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I. Introduction

M imicking the efficiency and 

robustness by which the human 

brain represents information 

has been a core challenge in arti-

ficial intelligence research for 

decades. Humans are ex -

posed to myriad of senso-

ry data received every 

second of the day and are 

somehow able to capture 

critical aspects of this 

data in a way that allows 

for its future use in a con-

cise manner. Over 50 years 

ago, Richard Bellman, who 

introduced dynamic programming 

theory and pioneered the field of opti-

mal control, asserted that high dimen-

sionality of data is a fundamental hurdle 

in many science and engineering appli-

cations. The main difficulty that arises, 

particularly in the context of pattern 

classification applications, is that the 

learning complexity grows exponen-

tially with linear increase in the dimen-

sionality of the data. He coined this 

phenomenon the curse of dimensional-

ity [1]. The mainstream approach of 

overcoming “the curse” has been to 

pre-process the data in a manner that 

would reduce its dimensionality to that 

which can be effectively processed, for 

example by a classification engine. This 

dimensionality reduction scheme is 

often referred to as feature extraction. 

As a result, it can be argued that the 

intelligence behind many pattern rec-

ognition systems has shifted to the 

human-engineered feature extraction 

process, which at times can be challeng-

ing and highly application-dependent 

[2]. Moreover, if incomplete or 

erroneous features are ex -

tracted, the classification 

process is inherently lim-

ited in performance.

Recent neuroscience 

findings have provided 

insight into the princi-

ples governing informa-

tion representation in the 

mammalian brain, leading to 

new ideas for designing sys-

tems that represent information. 

One of the key findings has been that 

the neocortex, which is associated with 

many cognitive abilities, does not explic-

itly pre-process sensory signals, but rath-

er allows them to propagate through a 

complex hierarchy [3] of modules that, 

over time, learn to represent observa-

tions based on the regularities they 

exhibit [4]. This discovery motivated the 

emergence of the subfield of deep 

machine learning, which focuses on 

computational models for information 

representation that exhibit similar char-

acteristics to that of the neocortex. 

In addition to the spatial dimension-

ality of real-life data, the temporal com-

ponent also plays a key role. An observed 

sequence of patterns often conveys a 

meaning to the observer, whereby inde-

pendent fragments of this sequence 

would be hard to decipher in isolation. 

Meaning is often inferred from events or 

observations that are received closely in 

time [5] [6]. To that end, modeling the 

temporal component of the observations 

plays a critical role in effective informa-

tion representation. Capturing spa-

tiotemporal dependencies, based on 

regularities in the observations, is there-

fore viewed as a fundamental goal for 

deep learning systems.

Assuming robust deep learning is 

achieved, it would be possible to train 

such a hierarchical network on a large set 

of observations and later extract signals 

from this network to a relatively simple 

classification engine for the purpose of 

robust pattern recognition. Robustness 

here refers to the ability to exhibit classi-

fication invariance to a diverse range of 

transformations and distortions, including 

noise, scale, rotation, various lighting 

conditions, displacement, etc.

This article provides an overview of 

the mainstream deep learning approach-

es and research directions proposed over 

the past decade. It is important to 

emphasize that each approach has 

strengths and weaknesses, depending on 

the application and context in which it 

is being used. Thus, this article presents a 

summary on the current state of the 

deep machine learning field and some 

perspective into how it may evolve. 

Convolutional Neural Networks 

(CNNs) and Deep Belief Networks 

(DBNs) (and their respective variations) 

are focused on primarily because they 

are well established in the deep learning 

field and show great promise for future 

work. Section II introduces CNNs and 

subsequently follows by details of DBNs 

in Section III. For an excellent further 
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FIGURE 2 Conceptual example of convolutional neural network. The input image is convolved 
with three trainable filters and biases as in Figure 1 to produce three feature maps at the C1 
level.  Each group of four pixels in the feature maps are added, weighted, combined with a bias, 
and passed through a sigmoid function to produce the three feature maps at S2. These are again 
filtered to produce the C3 level.  The hierarchy then produces S4 in a manner analogous to S2. 
Finally these pixel values are rasterized and presented as a single vector input to the “conven-
tional” neural network at the output. 

NN

Input C1 S2 C3 S4

in-depth look at the foundations of 

these technologies, the reader is referred 

to [7]. Section IV contains other deep 

architectures that are currently being 

proposed. Section V contains a brief note 

about how this research has impacted 

government and industry initiatives. The 

conclusion provides a perspective of the 

potential impact of deep-layered archi-

tectures as well as key questions that 

remain to be answered.

II. Convolutional Neural Networks
CNNs [8] [9] are a family of multi-layer 

neural networks particularly designed 

for use on two-dimensional data, such as 

images and videos. CNNs are influenced 

by earlier work in time-delay neural 

networks (TDNN), which reduce learn-

ing computation requirements by shar-

ing weights in a temporal dimension and 

are intended for speech and time-series 

processing [53]. CNNs are the first truly 

successful deep learning approach where 

many layers of a hierarchy are successful-

ly trained in a robust manner. A CNN is 

a choice of topology or architecture that 

leverages spatial relationships to reduce 

the number of parameters which must 

be learned and thus improves upon gen-

eral feed-forward back propagation 

training. CNNs were proposed as a deep 

learning framework that is motivated by 

minimal data preprocessing require-

ments. In CNNs, small portions of the 

image (dubbed a local receptive field) 

are treated as inputs to the lowest layer 

of the hierarchical structure. Information 

generally propagates through the differ-

ent layers of the network whereby at 

each layer digital filtering is applied in 

order to obtain salient features of the 

data observed. The method provides a 

level of invariance to shift, scale and 

rotation as the local receptive field allows 

the neuron or processing unit access to 

elementary features such as oriented 

edges or corners.

One of the seminal papers on the 

topic [8] describes an application of 

CNNs to the classification handwritten 

digits in the MNIST database. Essentially, 

the input image is convolved with a set 

of N small filters whose coefficients are 

either trained or pre-determined using 

some criteria. Thus, the first (or lowest) 

layer of the network consists of “feature 

maps” which are the result of the convo-

lution processes, with an additive bias 

and possibly a compression or normal-

ization of the features. This initial stage is 

followed by a subsampling (typically a 2 

3 2 averaging operation) that further 

reduces the dimensionality and offers 

some robustness to spatial shifts (see Fig-

ure 1). The subsampled feature map then 

receives a weighting and trainable bias 

and finally propagates through an activa-

tion function. Some variants of this exist 

with as few as one map per layer [13] or 

summations of multiple maps [8].

When the weighting is small, the 

activation function is nearly linear and 

the result is a blurring of the image; 

other weightings can cause the 

 activation output to resemble an AND 

or OR function. These outputs form a 

new feature map that is then passed 

through another sequence of convolu-

tion, sub-sampling and activation func-

tion flow, as illustrated in Figure 2. This 

process can be repeated an arbitrary 

number of times. It should be noted 

that subsequent layers can combine one 

or more of the previous layers; for 

example, in [8] the initial six feature 

maps are combined to form 16 feature 

maps in the subsequent layer. As 

described in [33], CNNs create their 

invariance to object translations by a 

method dubbed “feature pooling” (the 

S layers in Figure 2). However, feature 

pooling is hand crafted by the network 

organizer, not trained or learned by the 

system; in CNNs, the pooling is 

“tuned” by parameters in the learning 

process but the basic mechanism (the 

Input fx

bx

Cx

wx+1 bx+1

Sx+1

* ∑ ∑ ∑X

FIGURE 1 The convolution and subsampling process: the convolution process consists of con-
volving an input (image for the first stage or feature map for later stages) with a trainable filter fx 
then adding a trainable bias bx to produce the convolution layer Cx. The subsampling consists of 
summing a neighborhood (four pixels), weighting by scalar wx+1, adding trainable bias bx+1, and 
passing through a sigmoid function to produce a roughly 2x smaller feature map Sx+1.
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combination of inputs to the S layers, 

for example) are set by the network 

designer. Finally, at the final stage of the 

process, the activation outputs are for-

warded to a conventional feedforward 

neural network that produces the final 

output of the system.

The intimate relationship between 

the layers and spatial information in 

CNNs renders them well suited for 

image processing and understanding, and 

they generally perform well at autono-

mously extracting salient features from 

images. In some cases Gabor filters have 

been used as an initial pre-processing 

step to emulate the human visual 

response to visual excitation [10]. In 

more recent work, researchers have 

applied CNNs to various machine 

learning problems including face detec-

tion [11] [13], document analysis [38], 

and speech detection [12]. CNNs have 

recently [25] been trained with a tem-

poral coherence objective to leverage 

the frame-to-frame coherence found in 

videos, though this objective need not 

be specific to CNNs. 

III. Deep Belief Networks
DBNs, initially introduced in [14], are 

probabilistic generative models that stand 

in contrast to the discriminative nature 

of traditional neural nets. Generative 

models provide a joint probability distri-

bution over observable data and labels, 

facilitating the estimation of both 

P (Obser vat ion|Labe l )  as  wel l  as 

P(Label|Observation), while discrimina-

tive models are limited to the latter, 

P(Label|Observation). DBNs address 

problems encountered when traditional-

ly applying back-propagation to deeply-

layered neural networks, namely: (1) 

necessity of a substantial labeled data set 

for training, (2) slow learning (i.e. con-

vergence) times, and (3) inadequate 

parameter selection techniques that lead 

to poor local optima. 

DBNs are composed of several layers 

of Restricted Boltzmann Machines, a 

type of neural network (see Figure 3). 

These networks are “restricted” to a sin-

gle visible layer and single hidden layer, 

where connections are formed between 

the layers (units within a layer are not 

connected). The hidden units are trained 

to capture higher-order data correlations 

that are observed at the visible units. Ini-

tially, aside from the top two layers, which 

form an associative memory, the layers of 

a DBN are connected only by directed 

top-down generative weights. RBMs are 

attractive as a building block, over more 

traditional and deeply layered sigmoid 

belief networks, due to their ease of 

learning these connection weights. To 

obtain generative weights, the initial pre-

training occurs in an unsupervised greedy 

layer-by-layer manner, enabled by what 

Hinton has termed contrastive divergence 

[15]. During this training phase, a vector 

v is presented to the visible units that for-

ward values to the hidden units. Going in 

reverse, the visible unit inputs are then 

stochastically found in an attempt to 

reconstruct the original input. Finally, 

these new visible neuron activations are 

forwarded such that one step reconstruc-

tion hidden unit activations, h, can be 

attained. Performing these back and forth 

steps is a process known as Gibbs sam-

pling, and the difference in the correla-

tion of the hidden activations and visible 

inputs forms the basis for a weight 

update. Training time is significantly 

reduced as it can be shown that only a 

single step is needed to approximate 

maximum likelihood learning. Each layer 

added to the network improves the log-

probability of the training data, which we 

can think of as increasing true represen-

tational power. This meaningful expan-

sion, in conjunction with the utilization 

of unlabeled data, is a critical component 

in any deep learning application. 

At the top two layers, the weights are 

tied together, such that the output of the 

lower layers provides a reference clue or 

link for the top layer to “associate” with 

its memory contents. We often encoun-

ter problems where discriminative per-

formance is of ultimate concern, e.g. in 

classification tasks. A DBN may be fine 

tuned after pre-training for improved 

discriminative performance by utilizing 

labeled data through back-propagation. 

At this point, a set of labels is attached to 

the top layer (expanding the associative 

memory) to clarify category boundaries 

in the network through which a new set 

of bottom-up, recognition weights are 

learned. It has been shown in [16] that 

such networks often perform better than 

those trained exclusively with back-

propagation. This may be intuitively 

explained by the fact that back-propaga-

tion for DBNs is only required to per-

form a local search on the weight 

(parameter) space, speeding training and 

convergence time in relation to tradi-

tional feed-forward neural networks. 

Top Level Units

Hidden Units

Hidden Units

Hidden Units

Associative Memory

Detection Weights Generative Weights

Hidden

Visible

RBM Layer

Weights

Observation Vector v
(e.g., 32 × 32 Image)

Label Units

FIGURE 3 Illustration of the Deep Belief Network framework.
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Performance results obtained when 

applying DBNs to the MNIST hand-

written character recognition task have 

demonstrated significant improvement 

over feedforward networks. Shortly 

after DBNs were introduced, a more 

thorough analysis presented in [17] 

solidified their use with unsupervised 

tasks as well as continuous valued 

inputs. Further tests in [18] [19] illus-

trated the resilience of DBNs (as well as 

other deep architectures) on problems 

with increasing variation. 

The flexibility of DBNs was recently 

expanded [20] by introducing the notion 

of Convolutional Deep Belief Networks 

(CDBNs). DBNs do not inherently 

embed information about the 2D struc-

ture of an input image, i.e. inputs are 

simply vectorized formats of an image 

matrix. In contrast, CDBNs utilize the 

spatial relationship of neighboring pixels 

with the introduction of what are 

termed convolutional RBMs to provide 

a translation invariant generative model 

that scales well with high dimensional 

images. DBNs do not currently explicit-

ly address learning the temporal rela-

tionships between observables, though 

there has been recent work in stacking 

temporal RBMs [22] or generalizations 

of these, dubbed temporal convolution 

machines [23], for learning sequences. 

The application of such sequence learn-

ers to audio signal processing problems, 

whereby DBNs have made recent head-

way [24], offers an avenue for exciting 

future research. 

Static image testing for DBNs and 

CNNs occurs most commonly with the 

MNIST database [27] of handwritten 

digits and Caltech-101 database [28] of 

various objects (belonging to 101 catego-

ries). Classification error rates for each of 

the architectures can be found in [19] 

[20] [21]. A comprehensive and up-to-

date performance comparison for various 

machine learning techniques applied to 

the MNIST database is provided in [27]. 

Recent works pertaining to DBNs 

include the use of stacked auto-encoders 

in place of RBMs in traditional DBNs 

[17] [18] [21]. This effort produced deep 

multi-layer neural network architectures 

that can be trained with the same prin-

ciples as DBNs but are less strict in the 

parameterization of the layers. Unlike 

DBNs, auto-encoders use discriminative 

models from which the input sample 

space cannot be sampled by the archi-

tecture, making it more difficult to inter-

pret what the network is capturing in its 

internal representation. However, it has 

been shown [21] that denoising auto-

encoders, which utilize stochastic cor-

ruption during training, can be stacked 

to yield generalization performance that 

is comparable to (and in some cases bet-

ter that) traditional DBNs. The training 

procedure for a single denoising autoen-

coder corresponds to the goals used for 

generative models such as RBMs.

IV. Recently Proposed 
Deep Learning Architectures
There are several computational archi-

tectures that attempt to model the neo-

cortex. These models have been inspired 

by sources such as [42], which attempt 

to map various computational phases in 

image understanding to areas in the cor-

tex. Over time these models have been 

refined; however, the central concept of 

visual processing over a hierarchical 

structure has remained. These models 

invoke the simple-to-complex cell orga-

nization of Hubel and Weisel [44], which 

was based on studies of the visual corti-

cal cells of cats. 

Similar organizations are utilized by 

CNNs as well as other deep-layered 

models (such as the Neocognitron [40] 

[41] [43] and HMAX [32] [45]), yet 

more “explicit” cortical models seek a 

stronger mapping of their architecture to 

biologically-inspired models. In particu-

lar, they attempt to solve problems of 

learning and invariance through diverse 

mechanisms such as temporal analysis, in 

which time is considered an inseparable 

element of the learning process.

One prominent example is Hierar-

chical Temporal Memory (HTM) devel-

oped at the Numenta Corporation [30] 

[33]. HTMs have a hierarchical structure 

based on concepts described in [39] and 

bear similarities to other work pertaining 

to the modeling of cortical circuits. With 

a specific focus on visual information 

representation, in an HTM the lowest 

level of the hierarchy receives its inputs 

from a small region of an input image. 

Higher levels of the hierarchy correspond 

to larger regions (or receptive fields) as 

they incorporate the representation con-

structs of multiple lower receptive fields. 

In addition to the scaling change across 

layers of the hierarchy, there is an impor-

tant temporal-based aspect to each layer, 

which is created by translation or scan-

ning of the input image itself. 

During the learning phase, the first 

layer compiles the most common input 

patterns and assigns indices to them. 

Temporal relationships are modeled as 

probability transitions from one input 

sequence to another and are clustered 

together using graph partitioning tech-

niques. When this stage of learning con-

cludes, the subsequent (second) layer 

concatenates the indices of the current 

observed inputs from its children mod-

ules and learns the most common con-

catenations as an alphabet (another group 

of common input sequences, but at a 

higher level). The higher layer’s charac-

terization can then be provided as feed-

back down to the lower level modules. 

The lower level, in turn, incorporates this 

broader representation information into 

its own inference formulation. This pro-

cess is repeated at each layer of the hier-

archy. After a network is trained, image 

recognition is performed using the 

Bayesian belief propagation algorithm 

[46] to identify the most likely input pat-

tern given the beliefs at the highest layer 

of the hierarchy (which corresponds to 

the broadest image scope). Other archi-

tectures proposed in the literature, which 

resemble HTMs, include the Hierarchi-

cal Quilted SOMs of Miller & Lommel 

[47] that employ two-stage spatial clus-

tering and temporal clustering using self-

organizing maps, and the Neural 

Abstraction Pyramid of Behnke [48].

A framework recently introduced by 

the authors for achieving robust infor-

mation representation is the Deep Spa-

tioTemporal Inference Network 

(DeSTIN) model [26]. In this frame-

work, a common cortical circuit (or 

node) populates the entire hierarchy, and 

each of these nodes operates indepen-

dently and in parallel to all other nodes. 
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This solution is not constrained to a lay-

er-by-layer training procedure, making 

it highly attractive for implementation 

on parallel processing  platforms. Nodes 

independently characterize patterns 

through the use of a belief state con-

struct, which is incrementally updated as 

the hierarchy is presented with data.

This rule is comprised of two con-

structs: one representing how likely sys-

tem states are for segments of the 

observation, P(observation|state), and 

another representing how likely state to 

state transitions are given feedback from 

above, P(subsequent state|state,feedback). 

The first construct is unsupervised and 

driven purely by observations, while the 

second, modulating the first, embeds the 

dynamics in the pattern observations. 

Incremental cluster ing is carefully 

applied to estimate the observation dis-

tribution, while state transitions are esti-

mated based on frequency. It is argued 

that the value of the scheme lies in its 

simplicity and repetitive structure, facili-

tating multi-modal representations and 

straightforward training. 

Table 1 provides a brief comparison 

summary of the mainstream deep 

machine learning approaches described 

in this paper.

V. Deep Learning Applications
There have been several studies demon-

strating the effectiveness of deep learning 

methods in a variety of application 

domains. In addition to the MNIST 

handwriting challenge [27], there are 

applications in face detection [10] [51], 

speech recognition and detection [12], 

general object recognition [9], natural 

language processing [24], and robotics. 

The reality of data proliferation and 

abundance of multimodal sensory infor-

mation is admittedly a challenge and a 

recurring theme in many military as well 

as civilian applications, such as sophisti-

cated surveillance systems. Consequently, 

interest in deep machine learning has 

not been limited to academic research. 

Recently, the Defense Advanced 

Research Projects Agency (DARPA) has 

announced a research program exclu-

sively focused on deep learning [29]. 

Several private organizations, including 

Numenta [30] and Binatix [31], have 

focused their attention on commercial-

izing deep learning technologies with 

applications to broad domains. 

VI. The Road Ahead
Deep machine learning is an active area 

of research. There remains a great deal of 

work to be done in improving the learn-

ing process, where current focus is on 

lending fertile ideas from other areas of 

machine learning, specifically in the con-

text of dimensionality reduction. One 

example includes recent work on sparse 

coding [57] where the inherent high 

dimensionality of data is reduced through 

the use of compressed sensing theory, 

allowing accurate representation of signals 

with very small numbers of basis vectors. 

Another example is semi-supervised 

manifold learning [58] where the dimen-

sionality of data is reduced by measuring 

the similarity between training data sam-

ples, then projecting these similarity mea-

surements to lower-dimensional spaces. 

In addition, further inspiration and tech-

niques may be found from evolutionary 

programming ap  proaches [59, 60] where 

conceptually adaptive learning and core 

architectural changes can be learned with 

minimal engineering efforts.

Some of the core questions that 

necessitate immediate attention include: 

how well does a particular scheme scale 

with respect to the dimensionality of the 

input (which in images can be in the 

millions)? What is an efficient frame-

work for capturing both short and long-

term temporal dependencies? How can 

multimodal sensory information be most 

naturally fused within a given architec-

tural framework? What are the correct 

attention mechanisms that can be used 

to augment a given deep learning 

 technology so as to improve robustness 

and invariance to distorted or missing 

data? How well do the various solutions 

map to parallel processing platforms that 

facilitate processing speedup?

While deep learning has been suc-

cessfully applied to challenging pattern 

inference tasks, the goal of the field is far 

beyond task-specific applications. This 

scope may make the comparison of vari-

ous methodologies increasingly complex 

and will likely necessitate a collaborative 

effort by the research community to 

address. It should also be noted that, 

despite the great prospect offered by 

deep learning technologies, some 

domain-specific tasks may not be directly 

improved by such schemes. An example 

TABLE I Summary of mainstream deep machine learning approaches.

APPROACH 
(ABBREVIATION)

UNSUPERVISED 
PRE-TRAINING?

GENERATIVE VS. 
DISCRIMINATIVE NOTES

CONVOLUTIONAL 
NEURAL NETWORKS (CNNS)

NO DISCRIMINATIVE UTILIZES SPATIAL/TEMPORAL RELATIONSHIPS TO 
REDUCE LEARNING REQUIREMENTS

DEEP BELIEF NETWORKS (DBNS) HELPFUL GENERATIVE MULTI-LAYERED RECURRENT NEURAL NETWORK 
TRAINED WITH ENERGY MINIMIZING METHODS 

STACKED (DENOISING) 
AUTO-ENCODERS

HELPFUL DISCRIMINATIVE (DENOISING 
ENCODER MAPS TO 
GENERATIVE MODEL)

STACKED NEURAL NETWORKS THAT LEARN COM-
PRESSED ENCODINGS THROUGH 
RECONSTRUCTION ERROR

HIERARCHICAL TEMPORAL 
MEMORY

NO GENERATIVE HIERARCHY OF ALTERNATING SPATIAL RECOGNITION 
AND TEMPORAL INFERENCE LAYERS WITH SUPERVISED 
LEARNING METHOD AT TOP LAYER

DEEP SPATIOTEMPORAL 
INFERENCE NETWORK (DESTIN)

NO DISCRIMINATIVE HIERARCHY OF UNSUPERVISED SPATIAL-TEMPORAL 
CLUSTERING UNITS WITH BAYESIAN STATE-TO-STATE 
TRANSITIONS AND TOP-DOWN FEEDBACK
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is  identifying and reading the routing 

numbers at the bottom of bank checks.  

Though these digits are human readable, 

they are comprised of restricted character 

sets which specialized readers can recog-

nize flawlessly at very high data rates 

[49]. Similarly, iris recognition is not a 

task that humans generally perform; 

indeed, without training, one iris looks 

very similar to another to the untrained 

eye, yet engineered systems can produce 

matches between candidate iris images 

and an image database with high preci-

sion and accuracy to serve as a unique 

identifier [50]. Finally, recent develop-

ments in facial recognition [51] show 

equivalent performance relative to 

humans in their ability to match query 

images against large numbers of candi-

dates, potentially matching far more than 

most humans can recall [52]. Neverthe-

less, these remain highly specific cases 

and are the result of lengthy feature engi-

neering optimization processes (as well as 

years of research) that do not map to 

other, more general applications. Fur-

thermore, deep learning platforms can 

also benefit from engineered features 

while learning more complex represen-

tations which engineered systems typi-

cally lack.

Despite the myriad of open research 

issues and the fact that the field is still in 

its infancy, it is abundantly clear that 

advancements made with respect to 

developing deep machine learning sys-

tems will undoubtedly shape the future 

of machine learning and artificial intelli-

gence systems in general. 
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