
A Scalable Memory-Ef�cient Architecture for
Parallel Shared Memory Switches

Brad Matthews, Student Member, IEEE, Itamar Elhanany, Senior Member, IEEE
Networking Research Group

Electrical and Computer Engineering Dept.
University of Tennessee
Knoxville, TN 37996

Abstract�Parallel shared memory (PSM) switch architectures
were initially introduced as means of resolving the high memory
bandwidth requirements imposed by output-queued switches. At
the core of the PSM architecture is a memory management
algorithm that determines, for each arriving packet, the memory
unit in which it will be placed. Recent work has indicated that in
order to achieve high throughput, the number of parallel memo-
ries needed is O

�
N1:5

�
; thereby signi�cantly limiting scalability.

This paper introduces a novel pipelined memory management
algorithm which maintains a computational complexity of O (1)
while reducing the number of required parallel memories to
O (N). Our goal is to extend existing shared-memory architecture
results in the context of Fabric on a Chip (FoC) - a paradigm that
advocates the consolidation of core packet switching functions
on a single chip. A detailed discussion is provided pertaining
to the fundamental properties of the proposed scheme, along
with hardware implementation considerations that illustrate its
scalability and performance attributes.

I. INTRODUCTION
Output-Queued (OQ) switch architectures are known to

offer distinct performance advantages with respect to input-
queued schemes. Minimal average packet delay, controllable
Quality of Service (QoS) provisioning and work conservation
under a broad range of admissible traf�c conditions repre-
sent several of the desirable characteristics. However, OQ
switches lack scalability due to the high memory bandwidth
constraints they impose. These constraints are derived from
the requirement that each memory in an N � N switch,
where N is the number of ports, must support up to N write
operations and one read access in a single cell time. This
results in a memory bandwidth requirement of O (NR), where
R is the line rate, and an internal speedup of N . Clearly,
when increasing port densities and line rates, this represents a
signi�cant impediment in the design of scalable OQ switching
platforms.
The Fabric on a Chip (FoC) [1] approach strives to leverage

recent advances in chip density, packaging technology and
the availability of large on-chip memory resources to enable
the consolidation of switching functions on a single chip.
This yields several key advantages. First, the need for virtual
output queueing (VOQ) [2] as well as some output buffering
associated with standard input-queued switch architectures, is
eliminated. Second, the need for external memory devices is
reduced by exploiting the ability to access multiple on-chip
memories. Moreover, the crosspoint switches and scheduler,

pivotal components in input-queued switches, are avoided
thereby substantially reducing chip count and power consump-
tion. Third, much of the signaling and control information that
typically spans multiple chips can be carried out on a single
chip. Finally, the switch management and monitoring functions
can be made centralized, since all information is available at
a single location.
This paper extends previous work by the authors [1] on

the design of large-scale PSM switches, from a single-chip
realization perspective. By introducing a column-based packet
placement framework, a more ef�cient high-speed memory
management algorithm is obtained, thereby reducing the mem-
ory requirement from O

�
N1:5

�
to O (N).

The rest of the paper is structured as follows. Section
II provides an overview of prior work pertaining to scaling
PSM switches. In section III, the proposed architecture is
described and analyzed. Section IV extends the basic scheme
by introducing speedup and load-balancing mechanisms, while
in section V the conclusions are drawn.

II. PRIOR WORK ON SCALING PSM SWITCHES
The foundations of the FoC approach are tightly cou-

pled with the PSM architecture proposed in [3]. The letter
utilizes a pool of slow-running memory units operating in
parallel to sidestep the high memory bandwidth requirements
of OQ switches, while retaining their desirable performance
attributes. Initial work has indicated that, assuming each of the
shared memory units can perform at most one packet-read or
-write operation during each time slot, the suf�cient number
of memories needed for a PSM switch to emulate a FCFS
OQ switch is K = 3N � 1 [3]. The latter can be proven by
using constraint sets analysis (also known as the "pigeon hole"
principle).
At the core of the PSM architecture is a memory man-

agement algorithm that determines, for each arriving packet,
the memory unit in which it will be placed. Attempting to
simplify this algorithm has been the focus of recent studies.
In [4],[5] Prakash, Sharif, and Aziz proposed the Switch-
Memory-Switch (SMS) architecture, which is a variation on
the PSM switch, as an abstraction of the M-series Internet
core routers from Juniper. The approach consists of statisti-
cally matching input ports to memories, based on an itera-
tive algorithm that statistically converges in O(logN) time.



Packet
Arrivals

Packet
Departure

Calculation of
Departure

Times .
.
.

.

.

.

.

.

.

.
.

.

1

2

3

k

.

.

.

.

.

.

Pipeline Structure
Shared Memory

Bank

.

.

.

PSM Switch

Fig. 1. General architecture of the row-based parallel shared memory (PSM)
switch. Arriving packets are placed in a set of (k > N) memory units.

However, in this scheme, each iteration comprises multiple
operations of selecting a single element from a binary vector.
Although the nodes operate concurrently from an implemen-
tation perspective, these algorithms are O(log2N) at best
(assuming O(logN) operations are needed for each binary
iteration as stated above). Since timing is a critical issue, the
computational complexity should directly re�ect the intricacy
of the digital circuitry involved, as opposed to the high-level
algorithmic perspective. A similar iterative approach has been
taken in [6], having the same drawbacks.
In prior work [1], the authors have proposed a row-based,

pipelined packet placement architecture for PSM switches,
depicted in Figure 1. A key attribute of this approach is
the reduction of computational complexity to O(1): However,
the subsequent cost associated with reducing the placement
complexity is an O

�
N1:5

�
memory requirement and a �xed

processing latency. The memory management algorithm uti-
lizes a row-based placement scheme, whereby a pipeline with
L rows has a single unique memory associated with each row.
The pipeline architecture consists of L(L+1)

2 cell buffering
units arranged in a triangular structure. Each row is associated
with one of the parallel shared memory units, such that L
parallel shared memories are required. It was proven that for
k2 = N , a suf�cient bound on the number of memories is
given by L(k) = 4k3 � 5k2 + k + 1; suggesting an O

�
N1:5

�
memory requirement.
A consequence of the high memory requirement is the

signi�cant amount of cell buffering resources required to
construct a pipeline with O

�
N1:5

�
rows. This is certainly

feasible for low port densities, but limits scalability. Moreover,
he complexity of the packet placement process also limits
system scalability. This paper aims to overcome the afore-
mentioned issues by taking a column-based approach to the
packet placement process.

III. COLUMN-BASED PACKET PLACEMENT ALGORITHM
A. Switch Architecture
This section provides a detailed description of the pro-

posed memory management algorithm for PSM switches. The
pipeline architecture, illustrated in Figure 2, consists ofM�N
cell buffering units arranged in a rectangular structure. Prior

Fig. 2. Packets are selected for placement into each column memory based
on their departure time.

to cell arrival at the pipeline structure, a departure time must
be determined. In the context of this paper, we will consider
a �rst-come-�rst-serve (FCFS) scheduler by which packets
are assigned departure times in accordance with their arrival
order. To provide delay and rate guarantees, more sophisticated
schedulers [7] can be incorporated which is re�ected by
the departure time assignments. Regardless of the scheduling
algorithm selected, the focus of this paper is on the memory
management algorithm that distributes the packet-placement
process, at a cost of �xed delay.
The pipeline architecture consists of M �N cell buffering

units arranged in a rectangular structure. Each column is
associated with a single parallel memory unit. Hence, the
architecture requires a total of M parallel memories. Cells
arrive at the leftmost column with the packet at input port
i initially inserted into row i. The underlying mechanism is
that cells are shifted to the right every time slot. A placement
unit in each column determines whether a cell located in its
column can be placed in the corresponding column memory.
A cell will be placed in the associated column memory if the
following conditions are met: (1) the memory associated with
the column in which it is currently located does not already
contain a packet with the same departure time; (2) the packet
is selected for placement over the potential N�1 other packets
with the same arrival time. As a cell progresses through each
subsequent stage, memory placement contentions are reduced.
In this scheme, once a cell is shifted to the last column of the
pipeline, it is guaranteed to be placed in a memory that does
not contain a packet with a matching departure time.

B. Basic Analysis of Resource Requirements

In the proposed architecture, rows can be viewed as simple
shift registers, whereby cells are shifted one stage to the right
at each time step. At each stage of the pipeline, a single
cell assignment is attempted per column. The motivation for
this approach is to reduce the complexity of the placement



Fig. 3. Example illustrating the proposed memory management algorithm for
a 3-port switch. The state of the pipeline structure is depicted for 3 consecutive
time slots.

algorithm by isolating memory assignments, thus minimizing
memory contention.
Theorem 1: A total of 2N�1 column memories is suf�cient

for an N -port switch utilizing the proposed packet placement
algorithm.

Proof: Consider an arriving cell, C1. It will �nd at most
N � 1 other packets with identical arrival time competing for
the same memory. Furthermore, at most N � 1 other packets
with the same departure time could have been placed in unique
memories prior to the arrival of C1: Thus, at least (N � 1) +
(N � 1) + 1 = 2N � 1 memories are required to guarantee
the placement of cell C1:
Each column maintains a mapping that de�nes memory

locations, corresponding to departure times, which have been
reserved by cells successfully placed in memory. This map-
ping, which is effectively a binary mask, shall be referred to
as the column's occupation vector. Each column additionally
maintains a mapping that speci�es pre-allocated (or reserved)
departure times of cells that have yet to be placed in a column
memory. This mapping is referred to as the column's vacancy
vector. The placement element in the pipeline performs a
bitwise xor operation over the occupation andvacancy vectors
to determine if there is a cell with a departure time available
for placement in the memory. If a cell is available and
selected, it will be extracted from the pipeline and placed
in the corresponding column memory. Cells not selected for
placement are subsequently forwarded to the next stage of the
pipeline.
Example 1: Consider the simple scenario depicted in 3. The

state of the pipeline for three consecutive time slots (i.e. t,t+1,

t + 2) is shown. At time t, three cells are inserted into the
�rst column of the pipeline with departure times f1; 2; 1g
respectively. Assuming that all memories are initially empty,
the placement engine will simply select the �rst cell in the
column for placement. Thus, the cell in row 1 with departure
time 1 is placed in the memory associated with column 1: The
remaining cells f2; 1g will shift right to column 2 at time t+2,
while new cells, with departure times f1; 3; 2g, are inserted
into the �rst column. The placement element at column 2 will
now select the cell with departure time 2, leaving the only
remaining cell, f1g, to shift to column 3. In column 1, a cell
with departure time 1 has already been placed in the memory
associated with column 1. Thus, the placement element in
column one must select the cell at row 2, with departure time
3, for placement. At time t+2; additional cells, with departure
times f2; 4; 3g are introduced into the pipeline at column 1.
As the cell with departure time 2 has yet to be selected, it
is next selected for placement. Additionally, columns 2 and 3
both select cells with departure time of 1.
It can be observed from this example, that the column-based

memory management algorithm clearly provides an effective
mechanism for resolution of memory contention.
Scalability is achieved as decisions are disassociated from

the number of ports in the system. Increased port densities
does not directly infer an increase in the decision time.
Placement decisions are determined only by the number of
departure times offered by the switch fabric in the form of the
occupation and vacancy vectors. In the context of FoC, these
mapping vectors are bound only by the depth of an individual
column memory.
In all practical switching systems, once a buffer approaches

(or is close to approaching) its limit, �ow-control signaling
should be provided to the traf�c sources, indicating the need
to either slow down or temporarily stop the �ow of packets to
a particular destination. Such a mechanism is always required
since instantaneous data congestion may occur at any router
or switch. In fact, even if the traf�c is said to be statistically
admissible, implying that no input or output is oversubscribed,
it may still be the case that for short periods of time a
given output port is oversubscribed. To address such scenarios,
and in an effort to reduce the probability of packet loss, the
linecards typically host large memory spaces.

IV. ENHANCING THE ARCHITECTURE

A. Load Balancing Memory Usage

To this point, we have assumed that packets are inserted into
the memory management pipeline at the leftmost column and
are shifted right at each time slot. The placement elements for
each column select a single cell for storage in the associated
column memory. As cells progress in the pipeline, their
placements tends to be concentrated in the leftmost columns.
This is intuitive considering the observation that for every cell
in a given pipeline column, there must be a corresponding
cell in that column's memory with a matching departure time.
After N � 1 successive occurrences where no packets are



0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

M
ea

n 
Q

ue
ue

 S
iz

e

Queue Index

Fig. 4. Queue size distribution for a PSM system without load balancing.

placed, at least one packet is guaranteed to be placed in the
successive N columns.
In Figure 4, a 64-port switch with 127 memories is simu-

lated with a normalized traf�c load of one. Arrivals are uni-
formly distributed across the destinations and obey a Bernoulli
i.i.d. process. The goal of this exercise was to depict the queue
distribution under heavy traf�c load conditions. As evident
from the queue distribution presented, cell placements are
denser in the �rst N columns.
In order to evenly distribute the cells across the memories,

a desirable goal from an implementation perspective, the
elements at which cells are inserted into the pipeline must vary
for each port. To accomplish this goal, a rotation technique is
employed, whereby cells arriving at port i are inserted into the
column that precedes the insertion point used in the previous
time slot. For example, if at time t a cell was inserted into
column l, then all cells inserted at time t+ 1 must be placed
in column l�1. I If a cell is inserted into the rightmost column
and has yet to be placed in memory, it is shifted to the leftmost
column, representing a circular shift, to avoid cell loss. As
cells advance in a clockwise manner and insertion points occur
counter-clockwise, then we must ensure that a cell will not
meet an insertion point within 2N � 1 time slots to avoid cell
loss.
Theorem 2: Uniform distribution of cells across the mem-

ories can be achieved with 4N � 2 memory units.
Proof: For a cell C1 inserted at column L1, there must

be 2N � 1 columns prior to the insertion of another cell.
Thus, an additional 2N � 1 columns are required to rotate
the insertion points to ensure uniform distribution across the
memories. Aggregating the two terms, we conclude 4N � 2
memories are suf�cient to achieve a balanced cell distribution.

In Figure 5, a 32-port switch with 126 memories is sim-
ulated assuming maximal load. It is observed that a rather
uniform memory occupancy distribution results, with fewer

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

M
ea

n 
Q

ue
ue

 S
iz

e

Queue Index

Fig. 5. Queue size distribution with load balancing.

cells stored in each memory.

B. Computation and Memory Speedup
To achieve additional reduction in the number of required

memories, we must reduce memory contention in the packet
placement process. One source of contention is a blocked
placement that occurs as a result of offering only one memory
location per departure time for each memory. We can allevi-
ate this constraint by provisioning multiple cell placements,
allowing a memory to host 1 < m � N cells with identical
departure times. As a result, a given cell, with departure time
d; will be considered blocked by a memory if the latter already
contains m cells with departure time d.
Theorem 3: It is guaranteed that 2N �m�1 memories are

suf�cient for an N�port switch, where each memory can hold
m cells with the same departure time.

Proof: Consider the arrival of cell C1 to the �rst column
of the switch. It will �nd at most N�1 other packets with the
same arrival time competing for the same memory. Moreover,
there are at most N � m � 1 other packets with the same
departure time that may have been placed in a unique memory
prior to the arrival of C1: Therefore, a total 2N � m � 1
memories are required to ensure placement of C1:
It should be noted that the timing for establishing a mem-

ory's availability by a placement element is unaffected by the
inclusion of multiple cell placements. The primary trade-off
resides in the increased density of each memory unit and the
requirement that packets must be read from memory at a rate
m prior to being forwarded to the appropriate egress ports.
Having made this observation, we introduce a placement (or
computation) speedup of s, which assumes that the pipeline
operates at a rate s times faster than the line rate. One
advantage of operating the pipeline at an increase rate is
reduced latency. Moreover, cells from a set of N inputs can be
presented to the switch fabric in groups consisting of Ns cells.
This further provides a reduction in the number of con�icts



TABLE I
NUMBER OF MEMORIES IN THE PROPOSED PSM SWITCH

Switch
Ports (N)

Speedup (s) Placements (m) Memory
Units

16 1 1 31
16 2 2 21
16 4 4 15
32 1 1 63
32 2 2 45
32 4 4 37
64 1 1 127
64 2 2 93
64 4 4 75

associated with packets possessing the same arrival time form
N to N

s .
Theorem 4: A total of

�
s+1
s

�
N � 1 memories is suf�cient

for an N -port switch with a placement speedup of s.
Proof: For a placement speedup of s, an arriving cell,

C1, will �nd at most Ns �1 other packets with the same arrival
time competing for the same memory. Furthermore, at most
N � 1 other packets with the same departure time may have
been placed in unique memories prior to the arrival of C1:
Therefore, at total of

�
s+1
s

�
N � 1 memories are required to

ensure placement of cell C1:
Given that columns are interlocked with memories, the

incorporation of placement speedup infers a memory write
speedup equal to s. Recall that multiple cell placement does
not infer an increase in memory write speed and the pipeline
can operate at the line rate. Thus, we can utilize both multiple
cell placements and placement speedup concurrently to gain
an even greater reduction in memory requirements. In view of
the above assertions, it should be evident that the suf�cient
number of memories in this case would be

�
s+1
s

�
N �m� 1.

Table I outlines the number of memories needed for various
port densities, and m and s values.

C. Hardware Implementation Considerations
It becomes evident that the critical path in the design is

the placement decision that must be made by the placement
elements in each column. Each must determine whether a cell,
residing in column ci (i 2 [1; 2; :::M ]), can be placed in the
associated column memory. At each column in the pipeline,
cells that have yet to be placed are inspected, by their departure
time, to locate potential candidates for placement. If a cell
is determined viable, (i.e. the corresponding column memory
does not contain a cell with a the same departure time), and is
selected for placement, it will be extracted from the pipeline
and written to the memory. Otherwise, the cell will advance
to the next column.
To determine the feasibility of placing a cell in a column

memory, each memory maintains a binary occupation vector,of
length k; denoting the depth of the memory, to indicate
departure times that are currently reserved. To determine
which cells in a given column are available for placement, a
requests vector is created as cells are inserted into the pipeline.
This vector, also of length k, provides a bitmap corresponding

to the departure time for each of the cells located in a column.
By performing a bitwise xor operation of the two vectors, the
set of viable cells (referred to as the candidates vector) is
obtained. A priority encoder can then be used to select a cell
for placement into the corresponding column memory. The
result of this decision process is that ci is either written to
the memory associated with the column in which it resides or
shifted to the next stage of the pipeline.
Given that the xor operation can be achieved at high speed,

it becomes apparent that the priority encoder is the predomi-
nately time-consuming function. The complexity of a priority
encoder is generally acknowledged to be O(logN), where N
denotes the number of elements at its input. It is noted that
this complexity pertains to 2 -bit-level operations (rather than
more complex arithmetic abstraction), clearly suggesting that
the method is very ef�cient from a computational standpoint.

V. CONCLUSIONS
This paper introduced and analyzed an architecture for

designing scalable parallel shared memory switches. In
the context of emulating an output-queued switch, it has
been argued that a fundamental challenge pertains to the
memory-management algorithm employed by PSM switches.
A column-based packet placement algorithm and related high-
speed parallel architecture were described in detail, empha-
sizing the feasibility attributes of the proposed approach. The
switch model and framework presented here can be broadened
to further investigate the concept of consolidating multiple
switch fabric functions on silicon.

VI. ACKNOWLEDGEMENTS
This work has been partially supported by the Department

of Energy (DOE) under research grant DE-FG02-04ER25607,
and by Altera, Inc.

REFERENCES
[1] B. Matthews, I. Elhanany, and V. Tabatabaee, �Fabric on a chip: Towards

consolidating packet switching functions on silicon,� in Proc. IEEE
International Conference on Communications (ICC), June 2006.

[2] Y. Tamir and G. Frazier, �Higher performance multiqueue buffers for
vlsi communication switches,� in 15th Annual Symposium on Computer
Architecture, pp. 343�354, 1988.

[3] S. Iyer, R. Zhang, and N. McKeown, �Routers with a single stage of
buffering,� 2002.

[4] A. Aziz, A. Prakash, and V. Ramachandra, �A near optimal scheduler for
switch-memory-switch routers,� in Proceedings of the Fifteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 343�352,
July 2003.

[5] A. Prakash, A. Aziz, and V. Ramachandra, �Randomized parallel sched-
ulers for switch-memory-switch routers: Analysis and numerical studies,�
IEEE INFOCOM 2004, 2004.

[6] Y. Xu, B. Wu, W. Li, and B. Liu, �A scalable scheduling algorithm to
avoid con�icts in switch-memory-switch routers,� in Computer Commu-
nications and Networks, 2005. ICCCN 2005. Proceedings. 14th Interna-
tional Conference on, pp. 57�64, Oct. 2005.

[7] M. Shreedhar and G. Varghese, �Ef�cient fair queueing using de�cit
round robin,� Proc. of ACM SIGCOMM '95, pp. 231�242, September
1995.


