
Texture Mapping (cont.)

Jian Huang

CS 456

OpenGL functions

• During initialization read in or create the

texture image and place it into the OpenGL

state.
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB,

imageWidth, imageHeight, 0, GL_RGB,

GL_UNSIGNED_BYTE, imageData);

• Before rendering your textured object, enable

texture mapping and tell the system to use

this particular texture.
glBindTexture (GL_TEXTURE_2D, 13);

OpenGL functions

• During rendering, give the cartesian
coordinates and the texture coordinates for
each vertex.

glBegin (GL_QUADS);

glTexCoord2f (0.0, 0.0);

glVertex3f (0.0, 0.0, 0.0);

glTexCoord2f (1.0, 0.0);

glVertex3f (10.0, 0.0, 0.0);

glTexCoord2f (1.0, 1.0);

glVertex3f (10.0, 10.0, 0.0);

glTexCoord2f (0.0, 1.0);

glVertex3f (0.0, 10.0, 0.0);

glEnd ();

OpenGL functions

• Automatic texture coordinate generation

– Void glTexGenf(coord, pname, param)

• Coord:

– GL_S, GL_T, GL_R, GL_Q

• Pname

– GL_TEXTURE_GEN_MODE

– GL_OBJECT_PLANE

– GL_EYE_PLANE

• Param

– GL_OBJECT_LINEAR

– GL_EYE_LINEAR

– GL_SPHERE_MAP

What happens when outside the

0-1 range?
• (u,v) should be in the range of 0~1

• What happens when you request (1.5 2.3)?

– Tile: repeat (OGL); the integer part of the value is
dropped, and the image repeats itself across the surface

– Mirror: the image repeats itself but is mirrored (flipped)
on every other repetition

– Clamp to edge – value outside of the range are clamped
to this range

– Clamp to border – all those outside are rendered with a
separately defined color of the border

Methods for modifying surface

• After a texture value is retrieved (may be further
transformed), the resulting values are used to
modify one or more surface attributes

• Called combine functions or texture blending
operations

– Replace: replace surface color with texture color

– Decal: replace surface color with texture color, blend
the color with underlying color with an alpha texture
value, but the alpha component in the framebuffer is
not modified

– Modulate: multiply the surface color by the texture
color (shaded + textured surface)

Multi-Pass Rendering

• The final color of a pixel in the framebuffer is

dependent on:
– The shading/illumination applied on it

– How those fragments are combined/blended together

• Given the set graphics hardware, how can we get

more control (programmability)?

– Example: color plate V in the book

• Want a range of special effects to be available but

tailor based on the variety of hardware?

Multi-pass Rendering

• Each pass renders every pixel once

• Each pass computes a piece of the lighting

equation and the framebuffer is used to

store intermediate results

Quake III Engine

• Ten passes

– (1-4: accumulate bump map)

– 5: diffuse lighting)

– 6: base texture (with specular component)

– (7: specular lighting)

– (8: emissive lighting)

– (9: volumetric/atmospheric effects)

– (10: screen flashes)

AB+CD?

• Using framebuffer as the intermediate

storage, can multi-pass rendering implement

AB+ CD ?

– Suppose A, B, C, D are each result of a certain

pass

Multi-texture Environments

• Chain of Texture Units (Texture Stages)

GL_MODULATE

GL_DECAL

GL_BLEND

glMultiTexCoord2f(

 GL_TEXTURE0, …)

glMultiTexCoord2f(

 GL_TEXTURE1, …)

glMultiTexCoord2f(

 GL_TEXTURE2, …)

Pre-texturing color

glColor3f(r,g,b)
#0

#1

#2
Post-texturing

color

Lookup

& filter

Lookup

& filter

Lookup

& filter

Multi-Texturing

• Should have at least 2 texture units if multi-

texturing is supported

• Each texture unit:

– Texture image

– Filtering parameters

– Environment application

– Texture matrix stack

– Automatic texture-coordinate generation (doesn’t

seem obvious, but very have very creative apps)

Multi-Texturing

• Apply more than one texture to each fragment
– Alpha

– Luminance

– Luminance and alpha

– Intensity

– RGB

– RGBA

• For instance, first put a color texture on a fragment
and then put an intensity map on the fragment that
modulates the intensity to simulate lighting situation
– (what could this be?)

Putting Things Together

• With multi-pass rendering + multi-texturing, the

lighting equation can be very flexibly controlled to

render effects that graphics hardware does not do

by its default

• Common practice in the industry now

• Next, let’s look at a few established texturing

methods

Alpha Mapping

• Given a square texture , what if we only

want the interesting part of it?

– Say, a tree?

• Utilize the alpha channel of the texture, so

that only the interesting part becomes non-

transparent

• But what about the order?

Alpha Mapping

• A binary mask, really redefines the

geometry.

Light Mapping

• Given a complicated lighting condition,

how to accelerate and still get real-time

frame rates?

• Assuming your environment is diffuse, let’s

compute your lighting condition once and

then use as texture map

Example

Choosing a Mapping

• Problem: In a preprocessing phase, points on
polygons must be associated with points in maps

• One solution:

– Find groups of polygons that are “near” co-planar and
do not overlap when projected onto a plane

• Result is a mapping from polygons to planes

– Combine sections of the chosen planes into larger maps

– Store texture coordinates at polygon vertices

• Lighting tends to change quite slowly (except at
hard shadows), so the map resolution can be poor

Generating the Map

• Problem: What value should go in each pixel of
the light map?

• Solution:

– Map texture pixels back into world space (using the
inverse of the texture mapping)

– Take the illumination of the polygon and put it in the
pixel

• Advantages of this approach:

– Choosing “good” planes means that texture pixels map
to roughly square pieces of polygon - good sampling

– Not too many maps are required, and not much memory
is wasted

Example

Example

Applying Light Maps

• Use multi-texturing hardware

– First stage: Apply color texture map

– Second stage: Modulate with light map

• Pre-lighting textures:

– Apply the light map to the texture maps as a pre-
process

– When is this less appealing?

• Multi-pass rendering:

– Same effect as multi-texturing, but modulating in the
frame buffer

Gloss Mapping

• To rendering a tile floor that is worn in

places or a sheet of metal with some rusty

spots

• Let’s control the specular component of the

lighting equation

Bump Mapping

• Many textures are the result of small
perturbations in the surface geometry

• Modeling these changes would result in an
explosion in the number of geometric
primitives.

• Bump mapping attempts to alter the lighting
across a polygon to provide the illusion of
texture.

Bump Mapping

• This modifies the surface normals.

• More on this later.

Bump Mapping

Bump Mapping

Bump Mapping

• Consider the lighting for a modeled surface.

Bump Mapping

• We can model this as

deviations from some

base surface.

• The question

is then how these

deviations change the

lighting.
N

Bump Mapping

• Assumption: small deviations in the normal

direction to the surface.

X = X + B N

Where B is defined as a 2D function parameterized

over the surface:

 B = f(u,v)

Bump Mapping

• Step 1: Putting everything into the same

coordinate frame as B(u,v).

– x(u,v), y(u,v), z(u,v) – this is given for

parametric surfaces, but easy to derive for other

analytical surfaces.

– Or O(u,v)

Bump Mapping

• Define the tangent plane to the surface at a point

(u,v) by using the two vectors Ou and Ov.

• The normal is then given by:

• N = Ou Ov

N

Bump Mapping

• The new surface positions are then given

by:

• O’(u,v) = O(u,v) + B(u,v) N

• Where, N = N / |N|

• Differentiating leads to:
• O’u = Ou + Bu N + B (N)u O’u = Ou + Bu N

• O’v = Ov + Bv N + B (N)v O’v = Ov + Bv N

If B is small.

Bump Mapping

• This leads to a new normal:
• N’(u,v) = Ou Ov - Bu(N Ov) + Bv(N Ou)

 + Bu Bv(N N)

» = N - Bu(N Ov) + Bv(N Ou)

» = N + D

N

D
N’

Bump Mapping

• For efficiency, can store Bu and Bv in a 2-

component texture map.

• The cross products are geometry terms only.

• N’ will of course need to be normalized

after the calculation and before lighting.

– This floating point square root and division

makes it difficult to embed into hardware.

Displacement Mapping

• Modifies the surface position in the

direction of the surface normal.

Displacement Mapping

• Bump mapping has a limitation on how
much you can tweak

• If the desired amount of change is too large
for bump mapping, can use displacement
mapping.

• Actually go and modify the surface
geometry, and re-calculate the normals

• Quite expensive

Environment Mapping

• Environment mapping
produces reflections on
shiny objects

• Texture is transferred in the
direction of the reflected
ray from the environment
map onto the object

• Reflected ray: R=2(N V)N-
V

• What is in the map?

Object

Viewer
Reflected ray

Environment Map

Approximations Made

• The map should contain a view of the world with
the point of interest on the object as the eye

– We can’t store a separate map for each point, so one
map is used with the eye at the center of the object

– Introduces distortions in the reflection, but the eye
doesn’t notice

– Distortions are minimized for a small object in a large
room

• The object will not reflect itself

• The mapping can be computed at each pixel, or
only at the vertices

Environment Maps

• The environment map may take one of several
forms:

– Cubic mapping

– Spherical mapping (two variants)

– Parabolic mapping

• Describes the shape of the surface on which the
map “resides”

• Determines how the map is generated and how it
is indexed

• What are some of the issues in choosing the map?

Example

Cubic Mapping

• The map resides on the surfaces of a cube around the object

– Typically, align the faces of the cube with the coordinate axes

• To generate the map:

– For each face of the cube, render the world from the center of the

object with the cube face as the image plane

• Rendering can be arbitrarily complex (it’s off-line)

– Or, take 6 photos of a real environment with a camera in the object’s

position

• Actually, take many more photos from different places the object might be

• Warp them to approximate map for all intermediate points

• Remember The Abyss and Terminator 2?

Cubic Map Example

Indexing Cubic Maps

• Assume you have R and the cube’s faces are

aligned with the coordinate axes, and have texture

coordinates in [0,1]x[0,1]

– How do you decide which face to use?

– How do you decide which texture coordinates to use?

• What is the problem using cubic maps when

texture coordinates are only computed at vertices?

Lat/Long Mapping

• The original algorithm (1976) placed the map on a
sphere centered on the object

• Mapping functions assume that s,t equate to
latitude and longitude on the sphere:

• What is bad about this method?

– Sampling

– Map generation

– Complex texture coordinate computations

2

1
 ,tan

1
1

2

1 1 +
=+= z

x

y
ts

R

R

R

Sphere Mapping

• Again the map lives on a sphere, but now the

coordinate mapping is simplified

• To generate the map:

– Take a map point (s,t), cast a ray onto a sphere in the -Z

direction, and record what is reflected

– Equivalent to photographing a reflective sphere with an

orthographic camera (long lens, big distance)

• Again, makes the method suitable for film special effects

A Sphere Map

Indexing Sphere Maps

• Given the reflection vector:

• Implemented in hardware

• Problems:

– Highly non-uniform sampling

– Highly non-linear mapping

()()2
1

222
12

2

1
 ,

2

1

+++=

+=+=

zyx

yx

RRRm

m

R
t

m

R
s

Example

Parabolic Mapping

• Assume the map resides on a parabolic surface

– Two surfaces, facing each other

• Improves on sphere maps:

– Texture coordinate generation is a near linear process

– Sampling is more uniform

– Result is more view-independent

• However, requires multi-passes to implement, so

not generally used

Partially Reflective Objects

• Use multi-texturing hardware

– First stage applied color texture

– Second stage does environment mapping using

alpha blend with existing color

