A Scalable Recurrent Neural Network Framework for Model-free POMDPs

April 3, 2007

Zhenzhen Liu, Itamar Elhanany

Machine Intelligence Lab
Department of Electrical and Computer Engineering
The University of Tennessee
http://mil.engr.utk.edu
Outline

- Introduction
- Background and motivation
- TRTRL/SMD
- Simulation results
- Summary and future work
Ingredients for building “Intelligent Machines”

- Implementation platform?
 - Must scale
 - Mammal brain as a reference model?
 - Massively parallel architecture
 - Operates at (relatively) low speeds
 - Fault-tolerant
 - Software vs. Hardware
 - If hardware, what technology? (FPGA, VC VLSI, Analog VLSI)

- (Nonlinear) Function approximation
 - Dealing with high-dimensional problems
 - Optimal policy is unattainable
 - Capturing spatiotemporal dependencies
 - RNNs, Bayesian Networks, Fuzzy?
 - Biologically-inspired schemes
Scaling ADP

Goals ...
- To address high-dimensional state and/or action spaces
- Support online learning
- Deal with partially observable scenarios (e.g. POMDPs)
- Hardware realizable

Approach taken ...
- Employ recurrent neural networks (RNNs)
 - Improved learning algorithm that scales
 - Devised hardware-efficient architecture
- Embed within approximate Q-Learning framework
The Real-Time Recurrent Learning (RTRL) Algorithm

- Originally proposed in 1989 for arbitrary RNN topology
- Stochastic gradient-based online algorithm
- Activation function of neuron k is defined by:

$$y_k(t + 1) = f_k(s_k(t)),$$

$$z_k(t) = \begin{cases} x_k(t) & \text{if } k \in \text{input} \\ y_k(t) & \text{if } k \in \text{output} \end{cases}$$

where s_k is the weighted sum of all activations leading to neuron k.

- The network error at time t is defined by:

$$J(t) = \frac{1}{2} \sum_{m \in \text{outputs}} \left[d_m(t) - y_m(t) \right]^2 = \frac{1}{2} \sum_{m \in \text{outputs}} \left[e_m(t) \right]^2$$

where $d_m(t)$ denotes the desired target value for output neuron m
Updating the weights

The error is minimized along a positive multiple of the performance measure gradient such that

\[w_{ij}(t + 1) = w_{ij}(t) + \Delta w_{ij}(t) \]

\[\Delta w_{ij}(t) = -\alpha \frac{\partial J(t)}{\partial w_{ij}} = \alpha \sum_{k \in \text{outputs}} e_k(t) \frac{\partial y_k(t)}{\partial w_{ij}} \]

The partial derivatives of the activation function with respect to the weights are identified as sensitivity elements and denoted by

\[p_{ij}^k(t) = \frac{\partial y_k(t)}{\partial w_{ij}} \]
Updating the Sensitivities in RTRL

The sensitivities of node k with respect to a change in weight w_{ij} are updated using the recursive expression:

$$p_{ij}^k(t+1) = f_k'(s_k(t)) \left[\sum_{l \in N} w_{kl} p_{ij}^l(t) + \delta_{ik} z_j(t) \right]$$

Each neuron performs $O(N^3)$ multiplications, yielding a total computational complexity of $O(N^4)$.

The storage requirements are dominated by the weights and the sensitivities resulting in $O(N^3)$ storage requirements.
Motivation:
To obtain a scalable version of the RTRL algorithm while minimizing performance degradation.

How?
Biologically-inspired approach: limit the sensitivities of each neuron to its ingress (incoming) and egress (outgoing) links.
For all nodes not in the output set, the ingress sensitivity function for node i is given by

$$p^i_{ij}(t+1) = f'_i(s_i(t))[w_{ij}p^j_{ij}(t) + z_j(t)]$$

The egress sensitivities for node i are updated by

$$p^j_{ij}(t+1) = f'_j(s_j(t))[w_{ji}p^i_{ij}(t) + \delta_{ij}y_j(t)]$$

For the output neurons, a nonzero sensitivity element must exist in order to update the weights, yielding

$$p^o_{ij}(t+1) = f'_o(s_o(t))[w_{oi}p^i_{ij}(t) + w_{oj}p^j_{ij}(t) + \delta_{io}z_j(t)]$$
Storage and Computational Complexity of TRTRL

- The network architecture remains the same with TRTRL (there’s a weight between each two neurons)
- Only the calculation of sensitivities is reduced
- The computational load for each neuron becomes $O(KN)$ where K denotes the number of output neurons

The computation complexity was reduced from $O(N^4)$ to $O(KN^2)$

The storage requirement was reduced from $O(N^3)$ to $O(N^2)$
Gradient descent techniques often suffer from slow converges, particularly for ill-conditioned problems.

Mainstream approach: utilize second-order information, e.g. LM, Newton methods (all utilize Hessian matrix)
- However, these are computationally heavy.

Stochastic meta-descent (SMD) has recently been proposed as a "cheap second-order gradient technique"
- Employs an independent learning rate for each weight.
- Utilizes Hessian information in local step size.

\[w_{ij}(t+1) = w_{ij}(t) + \lambda_{ij}(t)\delta_{ij}(t) \]
SMD adopted for TRTRL

We adopted SMD for TRTRL (first work in applying SMD to RNNs)

Approach - adapt learning rate along exponentiated gradient descent direction

\[
\ln \lambda_{ij}(t) = \ln \lambda_{ij}(t-1) - \mu \frac{\partial J(t)}{\partial \ln \lambda_{ij}},
\]

\[
\ln \lambda_{ij}(t) = \ln \lambda_{ij}(t-1) - \mu \frac{\partial J(t)}{\partial w_{ij}(t)} \frac{\partial w_{ij}(t)}{\partial \ln \lambda_{ij}}
\]

\[
= \ln \lambda_{ij}(t-1) + \mu \delta_{ij}(t)v_{ij}(t)
\]

\[
\lambda_{ij}(t) = \lambda_{ij}(t-1) \max(\rho, 1 + \mu \delta_{ij}(t)v_{ij}(t))
\]

using relationship \(e^x \approx 1 + x \)
SMD adopted for TRTRL (cont.)

- Adapt gradient trace

\[v_{ij}(t+1) = \beta v_{ij}(t) + \lambda_{ij}(t)(\delta_{ij}(t) - \beta (H_t v(t))_{ij}) \]

- \(H_t \) is the instantaneous Hessian (the matrix of second derivatives \(\frac{\partial^2 J}{\partial w_{ij}w_{kl}} \) of the error \(J \) with respect to each pair of weights) at time \(t \)

- The product of the Hessian and an arbitrary vector

\[Hv = R_v \{ \nabla_w \} = \frac{\partial}{\partial r} \nabla_{(w+rv)}|_{r=0} \]

which for TRTRL yields

\[-(H_t v(t))_{ij} = R_v \left\{ \sum_{\text{output}} e_o(t) p^o_{ij}(t) \right\} = \sum_{\text{output}} \left[e_o(t) R_v \{ p^o_{ij}(t) \} - R_v \{ y_o(t) \} p^o_{ij}(t) \right] \]
To complete the analysis, the R-operator on S, Y, P is

$$R_v \{y_o(t)\} = f'(s_o(t))R_v \{s_o(t)\} \quad R_v \{s_o(t)\} = \sum_{l \in U \cup I} v_{ol}(t)z_l(t),$$

$$R_v \{p_{ij}^o(t)\} = f''(s_o(t))R_v \{s_o(t)\} \cdot \left[w_{oi}p_{ij}^i(t) + w_{oj}p_{ij}^j(t) + \delta_{io}z_j(t)\right]$$

$$+ f'(s_o(t))[v_{oi}p_{ij}^i(t) + v_{oj}p_{ij}^j(t)]$$

We also added adaptive global meta-learning rate by defining

$$\varphi_{ij}(t) = -\frac{\partial J(t)}{\partial \ln \lambda_{ij}} = \delta_{ij}(t)v_{ij}(t)$$

to yield

$$\mu_{ij}(t) = \mu_{ij}(t-1)\left(1 + \eta \varphi_{ij}(t)\varphi_{ij}(t-1)\right)$$
Using TRTRL/RNN for Solving POMDP

 Recall that the motivation for using RNNs was to solve POMDPs.

 In each step: (1) feedforward all actions, (2) find the one with maximal (softmax) value \(J \), (3) apply corresponding action to the environment, (4) get next reward and update weights.
Example 2 - Four State POMDP

4-state POMDP with identical (confusing) observations
- Agent needs to ‘remember’ prior observation to infer state
- 15 internal neurons and 1 output neuron
Summary

- **Scalable, efficient RNNs**
 - Vital tool for addressing high-dimensional POMDPs
 - Introduced a fast, hardware-efficient learning algorithm and architecture
 - Slightly improved SMD technique (adaptive global learning rate)

- **Successfully applied TRTRL-SMD in solving POMDP**
 - Pathway for addressing practical problems
 - Scalable framework for ADP with RNNs