Texture Mapping

Jian Huang

This set of slides references the ones used at Ohio State for instruction.

What Dreams May Come

Texture Mapping

- Of course, one can model the exact micro-geometry + material property to control the look and feel of a surface
- But, it may get extremely costly
- So, graphics use a more practical approach - texture mapping

Texture Mapping

- Particles and fractals
+ gave us lots of detail information
- not easy to model
- mathematically and computationally challenging

Texture Mapping

- (Sophisticated) Illumination models
+ gave us "photo"-realistic looking surfaces
- not easy to model
- mathematically and computationally challenging
- Phong illumination/shading
+ easy to model
+ relatively quick to compute
- only gives us dull surfaces

Texture Mapping

- Surfaces "in the wild" are very complex
- Cannot model all the fine variations
- We need to find ways to add surface detail
- How?

Texture Mapping

- Solution - (its really a cheat!!)

MAP surface detail from a predefined multi-dimensional table ("texture") to a simple polygon

- How?

Textures Make A Difference

- Good textures, when applied correctly, make a world of difference!

A Texture can be?

- $F(u, v)==>$ a continuous or discrete function of:
- $\{R(u, v), G(u, v), B(u, v)\}$
- $\{I(u, v)\}$
- $\{$ index(u,v) $\}$
- \{ alpha(u,v) \} (transparency)
- \{ normals(u,v) \} (bump map)
- \{ surface_height(u,v) \} (displacement map)
- Specular color (environment map)
- ...

The Generalized Pipeline

- The generalized pipeline of texture mapping

- Fragment: after rasterization, the data are not pixels yet, but are fragments. Each fragment has coordinate, color, depth, and undergo a series of tests and ops before showing up in the framebuffer

Texture Mapping

- Problem \#1
- Fitting a square peg in a round hole
- We deal with non-linear transformations
- Which parts map where?

Inverse Mapping

- Need to transform back to obj/world space to do the interpolation
- Orientation in 3D image space

- Foreshortening

Texture Mapping

- Problem \#2
- Mapping from a pixel to a "texel" - Aliasing is a huge problem!

Mapping to A Texel ?

- Basically map to an image
- Need to interpolate
- Same as
- How can I find an appropriate value for an arbitrary (not necessarily integer) index?
- How would I rotate an image 45 degrees?
- How would I translate it 0.5 pixels?

Interpolation

Nearest neighbor

Linear Interpolation

How do we get $F(u, v)$?

- We are given a discrete set of values:
- F[i,j] for $i=0, \ldots, N, j=0, \ldots, M$
- Nearest neighbor:
- $\mathrm{F}(\mathrm{u}, \mathrm{v})=\mathrm{F}\left[\right.$ round $\left(\mathrm{N}^{\star} \mathrm{u}\right)$, $\left.\operatorname{round}\left(\mathrm{M}^{*} \mathrm{v}\right)\right]$
- Linear Interpolation:
- $i=f l o o r\left(N^{*} u\right), j=f l o o r\left(M^{*} v\right)$
- interpolate from $F[i, j], F[i+1, j], F[i, j+1], F[i+1, j+1]$
- Filtering in general !

How do we get $F(u, v)$?

- Higher-order interpolation
- $F(u, v)=\sum_{i} \Sigma_{j} F[i, j] h(u, v)$
- $h(u, v)$ is called the reconstruction kernel
- Gaussian
- Sinc function
- splines
- Like linear interpolation, need to find neighbors.
- Usually four to sixteen

Texture and Texel

- Each pixel in a texture map is called a Texel
- Each Texel is associated with a (u,v) 2D texture coordinate
- The range of u, v is $[0.0,1.0$]

(u,v) tuple

- For any (u, v) in the range of ($0-1,0-1$), we can find the corresponding value in the texture using some interpolation

The Projector Function

1. Model the mapping: $(x, y, z)->(u, v)$
2. Do the mapping

Image space scan

For each y /* scan-line */
For each x /* pixel on scan-line */
compute $u(x, y)$ and $v(x, y)$ copy texture (u, v) to image (x, y)

- Samples the warped texture at the appropriate image pixels.
- inverse mapping

Image space scan

- Problems:
- Finding the inverse mapping
- Use one of the analytical mappings
- Bi-linear or triangle inverse mapping
- May miss parts of the texture map

Image

Texture Parameterization

- Definition:

- The process of assigning texture coordinates or a texture mapping to an object.
- The mapping can be applied:
- Per-pixel
- Per-vertex

Interpolation Concepts

T is texture

Find textures at vertices first !

Quads?

Bilinear Interpolation of Depth Values

Texture space scan

For each v
For each u
compute $x(u, v)$ and $y(u, v)$
copy texture (u,v) to image (x, y)

- Places each texture sample to the mapped image pixel.
- Forward mapping

Texture space scan

- Problems:
- May not fill image
- Forward mapping needed

Texture

Simple Projector Functions

- Spherical
- Cylindrical
- Planar
- For some model, a single projector function suffices. But very often, an artist may choose to subdivide each object into parts that use different projector

Planar

- Mapping to a 3D Plane
- Simple Affine transformation
- rotate
- scale
- translate

Cylindrical

- Mapping to a Cylinder
- Rotate, translate and scale in the uv-plane
- u -> θ
- V -> Z
- $x=r \cos (\theta), y=r \sin (\theta)$

Spherical

- Mapping to Sphere
- Impossible!!!!
- Severe distortion at the poles
- u -> θ
- $V \rightarrow \phi$
- $x=r \sin (\theta) \cos (\phi)$
- $y=r \sin (\theta) \sin (\phi)$
- $z=r \cos (\theta)$

Two-pass Mapping

- Idea by Bier and Sloan
- S: map from texture space to intermediate space
- O: map from intermediate space to object space

Two-pass Mapping

- Map texture to intermediate:
- Plane
- Cylinder
- Sphere
- Box

- Map object to same.

Texture Mapping

- O mapping:
- reflected ray (environment map)
- object normal
- object centroid
- intermediate surface normal (ISN)
- that makes 16 combinations
- only 5 were found useful

Texture Mapping

- Cylinder/ISN (shrinkwrap)
- Works well for solids of revolution
- Plane/ISN (projector)
- Works well for planar objects
- Box/ISN
- Sphere/Centroid $\begin{gathered}\text { Works well for roughly } \\ \text { spherical shapes }\end{gathered}$
- Box/Centroid

Texture Parameterization

- What is this ISN?
- Intermediate surface normal.
- Needed to handle concave objects properly.
- Sudden flip in texture coordinates when the object crosses the axis.

Texture Parameterization

- Flip direction of vector such that it points in the same half-space as the outward surface normal.

Texture Parameterization

- Plane/ISN

Texture Parameterization

- Plane/ISN
- Draw vector from point (vertex or object space pixel point) in the direction of the texture plane.
- The vector will intersect the plane at some point depending on the coordinate system

Texture Parameterization

- Plane/ISN
- Resembles a slide projector
- Distortions on surfaces perpendicular to the plane.

Texture Parameterization

- Cylinder/ISN
- Distortions on horizontal planes
- Draw vector from point to cylinder
- Vector connects point to cylinder axis

Texture Parameterization

- Sphere/ISN
- Small distortion everywhere.
- Draw vector from sphere center through point on the surface and intersect it with the sphere.

Interpolating Without Explicit Inverse Transform

- Scan-conversion and color/z/normal interpolation take place in screen space, but really, what space should it be in?
- What about texture coordinates?
- Do it in clip space, or homogenous coordinates

In Clip space

- Two end points of a line segment (scan line)

$$
\mathbf{Q}_{1}=\left(x_{1}, y_{1}, z_{1}, w_{1}\right) \quad \mathbf{Q}_{2}=\left(x_{2}, y_{2}, z_{2}, w_{2}\right)
$$

- Interpolate for a point Q in-between

$$
\mathbf{Q}=(1-t) \mathbf{Q}_{1}+t \mathbf{Q}_{2}
$$

In Screen Space

- From the two end points of a line segment (scan line), interpolate for a point Q in-between:

$$
\mathbf{Q}^{s}=\left(1-t^{s}\right) \mathbf{Q}_{1}^{s}+t^{s} \mathbf{Q}_{2}^{s}
$$

- Where: $\quad \mathbf{Q}_{1}^{s}=\mathbf{Q}_{1} / w_{1}$ and $\mathbf{Q}_{2}^{s}=\mathbf{Q}_{2} / w_{2}$.
- Easy to show: in most occasions, t and $t^{\text {s }}$ are different

From t^{s} to t

- Change of variable: choose
- a and b such that $1-\mathrm{t}^{\mathrm{s}}=\mathrm{a} /(\mathrm{a}+\mathrm{b}), \mathrm{t}^{\mathrm{s}}=\mathrm{b} /(\mathrm{a}+$ b)
- A and B such that $(1-t)=A /(A+B), t=B /(A+$ B).
- Easy to get

$$
\mathbf{Q}^{s}=\frac{a \mathbf{Q}_{1} / w_{1}+b \mathbf{Q}_{2} / w_{2}}{(a+b)}=\frac{A \mathbf{Q}_{1}+B \mathbf{Q}_{2}}{A w_{1}+B w_{2}}
$$

- Easy to verify: $\mathrm{A}=a w_{2}$ and $\mathrm{B}=b w_{1}$ is a solution

Texture Coordinates

- All such interpolation happens in homogeneous space.
- Use A and B to linearly interpolate texture coordinates
- The homogeneous texture coordinate is: $(u, v, 1)$

Homogeneous Texture Coordinates

- $u^{\prime}=A /(A+B) u_{1}{ }^{1}+B /(A+B) u_{2}{ }^{1}$
- $w^{\prime}=A /(A+B) w_{1}{ }^{1}+B /(A+B) w_{2}{ }^{\prime}=1$
- $u=u^{\prime} / w^{\prime}=u^{\prime}=\left(A u_{1}{ }^{\prime}+B u_{2}{ }^{\prime}\right) /(A+B)$
- $\mathrm{u}=\left(\mathrm{au}_{1}{ }^{1}+\mathrm{Bu}_{2}{ }^{1}\right) /(\mathrm{A}+\mathrm{B})$
- $u=\left(a u_{1} / w_{1}{ }^{\prime}+b u_{2}^{1 /} / w_{2}{ }^{1}\right) /\left(a^{1 /} / w_{1}{ }^{\prime}+b^{1 /} / w_{2}{ }^{\prime}\right)$

Homogeneous Texture Coordinates

- The homogeneous texture coordinates suitable for linear interpolation in screen space is computed simply by
- Dividing the texture coordinates by screen w
- Linearly interpolating ($\mathrm{u} / \mathrm{w}, \mathrm{v} / \mathrm{w}, 1 / \mathrm{w}$)
- Dividing the quantities u / w and v / w by $1 / \mathrm{w}$ at each pixel to recover the texture coordinates

