Texture Mapping (cont.)

Jian Huang
CS 456

OpenGL functions

« During initialization read in or create the
texture image and place it into the OpenGL

State.

glTeximage2D (GL_TEXTURE_2D, 0, GL_RGB,
ImageWiIdth, imageHeight, 0, GL_RGB,
GL _UNSIGNED_BYTE, imageData);

« Before rendering your textured object, enable
texture mapping and tell the system to use

this particular texture.
glBindTexture (GL_TEXTURE_2D, 13);

OpenGL functions

« During rendering, give the cartesian
coordinates and the texture coordinates for

each vertex.
glBegin (GL_QUADS);

glTexCoord2f (0.0, 0.0);
glVertex3f (0.0, 0.0, 0.0);
glTexCoord2f (1.0, 0.0);
glVertex3f (10.0, 0.0, 0.0);
glTexCoord2f (1.0, 1.0);
glVertex3f (10.0, 10.0, 0.0);
glTexCoord2f (0.0, 1.0);
glVertex3f (0.0, 10.0, 0.0);

glEnd ();

OpenGL functions

« Automatic texture coordinate generation

— Void glTexGenf(coord, pname, param)

o Coord:
- GL S,GL_T,GL_R,GL Q
e Pname
— GL_TEXTURE_GEN_MODE
— GL_OBJECT PLANE
— GL_EYE_PLANE
e Param
— GL _OBJECT_LINEAR
— GL_EYE_LINEAR
— GL_SPHERE_MAP

What happens when outside the
0-1 range?

* (u,v) should be in the range of 0~1

* What happens when you request (1.5 2.3)?

— Tile: repeat (OGL); the integer part of the value Is
dropped, and the image repeats itself across the surface

— Mirror: the image repeats itself but is mirrored (flipped)
on every other repetition

— Clamp to edge — value outside of the range are clamped
to this range

— Clamp to border — all those outside are rendered with a
separately defined color of the border

Methods for modifying surface

o After a texture value is retrieved (may be further
transformed), the resulting values are used to
modify one or more surface attributes

« Called combine functions or texture blending
operations

— Replace: replace surface color with texture color

— Decal: replace surface color with texture color, blend
the color with underlying color with an alpha texture
value, but the alpha component in the framebuffer is
not modified

— Modulate: multiply the surface color by the texture
color (shaded + textured surface)

Multi-Pass Rendering

« The final color of a pixel in the framebuffer is

dependent on:
— The shading/illumination applied on it
— How those fragments are combined/blended together

» Glven the set graphics hardware, how can we get
more control (programmability)?
— Example: color plate V in the book

« Want a range of special effects to be available but
tailor based on the variety of hardware?

Multi-pass Rendering

» Each pass renders every pixel once

e Each pass computes a piece of the lighting
equation and the framebuffer is used to
store Iintermediate results

Quake 11l Engine

e Ten passes
— (1-4: accumulate bump map)
— 5: diffuse lighting)
— 6: base texture (with specular component)
— (7: specular lighting)
— (8: emissive lighting)
— (9: volumetric/atmospheric effects)
— (10: screen flashes)

AB+CD?

» Using framebuffer as the intermediate
storage, can multi-pass rendering implement
AB+ CD ?

— Suppose A, B, C, D are each result of a certain
pass

Multi-texture Environments

e Chain of Texture Units (Texture Stages)
Pre-texturing color

glColor3f(r,g,b) l o
glMultiTexCoord2f(Lookup | =1 MODULATE
GL_TEXTUREDQO, ...) & filter —
glMultiTexCoord?2f(Lookup GL DlE CAL #1
GL _TEXTURE], ...) & filter —
' 1 "2 Post-texturi
e) o G — Do

Multi-Texturing

 Should have at least 2 texture units If multi-
texturing Is supported

e Each texture unit:
— Texture image
— Filtering parameters
— Environment application
— Texture matrix stack

— Automatic texture-coordinate generation (doesn’t
seem obvious, but very have very creative apps)

Multi-Texturing

« Apply more than one texture to each fragment
— Alpha
— Luminance
— Luminance and alpha
— Intensity
— RGB
— RGBA

* For instance, first put a color texture on a fragment
and then put an intensity map on the fragment that
modulates the intensity to simulate lighting situation

— (what could this be?)

Putting Things Together

o With multi-pass rendering + multi-texturing, the

lighting equation can be very flexibly controlled to
render effects that graphics hardware does not do
by its default

e Common practice in the industry now

* Next, let’s look at a few established texturing
methods

Alpha Mapping

* Glven a square texture , what 1f we only
want the interesting part of it?

— Say, a tree?
 Utilize the alpha channel of the texture, so
that only the Interesting part becomes non-

transparent
e But what about the order?

Alpha Mapping

« A binary mask, really redefines the
geometry.

Light Mapping

« Glven a complicated lighting condition,
how to accelerate and still get real-time
frame rates?

e Assuming your environment Is diffuse, let’s
compute your lighting condition once and
then use as texture map

Choosing a Mapping

* Problem: In a preprocessing phase, points on
polygons must be associated with points in maps

 One solution:

— Find groups of polygons that are “near” co-planar and
do not overlap when projected onto a plane
* Result is a mapping from polygons to planes

— Combine sections of the chosen planes into larger maps
— Store texture coordinates at polygon vertices

 Lighting tends to change quite slowly (except at
hard shadows), so the map resolution can be poor

Generating the Map

e Problem: What value should go in each pixel of
the light map?

e Solution:

— Map texture pixels back into world space (using the
Inverse of the texture mapping)

— Take the illumination of the polygon and put it in the
pixel
« Advantages of this approach:

— Choosing “good” planes means that texture pixels map
to roughly square pieces of polygon - good sampling

— Not too many maps are required, and not much memory
IS wasted

Applying Light Maps

e Use multi-texturing hardware
— First stage: Apply color texture map
— Second stage: Modulate with light map

 Pre-lighting textures:

— Apply the light map to the texture maps as a pre-
process

— When is this less appealing?

« Multi-pass rendering:

— Same effect as multi-texturing, but modulating in the
frame buffer

Gloss Mapping

« To rendering a tile floor that is worn In

places or a sheet of metal with some rusty
spots

o Let’s control the specular component of the
lighting equation

Bump Mapping

* Many textures are the result of small
perturbations In the surface geometry

 Modeling these changes would result in an
explosion In the number of geometric

primitives.

e Bump mapping attempts to alter the lighting
across a polygon to provide the illusion of
texture.

Bump Mapping

 This modifies the surface normals.
e More on this later.

Bump Mapping

Bump Mapping

Bump Mapping

« Consider the lighting for a modeled surface.

P

™~

&

Bump Mapping

e \We can model this as
deviations from some

base surface. @ \ A
(

e The question
IS then how these

deviations change the
lighting.

Bump Mapping

e Assumption: small deviations in the normal
direction to the surface.

X=X+BN gf

Where B is defined as a 2D function parameterized
over the surface:

B =f(u,v)

Bump Mapping

o Step 1: Putting everything into the same
coordinate frame as B(u,v).
- x(u,v), y(u,v), z(u,v) — this is given for
parametric surfaces, but easy to derive for other
analytical surfaces.

— Or O(u,v)

Bump Mapping

« Define the tangent plane to the surface at a point
(u,v) by using the two vectors O, and O,

e The normal is then given by:
* N=0O,x 0O,

Bump Mapping

« The new surface positions are then given
by:
« O’(u,v) =0O(u,v) + B(u,v) N
 Where, N=N/|N|

 Differentiating leads to:
«eO0’,=0,+B,N+B(N), =0O’,=0,+B,N
«0’,=0,+B,N+B(N), =O’,=0,+B,N
If B iIs small.

Bump Mapping

e This leads to a new normal:
e N°(uv)=0,x0,-B,(NxO,)+B,(NxO,)
+B,B,(N x N)
»=N-B,(NxO,)+B,(NxO,)
»=N+D D
N

N’

Bump Mapping

 For efficiency, can store B, and B, Iin a 2-
component texture map.

e The cross products are geometry terms only.

N’ will of course need to be normalized
after the calculation and before lighting.

— This floating point square root and division
makes 1t difficult to embed into hardware.

Displacement Mapping

* Modifies the surface position in the
direction of the surface normal.

Displacement Mapping

Bump mapping has a limitation on how
much you can tweak

If the desired amount of change is too large
for bump mapping, can use displacement

mapping.
Actually go and modify the surface
geometry, and re-calculate the normals

Quite expensive

Environment Mapping

Environment mapping
produces reflections on
shiny objects

Texture Is transferred in the
direction of the reflected

ray from the environment
map onto the object

Reflected ray: R=2(N-V)N-
Vv
What is in the map?

Viewer

Environment Map

L

Reflected ray

Object

Approximations Made

e The map should contain a view of the world with
the point of interest on the object as the eye

— We can’t store a separate map for each point, so one
map Is used with the eye at the center of the object

— Introduces distortions in the reflection, but the eye
doesn’t notice

— Distortions are minimized for a small object in a large
room

* The object will not reflect itself

e The mapping can be computed at each pixel, or
only at the vertices

Environment Maps

The environment map may take one of several
forms:

— Cubic mapping
— Spherical mapping (two variants)
— Parabolic mapping

Describes the shape of the surface on which the
map “resides”

Determines how the map Is generated and how It
IS Indexed

What are some of the issues in choosing the map?

Cubic Mapping

e The map resides on the surfaces of a cube around the object
— Typically, align the faces of the cube with the coordinate axes

e To generate the map:
— For each face of the cube, render the world from the center of the
object with the cube face as the image plane
» Rendering can be arbitrarily complex (it’s off-line)
— Or, take 6 photos of a real environment with a camera in the object’s
position
 Actually, take many more photos from different places the object might be
« Warp them to approximate map for all intermediate points

 Remember The Abyss and Terminator 2?

Cubic Map Example

Indexing Cubic Maps

e Assume you have R and the cube’s faces are
aligned with the coordinate axes, and have texture
coordinates in [0,1]x[0,1]

— How do you decide which face to use?
— How do you decide which texture coordinates to use?

e What is the problem using cubic maps when
texture coordinates are only computed at vertices?

Lat/Long Mapping

e The original algorithm (1976) placed the map on a
sphere centered on the object

e Mapping functions assume that s,t equate to
latitude and longitude on the sphere:

R
s=i 1+£tan‘1 Y| t= R, +1
2| R 2

e What is bad about this method?
— Sampling
— Map generation
— Complex texture coordinate computations

Sphere Mapping

e Again the map lives on a sphere, but now the
coordinate mapping is simplified
e To generate the map:

— Take a map point (s,t), cast a ray onto a sphere in the -Z
direction, and record what is reflected

— Equivalent to photographing a reflective sphere with an
orthographic camera (long lens, big distance)

 Again, makes the method suitable for film special effects

Viewing Plane

Incident Ray

A Sphere Map

Indexing Sphere Maps

e Given the reflection vector:

R, 1 Ry 1
S=—+—, l=—+—
2 m 2

m
m=2(RX2+R§+(RZ +1)2)%

e Implemented in hardware

e Problems:
— Highly non-uniform sampling
— Highly non-linear mapping

Parabolic Mapping

* Assume the map resides on a parabolic surface
— Two surfaces, facing each other

e Improves on sphere maps:
— Texture coordinate generation is a near linear process
— Sampling is more uniform
— Result is more view-independent

e However, requires multi-passes to implement, so
not generally used

Partially Reflective Objects

o Use multi-texturing hardware
— First stage applied color texture

— Second stage does environment mapping using
alpha blend with existing color

