
 Shadows

Shadows

• Shadows is important in scenes, consolidating

spatial relationships

• “Geometric shadows”: the shape of an area in

shadow

• Early days, just pasted into the scene as textures to

fake the shadow (can you think of any other places

of such usage?)

Type of Shadows

• Sharp-edged or soft-edged?

• Umbra and penumbra

– Umbra: the area completely cut off from the light
source

– Penumbra: receives some light from the light source
(penumbra surrounds umbra)

• Depending on the types of light sources, may or
may not get penumbra

– Point source

– Area source

A Simple Shadow on A Ground

Plane (Blinn’88)

• Throwing shadows onto a flat plane

• Only works with scenes where objects don’t

cast shadows on each other

• Assuming single light source at infinite

distance – parallel light rays L(xl, yl, zl)

• Point on the object P(xp, yp, zp)

• Shadow at S(xsw, ysw, 0)

Blinn’s Algorithm

• Considering the geometry: S = P - L

Blinn’s Shadow Algorithm

• In matrix form:

• In fact, this is a form of projection, oblique

projection

Shadow Algorithms

• Basic idea: Determine which surfaces can be

"seen" from the light source

• Surfaces that can not be seen from the light

are in shadow

• Shadows in the illumination model:

I = ambient + Si (diffuse + specular)

Si = 0 if light i is blocked (will cast a shadow)

Si = 1 if light i is not blocked (the point is lit)

General approach

• Main idea:

– Point P is in shadow P is not visible from light

source

• 4 algorithms are discussed in the following:

– Shadow z-buffer, two-pass z-buffer or (shadow

map)

– Shadow volume

– Shadowing using Weiler-Atherton algorithm

– Projecting Polygons/Span-line

 Shadow Map

1st pass: create a z-buffer from light position, store
distance from light source in shadow-buffer [x][y]. (only
z-buffer, no color buffer)

2nd pass: do z-buffer from eye position. for each visible
pixel (x,y,z) in 3D image space

inverse map to world space

map to screen space of shadow buffer

Compare z with that in the shadow buffer[x][y]

 If shadow buffer[x][y] is smaller, pixel is in
shadow!!

Shadow Map

• Advantage:

– Simple

• Disadvantage:

– Shadow distance from light position may

appear blocky

– Storage

– Light source in the view volume?

Shadow Mapping References

• Important SIGGRAPH papers

– Lance Williams, “Casting Curved Shadows on

Curved Surfaces,” SIGGRAPH 78

– William Reeves, David Salesin, and Robert Cook

(Pixar), “Rendering antialiased shadows with

depth maps,” SIGGRAPH 87

– Mark Segal, et. al. (SGI), “Fast Shadows and

Lighting Effects Using Texture Mapping,”

SIGGRAPH 92

Shadow Map

• Depth testing from the light’s point-of-view

– Two pass algorithm

– First, render depth buffer from the light’s point-

of-view

• the result is a “depth map” or “shadow map”

• essentially a 2D function indicating the depth of the

closest pixels to the light

– This depth map is used in the second pass

Shadow Map

• Shadow determination with the depth map

– Second, render scene from the eye’s point-of-

view

– For each rasterized fragment

• determine fragment’s XYZ position relative to the light

• this light position should be setup to match the frustum

used to create the depth map

• compare the depth value at light position XY in the depth

map to fragment’s light position Z

Shadow Map

• The Shadow Map Comparison

– Two values

• A = Z value from depth map at fragment’s light XY

position

• B = Z value of fragment’s XYZ light position

– If B is greater than A, then there must be

something closer to the light than the fragment

• then the fragment is shadowed

– If A and B are approximately equal, the

fragment is lit

Shadow Mapping

with a Picture in 2D (1)

light

source

eye

position

depth map Z = A

fragment’s

light Z = B

depth map image plane

eye view image plane,

a.k.a. the frame buffer

The A < B shadowed fragment case

Shadow Mapping

with a Picture in 2D (2)

light

source

eye

position

depth map Z = A

fragment’s

light Z = B

depth map image plane

eye view image plane,

a.k.a. the frame buffer

The A B unshadowed fragment case

Note image precision mismatch!

Shadow Mapping

with a Picture in 2D (3)

Visualizing the Shadow

Mapping Technique (1)

• A fairly complex scene with shadows

Visualizing the Shadow

Mapping Technique (2)

• Compare with and without shadows

Visualizing the Shadow

Mapping Technique (3)

• The scene from the light’s point-of-view

Visualizing the Shadow

Mapping Technique (4)

• The depth buffer from the light’s point-of-

view

Visualizing the Shadow

Mapping Technique (5)

• Projecting the depth map onto the eye’s

view

Visualizing the Shadow

Mapping Technique (6)

• Projecting light’s planar distance onto eye’s

view

Visualizing the Shadow

Mapping Technique (6)

• Comparing light distance to light depth map

Visualizing the Shadow

Mapping Technique (7)

• Scene with shadows

Construct

Light View Depth Map

• Realizing the theory in practice

– Constructing the depth map

• use existing hardware depth buffer

• use glPolygonOffset to offset depth value back

• read back the depth buffer contents

– Depth map can be copied to a 2D texture

• unfortunately, depth values tend to require more

precision than 8-bit typical for textures

• depth precision typically 16-bit or 24-bit

Justification for glPolygonOffset

When Constructing Shadow Maps

• Depth buffer of “window space” depth values

– Post-perspective divide means non-linear distribution

– glPolygonOffset is guaranteed to be a window space

offset

• Doing a “clip space” glTranslatef is not sufficient

– Common shadow mapping implementation mistake

– Actual bias in depth buffer units will vary over the

frustum

– No way to account for slope of polygon

