
Z-buffer and Rasterization

Jian Huang

Visibility Determination

• AKA, hidden surface elimination

Hidden Lines

Hidden Lines Removed

Hidden Surfaces Removed

Backface Culling

Hidden Object Removal: Painters Algorithm

Z-buffer

Spanning Scanline

Warnock

Atherton-Weiler

List Priority, NNA

BSP Tree

Taxonomy

Various Algorithms

Where Are We ?

Canonical view volume (3D image space)

Clipping done

division by w

z > 0

x

y

z

near far

clipped line

1

1
1

0

x

y

z

image plane

near
far

clipped line

Back-face Culling

Problems ?

Conservative algorithms

Real job of visibility never solved

Back-face Culling

• If a surface’s normal is pointing to the same

direction as our eye direction, then this is a

back face

• The test is quite simple: if N * V > 0 then we

reject the surface

Painters Algorithm

Sort objects in depth order

Draw all from Back-to-Front (far-to-near)

Is it so simple?

3D Cycles

How do we deal with cycles?

Deal with intersections

How do we sort objects that overlap in Z?

 Form of the Input

Object types: what kind of objects does it handle?

 convex vs. non-convex

 polygons vs. everything else - smooth curves, non-

continuous surfaces, volumetric data

Object Space

Geometry in, geometry out

Independent of image

resolution

Followed by scan

conversion

Form of the output

Image Space

Geometry in, image out

Visibility only at pixels

Precision: image/object space?

Object Space Algorithms

 Volume testing – Weiler-Atherton, etc.

input: convex polygons + infinite eye pt

output: visible portions of wireframe edges

Image-space algorithms

Traditional Scan Conversion and Z-buffering

 Hierarchical Scan Conversion and Z-buffering

input: any plane-sweepable/plane-boundable

objects

preprocessing: none

output: a discrete image of the exact visible set

Conservative Visibility Algorithms

Viewport clipping

Back-face culling

Warnock's screen-space subdivision

Z-buffer

Z-buffer is a 2D array that stores a depth value for each pixel.

InitScreen:

 for i := 0 to N do

 for j := 1 to N do

 Screen[i][j] := BACKGROUND_COLOR; Zbuffer[i][j] := ;

DrawZpixel (x, y, z, color)

 if (z <= Zbuffer[x][y]) then

 Screen[x][y] := color; Zbuffer[x][y] := z;

Z-buffer: Scanline

I. for each polygon do

 for each pixel (x,y) in the polygon’s projection do

 z := -(D+A*x+B*y)/C;

 DrawZpixel(x, y, z, polygon’s color);

II. for each scan-line y do

 for each “in range” polygon projection do

 for each pair (x1, x2) of X-intersections do

 for x := x1 to x2 do

 z := -(D+A*x+B*y)/C;

 DrawZpixel(x, y, z, polygon’s color);

If we know zx,y at (x,y) than: zx+1,y = zx,y - A/C

Incremental Scanline

On a scan line Y = j, a constant

Thus depth of pixel at (x1=x+ x,j)

, since x = 1,

Incremental Scanline (contd.)

 All that was about increment for pixels on each scanline.

 How about across scanlines for a given pixel ?

 Assumption: next scanline is within polygon

, since y = 1,

P1

P2

P3

P4

ys za zp zb

Non-Planar Polygons

Bilinear Interpolation of Depth Values

Z-buffer - Example

 Rectangle: P1(10,5,10), P2(10,25,10), P3(25,25,10),

P4(25,5,10)

 Triangle: P5(15,15,15), P6(25,25,5), P7(30,10,5)

Frame Buffer: Background 0, Rectangle 1, Triangle 2

Z-buffer: 32x32x4 bit planes

Non Trivial Example ?

Example

 Z-Buffer Advantages

 Simple and easy to implement

 Amenable to scan-line algorithms

 Can easily resolve visibility cycles

 Z-Buffer Disadvantages

 Does not do transparency easily

 Aliasing occurs! Since not all depth questions can be

resolved

 Anti-aliasing solutions non-trivial

 Shadows are not easy

 Higher order illumination is hard in general

Scanline Rasterization

• Polygon scan-conversion:

• Intersect scanline with polygon edges and fill

between pairs of intersections

For y = ymin to ymax
1) intersect scanline y with each edge

2) sort interesections by increasing x

[p0,p1,p2,p3]

3) fill pairwise (p0 > p1, p2> p3,)

Scanline Rasterization Special

Handling
• Make sure we only fill the interior pixels

– Define interior: For a given pair of intersection
points (Xi, Y), (Xj, Y)

– Fill ceiling(Xi) to floor(Xj)

– important when we have polygons adjacent to
each other

• Intersection has an integer X coordinate
– if Xi is integer, we define it to be interior

– if Xj is integer, we define it to be exterior

– (so don’t fill)

Scanline Rasterization Special

Handling
• Intersection is an edge end point, say: (p0, p1, p2) ??

• (p0,p1,p1,p2), so we can still fill pairwise

• In fact, if we compute the intersection of the scanline

with edge e1 and e2 separately, we will get the

intersection point p1 twice. Keep both of the p1.

Scanline Rasterization Special

Handling

• But what about this case: still (p0,p1,p1,p2)

Rule

• Rule:

– If the intersection is the ymin of the edge’s

endpoint, count it. Otherwise, don’t.

• Don’t count p1 for e2

Performance Improvement

• The goal is to compute the intersections more
efficiently. Brute force: intersect all the edges
with each scanline

– find the ymin and ymax of each edge and intersect
the edge only when it crosses the scanline

– only calculate the intersection of the edge with the
first scan line it intersects

– calculate dx/dy

– for each additional scanline, calculate the new
intersection as x = x + dx/dy

Data Structure

• Edge table:

– all edges sorted by their ymin coordinates.

– keep a separate bucket for each scanline

– within each bucket, edges are sorted by

increasing x of the ymin endpoint

Edge Table

Active Edge Table (AET)

• A list of edges active for current scanline, sorted

in increasing x

y = 9

y = 8

Polygon Scan-conversion

Algorithm
Construct the Edge Table (ET);

Active Edge Table (AET) = null;

for y = Ymin to Ymax
Merge-sort ET[y] into AET by x value

Fill between pairs of x in AET

for each edge in AET

if edge.ymax = y
remove edge from AET

else
edge.x = edge.x + dx/dy

sort AET by x value

end scan_fill

