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Heterogeneous Bursty Traffic Dispersion over
Multiple Server Clusters
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Abstract— This letter presents performance analysis of mul-
tiple subnets, each representing a cluster of computing server
nodes, that are introduced with non-uniformly distributed bursty
packet arrivals. In particular, we study the case of a multi-state
Markov-modulated arrival process, heterogeneously dispersed
among designated queues. Cluster processing is modeled by
employing a batch service discipline. The probability generating
functions of the interarrival times distributions are utilized
to derive closed-form expressions for each of the queue size
distributions.

Index Terms— Markov-modulated arrivals, batch processing,
traffic modeling, performance analysis.

I. INTRODUCTION

IN recent years, extensive research has been directed to-
wards the area of multiple-queued systems, particularly in

the context of packet switching architectures [1], [2]. Much of
the work focuses on obtaining performance metrics, such as
delay and jitter, under diverse traffic scenarios. In this context,
the work appearing in the literature pertains to a single system,
albeit a large one, to which all traffic arrives and from which
it departs.

An interesting scenario is one in which traffic arrives
through a high-speed link (e.g. 40 Gb/s) to a site which
distributes this traffic among a set of subsystems (queues),
each forwarding packets to a cluster of computing machines
(nodes). A classic application of such topologies is high-
performance parallel computation, such as massively complex
visualization tasks [3]. Moreover, in the context of high-speed
networks, wide area networks (WAN) often receive long-haul
high-speed data links from which packets are demultiplexed
onto several, lower speed subnets. The majority of the studies
performed on such topologies consider traffic that obeys a
Bernoulli (uncorrelated) process and in most cases uniformly
distributed such that all subnets consume the same load
intensity.

In this letter we present analysis of a networking system
comprising multiple subnet queues, each reflecting on a cluster
of computing server systems. The traffic arriving at the queues
is assumed to be non-uniformly distributed and bursty, gener-
ated using an extended Markov-modulated arrival processes.
Based on the per-queue probability generating function (p.g.f.)
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Fig. 1. The network topology model consisting of multiple subnets, each
associated with a different queue, forwarding bursty traffic to designated
clusters of computing machines.

of the interarrival times distribution, it is shown that accurate
depiction of the queues’ behavior can be obtained.

II. NETWORK ARCHITECTURE

The network model is illustrated in Fig. 1. Traffic arriving
from a high-speed link is assumed to be bursty and non-
uniformly distributed among the N subnets. A unique queue
is maintained for each of the subnets, aggregating traffic to
be forwarded to a dedicated cluster of computing nodes. Each
server processes packets at an independent rate of µ. In our
discussion, a burst is characterized by a sequence of packets
destined to the same cluster (queue).

Letting λk denote the mean offered load traversing towards
cluster k, the aggregate load is λ =

∑N
k=1 λk. Typical network

platforms, particularly at the Internet backbone where ATM is
commonly deployed, partition variable size packets (such as
IP) into fixed sized datagrams. To that end, in our model all
packets are assumed to be of fixed size.

III. QUEUEING MODEL AND FORMULATION

A. Queueing Notation

We consider a discrete-time queueing system with N queues
and N servers of infinite buffer capacity, in which all events
occur at fixed time slot intervals. Within each time slot, at
most a single arrival may occur, originating from the high-
speed link. Since packets are stored at dedicated queues, at
most N departures may occur within the same time slot. It has
been shown in the literature [4] that in a GI/Geo/1 discrete-
time queueing system (general independent arrival times and
geometrically distributed service times), if fn (n ≥ 1) is
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the interarrival time distribution, with a p.g.f., F (z), and the
service times are geometrically distributed with parameter
µ, then the stationary queue size distribution as viewed by
an arriving cell, πm, will always be in the form πm =
(1 − ρ)ρm m ≥ 0 where ρ is a unique root of the equation
z = F (zµ + (1 − µ)) that lies in the region (0, 1).

A late arrival model is considered, for reasons of conve-
nience, such that within a time slot boundary a departure
will always precede an arrival event. We observe the queue
size at instances following the arrival phase, hence time slot
boundaries are delimited by the observation instances.

Consider a discrete-time, two-state Markov chain generating
arrivals modeled by an ON/OFF source which alternates
between the ON and OFF states. Let the parameters p and
q denote the probabilities that the Markov chain remains in
states ON and OFF, respectively. An arrival is generated for
each time slot that the Markov chain spends in the ON state.
Recalling the notation fn for the interarrival times distribution,
the probability of two consecutive arrivals occurring is iden-
tical to the probability that following an arrival the Markov
chain remains in state ON, i.e. f1 = p. Similarly, f2 is the
probability that following an arrival, the chain transitions to
the OFF state and then returns to the ON state. For n > 2, it
is apparent that following a transition from the ON state to the
OFF state, there are n − 2 time slots during which the chain
remains in the OFF state before returning to the ON state.
Accordingly, we obtain the following general expression for
fn:

fn =

{
p n = 1
(1 − p)qn−2(1 − q) n > 1

(1)

The corresponding p.g.f. is

F (z) = pz + (1 − p)(1 − q)
z2

1 − qz
. (2)

Next, we solve the equation z = F (zµ + (1−µ)) to find that
the root in the region (0, 1) is

ρ =
1 − µ

µ

[
1

µ(1 − p − q) + 1
− 1

]
. (3)

B. ON/OFF Arrivals with Geometric Batch Service

Extending the above model to address the case of batch
service, we next assume that V computing nodes are extracting
packets from each queue. The service times for each of the
computing nodes is independent and identically distributed
with parameter µ. To that end, we utilize the GI/Geo(V)/1
model in which the V nodes may be reflected. It can be
shown [5] that if D(z) denotes the p.g.f. of the number of
packets served in each time slot then ρ, the unique root of the
equation z = F (D(z)) in the range (0, 1), is the parameter of
the stationary queue size distribution,

µm = (1 − ρ)ρm m ≥ 0, (4)

where F (z) is the p.g.f. of the interarrival times distribution.
Utilizing Little’s theorem, we directly obtain the mean delay.
We are thus left with finding the p.g.f. D(z) for a set
of independent memoryless servers (computing nodes). An
aggregation of independent service events forms a binomial
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Fig. 2. Markov chain governing the generation of bursty traffic to a set of
N queues. Each cluster receives an offered load of λi.

process in which 1 to V nodes may service a queue at once.
The p.g.f. of the binomial process discussed is

D(z) = [(1 − µ) + µz]V , (5)

where µ is the independent service rate of each computing
system. Accordingly, we are left with solving z = F (D(z))
for which the root, ρ, is the parameter of the queue size
distribution. Note that under heterogeneous traffic conditions,
each queue will be associated with a different arrival process
and thus will result in a different queue size distribution.

IV. HETEROGENEOUS DISTRIBUTION OF

BURSTY ARRIVALS WITH BATCH SERVICE

We extend the foundations presented in section III to
investigate the case of bursty arrivals that are heterogeneously
distributed over several clusters. By doing so, we allow for
a diverse range of non-uniformly distributed bursty arrival
patterns to be generated. Such patterns better emulate real-life
traffic scenarios, which tend to be bursty on different levels.
Letting N denote the number of queues, a burst is defined
as a sequence of consecutive arrivals destined to the same
queue. We further characterize the traffic for each queue by the
portion of the offered load it receives, λk (k = 1, 2, . . . , N ),
and a mean burst size, Bk.

We construct a Markov chain corresponding to the behavior
of the investigated bursty arrival process, as shown in Fig. 2.
The chain consists of N + 1 states, N of which represent
arrivals going to the N queues, while the remaining state is
the OFF state. We label the ON states as κ1, κ2, . . . , κN , and
the OFF state as κ0. The probability of remaining in the OFF
state is q while the probability of remaining in each of the
ON states is pi, respectively. To complement the latter, the
probability of returning from any ON state to the OFF state
is (1− pi) while the probability of a transition from the OFF
state to any of the ON states equals qi. Thus, we can represent
the Markov chain as a (N +1)×(N +1) transition probability
matrix P where each element, pij , denotes the probability of
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transitioning from the ith state to the jth state. For the Markov
chain to be stable we observe that any pair (κ0, κi) must satisfy
λi(1−pi) = (1−λ)qi, yielding the relationships pi = 1− 1

Bi

and qi = λi

Bi(1−λ) .
As with the single queue case, we would like to find, for

each queue, the p.g.f. of the interarrival times distribution.
The latter is done by utilizing the k-step transition matrix,
P (k), in which each element, p

(k)
ij , represents the probability

of transitioning from the ith state to the jth state in precisely
k steps, with no restrictions made on passing through state
j in any of the intermediate steps. In accordance with the
Chapman-Kolmogorov equation [4] we have P (k) = P k (k ≥
1), for which the p.g.f. is

P (z) =
∞∑

n=0

(zP )n = [I − zP ]−1, (6)

where |z| < 1. We next define the k-step first passage time
probability matrix [5], F (k), the elements of which, f

(k)
ij , are

the probabilities of transitioning from state i to state j in
precisely k-steps with the constraint that prior to the kth-
step the process has not visited state j. Since each diagonal
element, f

(k)
ii

∣∣∣
i>1

, is by definition the probability of k steps

separating two consecutive arrivals to queue i, it is identical to
the definition of the inter-arrival time distribution for the ith

queue. It has been shown that the following relationship exists
between pii(z), the p.g.f. diagonal elements of the transition
probability matrix, and fii(z), the p.g.f. diagonal elements of
the first-passage times distribution, [4]:

fii(z) = 1 − 1
pii(z)

. (7)

To obtain fii(z), we first need to attain P (z) = [I − zP ]−1.
Algebraic exploration of the latter yields the following result,

pii(z)|i>1 =
1 − zp11 −

∑N+1
j=2,j �=i ϕj(z)[

1 − zp11 −
∑N+1

j=2 ϕj(z)
]
(1 − zpii)

, (8)

where

ϕj(z) =
z2pj1p1j

1 − zpjj
, (9)

from which we find fii(z) using (7). The latter offers the
desired interarrival time distribution p.g.f., for each of the N
queues. To facilitate the completion of the analysis, we solve
the equation z = fii(Di(z)) for each of the queues, where
Di(z) = [(1 − µi) + µiz]V , denoting the p.g.f. of the batch
service distribution for each cluster. From (7), (8) and (9), we
obtain the following set of equations

φ (Di(z)) [z + Di(z)pii] + ϕi (Di(z)) (1 − z) = 0, (10)

where φ(z) = 1 − zp11 −
∑N+1

j=2 ϕj(z).
The roots, ρi, of the above equations allow us to obtain the

stationary queue sizes distributions from which we establish
the mean delay experienced by packets as they flow to the
clusters.

V. CONCLUSION

In this letter we present an analytical framework for evalu-
ating the queueing behavior of multiple computation clusters
introduced with heterogeneous bursty traffic. We utilize the
p.g.f. of the interarrival times distributions, in the context of
GI/Geo(x)/1 queueing models, to derive per-queue expressions
for the queue size distribution and mean latency. The method-
ology presented here may be broadened to address additional
traffic scenarios and network topologies.
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