
Ray Tracing

Jian Huang

Ray Tracing

Y

X

Z

eye

screen

incident ray

world

coordinates

scene

model

nearest
intersected

surface

refracted
ray

reflected
ray

shadow
“feeler” ray

Ray-Tracing Pseudocode

• For each ray r from eye to pixel, color the

pixel the value returned by ray_cast(r):

ray_cast(r)

{

 s nearest_intersected_surface(r);

 p point_of_intersection(r, s);

 u reflect(r, s, p);

 v refract(r, s, p);

 c phong(p, s, r) +

 s.kreflect ray_cast(u) +

 s.krefract ray_cast(v);

 return(c);

}

Pseudocode Explained

• s nearest_intersected_surface(r);

– Use geometric searching to find the nearest
surface s intersected by the ray r

• p point_of_intersection(r, s);

– Compute p, the point of intersection of ray r

with surface s

• u reflect(r, s, p); v refract(r, s, p);

– Compute the reflected ray u and the refracted

ray v using Snell’s Laws

Reflected and Refracted Rays

• Reflected and refracted rays are

computed using Snell’s Law

surface

reflected

ray
incident

ray

surface

normal

refracted

ray

Pseudocode Explained

• phong(p, s, r)

– Evaluate the Phong reflection model for the
ray r at point p on surface s, taking shadowing

into account (see next slide)

• s.kreflect ray_cast(u)

– Multiply the contribution from the reflected ray

u by the specular-reflection coefficient kreflect for
surface s

• s.krefract ray_cast(v)

– Multiply the contribution from the refracted ray
v by the specular-refraction coefficient krefract for

surface s

The Phong Reflection Model

Set to 0 if shadow “feeler” ray to light

source intersects any scene geometry

bisector of

eye and light
vectors

eye

light

source

surface

surface

normal

About Those Calls to ray_cast()...

• The function ray_cast() calls itself recursively

• There is a potential for infinite recursion

– Consider a “hall of mirrors”

• Solution: limit the depth of recursion

– A typical limit is five calls deep

– Note that the deeper the recursion, the less the

ray’s contribution to the image, so limiting the

depth of recursion does not affect the final

image much

Pros and Cons of Ray Tracing

• Advantages of ray tracing

– All the advantages of the Phong model

– Also handles shadows, reflection, and refraction

• Disadvantages of ray tracing

– Computational expense

– No diffuse inter-reflection between surfaces

– Not physically accurate

• Other techniques exist to handle these
shortcomings, at even greater expense!

An Aside on Antialiasing

• Our simple ray tracer produces images

with noticeable “jaggies”

• Jaggies and other unwanted artifacts can

be eliminated by antialiasing:

– Cast multiple rays through each image pixel

– Color the pixel the average ray contribution

– An easy solution, but it increases the number of

rays, and hence computation time, by an

order of magnitude or more

Reflections

• We normally deal

with a perfectly
diffuse surface.

• With ray-tracing, we
can easily handle

perfect reflections.

• Phong allows for

glossy reflections of
the light source.

Reflections

• If we are reflecting the scene or other

objects, rather than the light source, then
ray-tracing will only handle perfect mirrors.

Jason Bryan, cis782, Ohio State, 2000

Reflections

• Glossy reflections blur the reflection.

Jason Bryan, cis782, Ohio State, 2000

Reflections

• Mathematically, what does this mean?

What is the
reflected

color?

Glossy Reflections

• We need to integrate the color over the

reflected cone.

• Weighted by the reflection coefficient in

that direction.

Translucency

• Likewise, for blurred refractions, we need

to integrate around the refracted angle.

Translucency

Translucency

Translucency

Calculating the integrals

• How do we calculate these integrals?

– Two-dimensional of the angles and ray-depth
of the cone.

– Unknown function -> the rendered scene.

• Use Monte-Carlo integration

Shadows

• Ray tracing casts shadow feelers to a

point light source.

• Many light sources are illuminated over a

finite area.

• The shadows between these are
substantially different.

• Area light sources cast soft shadows

– Penumbra

– Umbra

Soft Shadows

Soft Shadows

Umbra

Penumbra

Soft Shadows

• Umbra – No part of the light source is

visible.

• Penumbra – Part of the light source is

occluded and part is visible (to a varying
degree).

• Which part? How much? What is the Light
Intensity reaching the surface?

Camera Models

• Up to now, we have used a pinhole

camera model.

• These has everything in focus throughout

the scene.

• The eye and most cameras have a larger
lens or aperature.

Depth-of-Field

Depth of Field

Depth-of-Field

• Details

Motion Blur

• Integrate (or sample) over the frame time.

Rendering the Scene

• So, we ask again, what is the color

returned for each pixel?

What is the
reflected

color?

Rendering a Scene

• For each frame

– Generate samples in time and average (t):

• For each Pixel (nxn)

– Sample the Camera lens (lxl)

• Sample the area light source for illumination (sxs)

• Recursively sample the reflected direction cone (rxr).

• Recursively sample the refracted direction cone (axa).

• Total complexity O(p*p*t*l*l*s*s*r*r*a*a)!!!!!

• Where p is the number of rays cast in the

recursion – n2 primary rays, 3n2 secondary, …

• If we super-sample on a fine sub-pixel grid, it gets
even worse!!!

Rendering a Scene

• If we only sample the 2D integrals with a

mxm grid, and time with 10 samples, we
have a complexity of O(m9p2).

Supersampling

• 1 sample per pixel

Supersampling

• 16 samples per pixel

Supersampling

• 256 samples per pixel

Rendering the Scene

• So, we ask a third time, what is the color

returned for each pixel?

What is the
reflected

color?

Rendering the Scene

• If we were to write this as an integral, each

pixel would take the form:

• Someone try this in Matlab!!!

Rendering the scene

• So, what does this tell us?

• Rather than compute a bunch of 2D
integrals everywhere, use Monte-Carlo

integration to compute this one integral.

Distributed Ray-Tracing

• Details of how Monte-Carlo integration is

used in DRT.

