) be the upper-right corner and (vl,vb) be 
the lower-left corner.

• X = x * (vr-vl)/2 + (vr+vl)/2
• Y = y * (vt-vb)/2 + (vt+vb)/2



True Or False

• In perspective transformation parallelism is 
not preserved.
– Parallel lines converge
– Object size is reduced by increasing distance from center of 
projection
– Non-uniform foreshortening of lines in the object as a 
function of orientation and distance from center of projection
– Aid the depth perception of human vision, but shape is not 
preserved



True Or False

• Affine transformation is a combination of 
linear transformations

• The last column/row in the general 4x4 
affine transformation matrix is [0 0 0 1]T.

• After affine transform, the homogeneous 
coordinate w maintains unity.


