
Texture Mapping

Jian Huang

This set of slides references the ones used at Ohio
State for instruction.

Can you do this …

What Dreams May Come

Texture Mapping
n Of course, one can model the exact

micro-geometry + material property to
control the look and feel of a surface

n But, it may get extremely costly
n So, graphics use a more practical

approach – texture mapping

Texture Mapping
n Particles and fractals

✚ gave us lots of detail information
n not easy to model
n mathematically and computationally

challenging

Texture Mapping
n (Sophisticated) Illumination models

✚ gave us “photo”-realistic looking surfaces
n not easy to model
n mathematically and computationally challenging

n Phong illumination/shading
✚ easy to model
✚ relatively quick to compute
n only gives us dull surfaces

Texture Mapping
n Surfaces “in the wild” are very

complex
n Cannot model all the fine variations
n We need to find ways to add surface

detail
n How?

Texture Mapping
n Solution - (its really a cheat!!)

n How?

MAP surface
detail from a
predefined
multi-dimensional
table (“texture”)
to a simple
polygon

Textures Make A Difference

n Good textures, when applied correctly,
make a world of difference!

A Texture can be?
n F(u,v) ==> a continuous or discrete function

of:
n { R(u,v), G(u,v), B(u,v) }
n { I(u,v) }
n { index(u,v) }
n { alpha(u,v) } (transparency)
n { normals(u,v) } (bump map)
n { surface_height(u,v) } (displacement map)
n Specular color (environment map)
n …

The Generalized Pipeline
n The generalized pipeline of texture mapping

n Fragment: after rasterization, the data are
not pixels yet, but are fragments. Each
fragment has coordinate, color, depth, and
undergo a series of tests and ops before
showing up in the framebuffer

Compute
obj space
location

Use proj
func to

find (u,v)

Use corre
func to

find texel

Apply value
transform

func

Modify
equation or

fragment color

Texture Mapping
n Problem #1

n Fitting a square peg in a round hole
n We deal with non-linear transformations
n Which parts map where?

Inverse Mapping
n Need to transform back to obj/world

space to do the interpolation
n Orientation in 3D image space

n Foreshortening

(.5,1) (.8,1)

(.1,.6) (.6,.2)

(.5,.7)

Texture Mapping
n Problem #2

n Mapping from a pixel to a “texel”
n Aliasing is a huge problem!

Mapping to A Texel ?
n Basically map to an image
n Need to interpolate
n Same as ….

n How can I find an appropriate value for
an arbitrary (not necessarily integer)
index?

n How would I rotate an image 45 degrees?
n How would I translate it 0.5 pixels?

Interpolation

Nearest neighbor Linear Interpolation

How do we get F(u,v)?
n We are given a discrete set of values:

n F[i,j] for i=0,…,N, j=0,…,M
n Nearest neighbor:

n F(u,v) = F[round(N*u), round(M*v)]
n Linear Interpolation:

n i = floor(N*u), j = floor(M*v)
n interpolate from F[i,j], F[i+1,j], F[i,j+1], F[i+1,j+1]

n Filtering in general !

How do we get F(u,v)?
n Higher-order interpolation

n F(u,v) = å iåj F[i,j] h(u,v)
n h(u,v) is called the reconstruction kernel

n Gaussian
n Sinc function
n splines

n Like linear interpolation, need to find
neighbors.

n Usually four to sixteen

Texture and Texel
n Each pixel in a texture map is called a Texel
n Each Texel is associated with a (u,v) 2D

texture coordinate
n The range of u, v is [0.0,1.0]

(u,v) tuple
n For any (u,v) in the range of (0-1, 0-1), we

can find the corresponding value in the
texture using some interpolation

The Projector Function
1. Model the mapping: (x,y,z) -> (u,v)
2. Do the mapping

Image space scan
For each y /* scan-line */

For each x /* pixel on scan-line */
compute u(x,y) and v(x,y)
copy texture(u,v) to image(x,y)

n Samples the warped texture at the
appropriate image pixels.

n inverse mapping

Texture

Image space scan
n Problems:

n Finding the inverse mapping
n Use one of the analytical mappings
n Bi-linear or triangle inverse mapping

n May miss parts of the texture map

Image

Texture Parameterization
n Definition:

n The process of assigning texture
coordinates or a texture mapping to an
object.

n The mapping can be applied:
n Per-pixel
n Per-vertex

P1

P2

P3

ys Ta Tp Tb

1-t 1

t 1

t 2
1-

t 2

s 1-s

Interpolation Concepts

T is texture
Find textures at vertices first !

P1

P2

P3

P4

ys ta tp tb

Quads ?

Bilinear Interpolation of Depth Values

Texture space scan
For each v

For each u
compute x(u,v) and y(u,v)
copy texture(u,v) to image(x,y)

n Places each texture sample to the
mapped image pixel.

n Forward mapping

Texture space scan
n Problems:

n May not fill image
n Forward mapping needed

ImageTexture

Simple Projector Functions
n Spherical
n Cylindrical
n Planar

n For some model, a single projector function
suffices. But very often, an artist may choose
to subdivide each object into parts that use
different projector

Planar
n Mapping to a 3D Plane

n Simple Affine transformation
n rotate
n scale
n translate z

y

x

u

v

Cylindrical
n Mapping to a Cylinder

n Rotate, translate and scale in the uv-plane
n u -> q
n v -> z
n x = r cos(q), y = r sin(q)

u

v

Spherical
n Mapping to Sphere

n Impossible!!!!
n Severe distortion at the poles
n u -> q
n v -> f
n x = r sin(q) cos(f)
n y = r sin(q) sin(f)
n z = r cos(q)

Two-pass Mapping
n Idea by Bier and Sloan
n S: map from texture space to

intermediate space
n O: map from intermediate space to

object space

Two-pass Mapping
n Map texture to intermediate:

n Plane
n Cylinder
n Sphere
n Box

n Map object to same.

u

v

u-axis

Texture Mapping
n O mapping:

n reflected ray (environment map)
n object normal
n object centroid
n intermediate surface normal (ISN)

n that makes 16 combinations
n only 5 were found useful

Texture Mapping
n Cylinder/ISN (shrinkwrap)

n Works well for solids of revolution
n Plane/ISN (projector)

n Works well for planar objects
n Box/ISN
n Sphere/Centroid
n Box/Centroid

Works well for roughly
spherical shapes

Texture Parameterization
n What is this ISN?

n Intermediate surface
normal.

n Needed to handle concave
objects properly.

n Sudden flip in texture
coordinates when the
object crosses the axis.

Texture Parameterization
n Flip direction of

vector such that it
points in the same
half-space as the
outward surface
normal.

Texture Parameterization
n Plane/ISN

Texture Parameterization
n Plane/ISN

n Draw vector from point (vertex or object space
pixel point) in the direction of the texture plane.

– The vector will intersect
the plane at some point
depending on the
coordinate system

Texture Parameterization
n Plane/ISN

n Resembles a slide
projector

n Distortions on
surfaces
perpendicular to the
plane.

Texture Parameterization
n Cylinder/ISN

n Distortions on
horizontal planes

n Draw vector from
point to cylinder

n Vector connects
point to cylinder axis

Texture Parameterization
n Sphere/ISN

n Small distortion
everywhere.

n Draw vector from
sphere center
through point on the
surface and intersect
it with the sphere.

Interpolating Without Explicit
Inverse Transform

n Scan-conversion and
color/z/normal
interpolation take
place in screen space,
but really, what space
should it be in?

n What about texture
coordinates?
n Do it in clip space, or

homogenous
coordinates

In Clip space
n Two end points of a line segment (scan

line)

n Interpolate for a point Q in-between

In Screen Space
n From the two end points of a line

segment (scan line), interpolate for a
point Q in-between:

n Where:
n Easy to show: in most occasions, t and

ts are different

From ts to t
n Change of variable: choose

n a and b such that 1 – ts = a/(a + b), ts = b/(a +
b)

n A and B such that (1 – t)= A/(A + B), t = B/(A +
B).

n Easy to get

n Easy to verify: A = aw2 and B = bw1 is a
solution

Texture Coordinates
n All such interpolation happens in

homogeneous space.
n Use A and B to linearly interpolate

texture coordinates
n The homogeneous texture coordinate

is: (u,v,1)

Homogeneous Texture
Coordinates
n ul = A/(A+B) u1

l + B/(A+B)u2
l

n wl = A/(A+B) w1
l + B/(A+B)w2

l = 1
n u = ul/wl = ul = (Au1

l + Bu2
l)/(A + B)

n u = (au1
l + Bu2

l)/(A + B)
n u = (au1

l/w1
l + bu2

l/w2
l)/(a 1/w1

l + b 1/w2
l)

Homogeneous Texture
Coordinates
n The homogeneous texture coordinates

suitable for linear interpolation in screen
space is computed simply by
n Dividing the texture coordinates by screen

w
n Linearly interpolating (u/w,v/w,1/w)
n Dividing the quantities u/w and v/w by 1/w

at each pixel to recover the texture
coordinates

