!'_ Texture Mapping

Jian Huang

This set of slides references the ones used at Ohio
State for instruction.

Can you do this ...

What Dreams May Come

i Texture Mapping

= Of course, one can model the exact
micro-geometry + material property to
control the look and feel of a surface

= But, it may get extremely costly

= S0, graphics use a more practical
approach — texture mapping

i Texture Mapping

= Particles and fractals
+ gave us lots of detail information
= hot easy to model

=« mathematically and computationally
challenging

i Texture Mapping

s (Sophisticated) Illumination models
+ gave us "photo"-realistic looking surfaces
= not easy to model
= mathematically and computationally challenging

= Phong illumination/shading
+ easy to model
+ relatively quick to compute
= only gives us dull surfaces

i Texture Mapping

= Surfaces "in the wild" are very
complex

= Cannot model all the fine variations

= We need to find ways to add surface
detail

= How?

* Texture Mapping

= Solution - (its really a cheatll)

MAP surface
detail from a
predefined
multi-dimensional
table ("texture")
to a simple

polygon
= How?

i Textures Make A Difference

= Good textures, when applied correctly,
make a world of difference!

i A Texture can be?

= F(u,v) ==> a continuous or discrete function
of:
= { R(u,v), 6(u,v), B(uyv)}
= { I(uyv)}
= { index(u,v)}
= { alpha(u,v) } (transparency)
= { normals(u,v) } (bump map)
= { surface_height(u,v) } (displacement map)
= Specular color (environment map)

The Generalized Pipeline

= The generalized pipeline of texture mapping

Compute | Use proj | Use corre | Apply value - Modify
obj space | functo | functo | transform g equation or
location find (u,v) find texel func fragment color

= Fragment: after rasterization, the data are
not pixels yet, but are fragments. Each
fragment has coordinate, color, depth, and
undergo a series of tests and ops before
showing up in the framebuffer

i Texture Mapping
= Problem #1

= Fitting a square peg in a round hole
= We deal with non-linear transformations
= Which parts map where?

i Inverse Mapping

= Need to transform back to obj/world
space to do the interpolation

= Orientation in 3D image space

8,1
(35,7 (1)

(.1,.6) (.6,.2)
= Foreshortening

= -= =

i Texture Mapping
s Problem #2

= Mapping from a pixel to a "texel”
= Aliasing is a huge problem!

i Mapping to A Texel ?

= Basically map to an image
= Need to interpolate

m Same as ...

= How can I find an appropriate value for
an arbitrary (not necessarily integer)
index?
= How would I rotate an image 45 degrees?
= How would I translate it 0.5 pixels?

Interpolation

Nearest neighbor

Linear Interpolation

i How do we get F(u,v)?

= We are given a discrete set of values:
« F[i,j] for i=0,..N, j=0,...M
= Nearest neighbor:
= F(u,v) = F[round(N*u), round(M*v)]
= Linear Interpolation:
= i = floor(N*u), j = floor(M*v)
= interpolate from F[i,j], F[i+1,j], F[i,j+1], F[i+1,j+1]
= Filtering in general |

i How do we get F(u,v)?

= Higher-order interpolation

M F(U,V) = ZJ- F[l,J] h(U,V)

s A(u,v) is called the reconstruction kerne/
= Gaussian
= Sinc function
= splines

= Like linear interpolation, need to find

neighbors.

= Usually four to sixteen

i Texture and Texel

= Each pixel in a texture map is called a Texel

= Each Texel is associated with a (u,v) 2D
texture coordinate

= [he range of u, vis [0.0,1.0]
v P (1.0, 1.0)

a texel

/AL
AW AW

CJ
C

NN

4 AL/ AL/

&
\

i (u,v) tuple

= Forany (u,v) in the range of (0-1, 0-1), we
can find the corresponding value in the
texture using some interpolation

P O 3
<}--.T_T_T_ __________________________ a - --------------------- b
------------------ B

i The Projector Function

1. Model the mapping: (x,y,z) -> (u,v
2. Do the mapping

i I'mage space scan

For each Y /* scan-line */
For each x /* pixel on scan-line */
compute u(x,y) and v(x,y)
copy texture(u,v) to image(x,y)

= Samples the warped texture at the
appropriate image pixels.
= inverse mapping

ﬁ Image space scan

= Problems:

= Finding the inverse mapping
= Use one of the analytical mappings
= Bi-linear or triangle inverse mapping

= May miss parts of the texture map

@) @) @)

Image

i Texture Parameterization

= Definition:

= The process of assigning texture
coordinates or a texture mapping to an
object.

= The mapping can be applied:
= Per-pixel
= Per-vertex

Interpolation Concepts

T Is texture

Find textures at vertices first !

Quads ?

Ys Ta Tp Tb

Pe .
Bilinear Interpolation of Depth Values

i Texture space scan

For each v
For each u
compute x(u,v) and y(u,v)
copy texture(u,v) to image(x,y)

= Places each texture sample to the
mapped image pixel.
= Forward mapping

ﬁ Texture space scan

= Problems:
= May not fill image
= Forward mapping heeded

Texture

i Simple Projector Functions

= Spherical
= Cylindrical
= Planar

= For some model, a single projector function
suffices. But very often, an artist may choose
to subdivide each object into parts that use
different projector

ﬁ Planar

= Mapping to a 3D Plane

= Simple Affine transformation
= rotate
= Scale
= translate 7

y

i Cylindrical
= Mapping to a Cylinder

= Rotate, translate and scale in the uv-plane
= U->0
aV->Z
= X =r cos(0),y =rsin(6)

i Spherical

= Mapping to Sphere
= Impossiblellll
= Severe distortion at the poles
= U->0
BV ->0
= X = r sin(0) cos(d)
= Yy = rsin(0) sin(¢)
= Z=r cos(0)

i Two-pass Mapping
= Idea by Bier and Sloan

= S: map from texture space to
infermediate space

= O: map from intermediate space to
object space

i Two-pass Mapping

= Map texture to in’rervmedia’re:

= Plane

= Cylinder
= Sphere
= Box

= Map object to same.

u-axis

i Texture Mapping
= O mapping:

= reflected ray (environment map)

= object normal

= object centroid

= infermediate surface normal (ISN)

= that makes 16 combinations
= only 5 were found useful

i Texture Mapping
= Cylinder/ISN (shrinkwrap)

= Works well for solids of revolution

= Plane/ISN (projector)
= Works well for planar objects

= Box/ISN

T

= Sphere/Centroid

= Box/Centroid

— Works well for roughly
spherical shapes

e’

i Texture Parameterization

s What is this ISN?

= Intermediate surface
normal. A

= Needed to handle concave
objects properly.

= Sudden flip in texture
coordinates when the
object crosses the axis.

i Texture Parameterization

= Flip direction of
vector such that it
points in the same A
half-space as the
outward surface
normal.

ﬁ Texture Parameterization
= Plane/ISN

i Texture Parameterization

= Plane/ISN

= Draw vector from point (vertex or object space
pixel point) in the direction of the texture plane.

— The vector will intersect
the plane at some point
depending on the
coordinate system

i Texture Parameterization

= Plane/ISN

= Resembles a slide
projector

= Distortions on
surfaces
perpendicular to the
plane.

‘_h Texture Parameterization

= Cylinder/ISN

= Distortions on
horizontal planes

= Draw vector from
point to cylinder

= Vector connects
point to cylinder axis

i Texture Parameterization

= Sphere/ISN

= Small distortion
everywhere.

= Draw vector from
sphere center
through point on the
surface and intersect
it with the sphere.

Interpolating Without Explicit
Inverse Transform

Object Geometry Q,

Q
= Scan-conversion and QIK

color/z/normal
interpolation take
place in screen space,
but really, what space
should it be in?

= What about texture
coordinates?
= Do it in clip space, or
homogenous
coordinates

i In Clip space

= Two end points of a line segment (scan
line)

Q] = (1'1,3}1, zlau’l) Q2 - (-'172,1}2,22,11)2)

= Interpolate for a point Q in-between

Q=(1-8)Q: +1tQ:

i In Screen Space

= From the two end points of a line
segment (scan line), interpolate for a
point Q in-between:

Q' =(01-t")Q| +"Q;
= Where: Qf=Q,/w,and Q} = Q,/u,

= Easy to show: in most occasions, t and
ts are different

i From ts to t

= Change of variable: choose
= aand bsuchthat1 -ts=a/(a+ b), t5=b/(a +

b)
= Aand B such that (1 —t)=A/(A+ B), t =B/(A +
B).
= Easy to get
Q° = aQ,/wy +b6Q,/w, AQq + BQ;

(a +b) ~ Aw, + Bw;,
= Easy to verify: A = aw,and B = bw;,is a
solution

i Texture Coordinates

= All such interpolation happens in
homogeneous space.

= Use A and B to linearly interpolate
texture coordinates

= The homogeneous texture coordinate
is: (u,v,1)

Homogeneous Texture
i Coordinates

= U = A/(A+B) u,' + B/(A+B)u,'

= W = A/(A+B) w,' + B/(A+B)w,,' =

= u=u/w =u"=(Au, + Bu,)/(A + B)

= U= (au, + Bu,))/(A + B)

= U = (au,/w,' + buiw,! Y(a 'w,' + b /w.,))

Homogeneous Texture
i Coordinates

= The homogeneous texture coordinates
suitable for linear interpolation in screen
space is computed simply by
= Dividing the texture coordinates by screen
W

= Linearly interpolating (u/w,v/w,1/w)

= Dividing the quantities u/w and v/w by 1/w
at each pixel to recover the texture
coordinates

