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Abstract

Scalability properties of deep neural networks raise kegaech questions, par-
ticularly as the problems considered become larger and oiakenging. This
paper expands on the idea of conditional computation inired in [2], where
the nodes of a deep network are augmented by a set of gatitgytbat deter-
mine when a node should be calculated. By factorizing thetainatrix into
a low-rank approximation, an estimation of the sign of the-ponlinearity ac-
tivation can be efficiently obtained. For networks usingtifisd-linear hidden
units, this implies that the computation of a hidden unitmanh estimated nega-
tive pre-nonlinearity can be omitted altogether, as itsgalill become zero when
nonlinearity is applied. For sparse neural networks, thisresult in considerable
speed gains. Experimental results using the MNIST and SVifd dets with
a fully-connected deep neural network demonstrate theopaeince robustness
of the proposed scheme with respect to the error introdugetthdn conditional
computation process.

1 Introduction

In recent years, deep neural networks have redefined dtélbe-@art in many application domains,
notably in computer visiori [11] and speech processing [I@brder to scale to more challenging
problems, however, neural networks must become largechnihiplies an increase in computa-
tional resources. Shifting computation to highly parafigltforms such as GPUs has enabled the
training of massive neural networks that would otherwisénttoo slowly on conventional CPUs.
While the extremely high computational power used for thgeexnent performed ir [12] (16,000
cores training for many days) was greatly reducedlin [4] (8exs training for many days), special-
ized high-performance platforms still require several hiaes and several days of processing time.
However, there may exist more fundamental changes to tlogitgdms involved which can greatly
assist in scaling neural networks.

Many of these state-of-the-art networks have several campnaperties: the use of rectified-linear
activation functions in the hidden neurons, and a high le¥sbparsity induced by dropout regular-
ization or a sparsity-inducing penalty term on the loss fiamc Given that many of the activations
are effectively zero, due to the combination of sparsity @rechard thresholding of rectified linear
units, a large amount of computation is wasted on calcigatiiues that are eventually truncated to
zero and provide no contribution to the network outputs cosrexomponents. Here we focus on this
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Figure 1: An illustration of an activation estimatdf.andV represent the factorization of the low-
rank matrix and? denotes the full-rank matrix. In this case, the activatistineator recommends
that only the2™? and then*” neuron be computed for laye#- 1.

key observation in devising a scheme that can predict thewaued activations in a computation-
ally cost-efficient manner.

2 Conditional Computation in Deep Neural Networks

2.1 Exploiting Redundancy in Deep Architectures

In [5], the authors made the observation that deep modetsttenave a high degree of redundancy
in their weight parameterization. The authors exploit teidundancy in order to train as few as
5% of the weights in a neural network while estimating theeot®5% with the use of carefully
constructed low-rank decompositions of the weight masticBuch a reduction in the number of
active training parameters can render optimization edsieneducing the number of variables to
optimize over. Moreover, it can help address the problemcafability by greatly reducing the
communication overhead in a distributed system.

Assuming there is a considerable amount of redundancy invdight parameterization, a similar

level of redundancy is likely found in the activation patigrof individual neurons. Therefore,

given an input sample, the set of redundant activationsemtitwork may be approximated. If a

sufficiently accurate approximation can be obtained usimgdomputational resources, activations
for a subset of neurons in the network’s hidden layers neetenoalculated.

In [2] and [3], the authors propose the idea of conditionahpatation in neural networks, where the
network is augmented by a gating model that turns activationor off depending on the state of the
network. If this gating model is able to reliably estimateievhneurons need to be calculated for a
particular input, great improvements in computationatedficy may be obtainable if the network is
sufficiently sparse. Figufeé 1 illustrates a conditional poiation unit augmenting a layer of a neural
net by using some functiofi(U, V, ¢;) to determine which hidden unit activations,.; should be
computed given the activations of layer!.

2.2 Sparse Representations, Activation Functions, and Prediction

In some situations, sparse representations may be supedense representations, particularly in
the context of deep architecturés [7]. However, sparseesgmtations learned by neural networks
with sigmoidal activations are not truly “sparse”, as aafiions only approach zero in the limit to-
wards negative infinity. A conditional computation moddiireating the sparsity of a sigmoidal
network would thus have to impose some threshold, beyondhttie neuron is considered in-
active. So-called “hard-threshold” activation functiswech as rectified-linear units, on the other
hand, produce true zeros which can be used by conditiongbetation models without imposing
additional hyperparameters.
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Figure 2: The low-rank approximatidiiV’ can be substituted in fdi/, and can approximate the
matrix W with a relatively low rank. However, if we use the output of hctivation estimata$, as
defined in Eq.[(b), with the full-rank feedforward(a¥) - S, a lower-rank approximation can be
utilized. The activations and weights are from the first fayfea neural network trained on MNIST,
and the factorizatio®V is obtained via SVD.

3 Problem Formulation

3.1 Estimating Activation Sign via L ow-Rank Approximation

Given the activatiom; of layer! of a neural network, the activatian, ; of layerl + 1 is given by:

aj4+1 = a(alWl) (1)

whereo(-) denotes the function defining the neuron’s non-lineadtys R™*", q;,, € R**hz2,
W, € Rhxhz |f the weight matrix is highly redundant, as id [5], it canwell-approximated using
a low-rank representation and we may rewifife (1) as

arr1 = o(aUiV)) 2

wherel;V; is the low-rank approximation d;, U; € R >k V; € R¥*h2 | < min(hy, ho). SO
long ask < h’ifgz, the low-rank multiplicatiorw; U; V; requires fewer arithmetic operations than
the full-rank multiplicationa;W;, assuming the multiplication,U; occurs first. Whemw (-) is the

rectified-linear function,

o(z) = max(0, ) 3)

such that all negative elements of the linear transfesi#; become zero, one only needs to estimate
the sign of the elements of the linear transform in order taljot the zero-valued elements. Assum-
ing the weights in a deep neural network can be well-apprateshusing a low-rank estimation, the
small error in the low-rank estimation is of marginal releva in the context of recovering the sign
of the operation.

Given a low-rank approximatioW; ~ U;V, = W, the estimated sign af;1 1 is given by
sgn(ait1) ~ sgn(aWr) 4)

Each elemen(talﬂ)m is given by a dot product between the row ve@tﬁ? and the column vector

W1 sgn(aW?) = —1, then the true activatiotu;,1), ; is likely negative, and wil likely
become zero after the rectified-linear function is appli€hnsiderable speed gains are possible
if we skip those dot products based on the prediction; suaisgae especially substantial when
the network is very sparse. The overall activation for a bidthyer! augmented by the activation



estimator is given by (a;W;)-.S;, where- denotes the element-wise product aéhdienotes a matrix
of zeros and ones, where

0, sgn (alUlV})m- =-1

Sl Goi=
( )"77 1, sgn (alUlVl)m =41

®)

Figure2 illustrates the error profile of a neural networkngsthe low-rank estimatiofy' V' in place
of W compared with a neural network augmented with an activatign estimator as the rank is
varied from one to full-rank. One can see that the error ofittézation sign estimator diminishes
far more quickly than the error of the low-rank activatiomplying that the sign estimator can do
well with a relatively low-rank approximation 6f.

3.2 SVD asalow-Rank Approximation

The Singular Value Decomposition (SVD) is a common matrieaeposition technique that factor-
izes amatrixd € R™*"into A = UXVT,U € R™*™ ¥ ¢ R™X", V € R"*", By [6], the matrix
A can be approximated using a low rank matdix corresponding to the solution of the constrained
optimization of

min A — Ar[|p (6)

T

where| - || is the Frobenius norm, and, is constrained to be of rank < rank(A). The
minimizer A,. is given by taking the first columns ofU, the firstr diagonal entries oE, and the
firstr columns ofl/. The resulting matriceg,., 3., andV,. are multiplied, yieldingd,. = U,‘ETVTT.

The low-rank approximatiofi’ = UV is then defined such that’ = U, (2, V.T), whereU = U,
andV =%, VT,

Unfortunately, calculating the SVD is an expensive opergton the order of)(mn?), so recal-
culating the SVD upon the completion of every minibatch asigsificant overhead to the training
procedure. Given that we are uniquely interested in esiimpét the sign ofa;.1 = a;1W;, we can
opt to calculate the SVD less frequently than once per mioilhassuming that the weighits; do
not change significantly over the course of a single epocls $0 eorrupt the sign estimation.

3.3 Encouraging Neural Network Sparsity

To overcome the additional overhead imposed by the comditicomputation architecture, the neu-
ral network must have sparse activations. Without encamemt to settle on weights that result in
sparse activations, such as penalties on the loss funetinaural network will not necessarily be-
come sparse enough to be useful in the context of condit@mmputation. Therefore, ah penalty
for the activation vector of each layer is applied to the alléoss function, such that

L
JW,A) = LW) + A flaulls (@)
=1

Such a penalty is commonly used in sparse dictionary legiadgorithms and tends to push elements
of a; towards zero [13].

Dropout regularizatiori |9] is another technique known tarsgy the hidden activations in a neural
network. Dropout first sets the hidden activatianso zero with probabilityp. During training, the
number of active neurons is likely less thafor each minibatch. When the regularized network is
running in the inference mode, dropout has been observea/®adsparsifying effect on the hidden
activations[[17]. The adaptive dropout methiod [1] can ferthecrease the number of active neurons
without degrading the performance of the network.

3.4 Theoretical Speed Gain

For every input example, a standard neural network compute$?’), wherea € RV*? and
W € R¥" whereN = 1 for a fully-connected network, oN is the number of convolutions
for a convolutional network. Assuming additions and muitgtions are constant-time operations,



the matrix multiplication require®’ (2d — 1) h floating point operations (we need to compiié
dot products, where each dot product consistd afultiplications and! — 1 additions), and the
activation function required’h floating point operations, yieldingy (2d — 1) h + Nk operations.
The activation estimatar (aUV), U € R4k vV € RF*h requiresN (2d — 1)k + N (2k —1)h
floating point operations for the low-rank multiplicatioollbwed by N operations for thegn (-)
activation function, yieldingV (2d — 1) k + N (2k — 1) h + Nh. However, given a sparsity coef-
ficienta € [0, 1] (wherea = 0 implies no activations are active, and= 1 implies all activations
are active), a conditional matrix multiplication would e aN (2d — 1) h + aNh operations.
The SVD calculation to obtain the activation estimationgi#s$ isgO (nd min (n, d)), wheres is
the ratio of feed-forwards to SVD updates (eg., with a mitghaize of 250, a training set size of

50,000, and once-per-epoch SVD updates; =220 = 0.005).

Altogether, the number of floating point operations for oédting the feed-forward in a layer in a
standard neural network is

Foun =N (2d—1)h+ Nh 8)

and the number of floating point operations for the activa@istimation network with conditional
computation is

Foe=N2d—1)k+N2k—-1)h+Nh+ah(N (2d—1)h+ Nh)+ SO (ndmin (n,d)) (9)
The relative reduction of floating point operations for aglagan be represented %ﬂ and is
simplified as

2dh
k(2d+ 2h — 1) 4+ 2adh + SO (nd min (n, d))

(10)

For a neural network with many layers, the relative speedgiven by

=1 (11)

whereF!) is the number of floating point operations for #elayer of the full network, and'!) is
the number of floating point operations for th& layer of the network augmented by the activation
estimation network. The overall speedup is greatly depetatethe sparsity of the network and the
overhead of the activation estimator.

3.5 Implementation Details

The neural network is built using Rasmus Berg Palm’s Deeprlieg Toolbox [16]. All hidden
units are rectified-linear, and the output units are softtreired with a negative log-likelihood loss
function. The weightsw, are initialized agv ~ N(O,UQ) and biase9 are set to 1 in order to
encourage the neurons to operate in their non-saturatexhregce training begins, as suggested in
[11]. In all experiments, the dropout probabiljiys fixed to 0.5 for the hidden layers.

The learning ratey is scheduled such that, = v,A\" where~,, is the learning rate for the'"
epoch,vy is the initial learning rate, and is a decay term slightly less than 1, eg., 0.995. The
momentum ternv is scheduled such that, = max (Vpqz, vo8") Wherer,, is the momentum for
then!” epoch v,,.. is the maximum allowed momentumy, is the initial momentum, and is an
incremental term slightly greater than 1, eg., 1.05.

To simplify prototyping, the feed-forward is calculated folayer, and the activation estimator is
immediately applied before the next layer activations aedu This is equivalent to bypassing the
calculations for activations that are likely to produceazedn practice, re-calculating the SVD once
per epoch for the activation estimator seems to be a de@alddff between activation estimation
accuracy and computational efficiency, but this may not seaély be true for other datasets.



SVHN MNIST
Architecture 1024-1500-700-400-200-1/0 784-1000-600-400-10
Weight Init w~N(0,000);0=1 | w~N{(0,0.05);b=1
Init Learning Rate 0.15 0.25
Learning Rate Scaling 0.99 0.99
Maximum Momentun] 0.8 0.8
Momentum Increment 1.01 1.05
Maximum Norm 25 25
¢ Activation Penalty 0 1x107°
Z,Weight Penalty - 5x 1077

Table 1: Hyperparameters for SVHN and MNIST experiments.
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Figure 3: Classification error of the validation set for SVBNseven configurations of the activation
estimator for each hidden layer. The 'control’ network hasastivation estimator and is used as a
baseline of comparison for the other networks.

4 Experimental Results

41 SVHN

Street View House Numbers (SVHN) [15] is a large image dat@setaining over 600,000 labeled
examples of digits taken from street signs. Each exampla R@B 32 x 32 (3072-dimensional)
image. To pre-process the dataset, each image is transfontoethe YUV colorspace. Next, local
contrast normalization [10] followed by a histogram eczatiion is applied to the Y channel. The
U and V channels are discarded, resulting in a 1024-dimaabi@ctor per example. The dataset
is then normalized for the neural network by subtractingtbatmean and dividing by the square
root of the variance for each variable. To select the hygarpaters, the training data was split
into 590,000 samples for the training set and 14,388 sanfip¢lse validation set. The architecture
was held fixed while the other hyperparameters were choselonaly over 30 runs using a network
with no activation estimation. The hyperparameters of thral network with the lowest resulting
validation error were then used for all experiments.

To evaluate the sensitivity of the activation estimatovesal parameterizations for the activation
estimator are evaluated. Each network is trained with tipetparameters in Tallé 1, and the results
of seven parameterizations are shown in Fidiire 3. Each maesization is described by the rank
of each approximation, eg., ‘75-50-40-30’ describes a ndtwvith an activation estimator using a
75-rank approximation foi/;, a 50-rank approximation fdi’y, a 40-rank approximation fdi/s,
and a 30-rank approximation fd¥,. Note that a low-rank approximation is not necessaryiir
(the weights connecting the last hidden layer to the outper), as we do not want to approximate
the activations for the output layer.

Some runs, specifically 25-25-25-25 and 50-35-25-25 in fei@exhibit an initial decrease in clas-
sification error, followed by a gradual increase in clasatfan error as training progresses. In the
initial epochs, the hidden layer activations are mostlyitp@sbecause the weights are relatively
small and the biases are very large. As a consequence, thatiact estimation is a much simpler



Error of Estimator, 200-100-75-50 Error of Estimator, 25-25-25-25

é

e ——————

100 200 300 400
Epoch

W, w,

Figure 4: A comparison of a low-rank activation estimatad arhigher-rank activation estimator. In
this instance, a 25-25-25-25 activation estimator is tars®to adequately capture the structure of
the weight matrices.

Networ k Error

Control 9.31%

200-100-75-159 9.67%

100-75-50-25] 9.96%
100-75-50-15| 10.01%
75-50-40-30 | 10.72%
50-40-40-35 | 12.16%
25-25-15-15 | 19.40%

Table 2: SVHN test set error for seven networks.

task for the initial epochs. However, as the pattern of thvation signs diversifies as the network
continues to train, the lower-rank approximations begifatip as illustrated in Figurgl4.

Table[2 summarizes the test set error for the control andaicth estimation networks$¥; appears

to be most sensitive, quickly reducing the test set erranfi®.72% to 12.16% when the rank of
W is lowered from 75 to 50. The rank ®F, appears to be the least sensitive, reducing the test set
error from 9.96% to 10.01% as the rank is lowered from 25 to 15.

4.2 MNIST

MNIST is a well-known dataset of hand-written digits contag 70,0028 x 28 labeled images,
and is generally split into 60,000 training and 10,000 mesxamples. Very little pre-processing is
required to achieve good results - each feature is trangfb gz, = \/2_ — 0.5, wherez is the

input featureg2, .. is the maximum variance of all features, and 0.5 is a conséant to roughly
center each feature. To select the hyperparameters, thangraata was split into 50,000 samples
for the training set and 10,000 samples for the validatienBee architecture was held fixed while
the other hyperparameters were chosen randomly over 3Qugimg a network with no activation
estimation. The hyperparameters of the neural network thighlowest resulting validation error
were then used for all experiments. Several parametasimafor the activation estimator are evalu-
ated for a neural network trained with the hyperparameitgtesd in Tabl€1L using the same approach
as the SVHN experiment above. The results for the valida&plotted against the epoch number
are shown in Figuriel5, and the final test set accuracy is regpartTabld B.

A neural network with a very low-rank weight matrix in the iaation estimation can train sur-
prisingly well on MNIST. Lowering the rank from 784-600-4@950-35-25 impacts performance
negligibly. Ranks as low as 25-25-25 does not lessen pediocmtoo greatly, and ranks as low as
10-10-5yield a classifier capable of 2.28% error.
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Figure 5: Classification error of the validation set for MNII&n five configurations of the activation
estimator for each hidden layer.

Network | Error
Control | 1.40%

50-35-25| 1.43%
25-25-25] 1.60%
15-10-5 | 1.85%
10-10-5 | 2.28%

Table 3: MNIST test set error for five networks.

5 Discussion and Further Work

Low-rank estimations of weight matrices of a neural netwobkained via once-per-epoch SVD
work very well as efficient estimators of the sign of the aatiion for the next hidden layer. In the
context of rectified-linear hidden units, computation tica@ be reduced greatly if this estimation is
reliable and the hidden activations are sufficiently spaf$es approach is applicable to any hard-
thresholding activation function, such as the functionggtigated in[B], and can be easily extended
to be used with convolutional neural networks.

While the activation estimation error does not tend to deviao greatly inbetween minibatches
over an epoch, as illustrated in Figlile 6, this is not guaethtAn online approach to the low-rank
approximation would therefore be preferable to a oncegpech calculation. In addition, while
the low-rank approximation given by SVD minimizes the olijeefunction||A — A, |z, this is
not necessarily the best objective function for an actiragstimator, where we seek to minimize
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Figure 6: Because the SVD is calculated at the beginningdi epoch, each subsequent gradient
update in each minibatch moves the weight matrix furthemftfow-rank factorization, resulting in
an increasing error until the SVD is recalculated at thefigigig of the next epoch. Different layers
are negatively impacted in differing degrees.



lo (aW) — o (aW - S)||, which is a much more difficult and non-convex objective fimt. Also,
setting the hyperparameters for the activation estimatobe a tedious process involving expensive
cross-validation when an adaptive algorithm could instdambse the rank based on the spectrum of
the singular values. Therefore, developing a more suitalblerank approximation algorithm could
provide a promising future direction of research.

In [1], the authors propose a method called “adaptive drdmuwhich the dropout probabilities
are chosen by a function optimized by gradient descentddsiéfixed to some value. This approach
bears some resemblance to this paper, but with the key eliféerthat the approach inl [1] is moti-
vated by improved regularization and this paper’s methedasvated by computational efficiency.
However, the authors introduce a biasing term that allowgfeater sparsity that could be intro-
duced into this paper’s methodology. By modifying the cdiodial computation unit to compute
sgn (aUV —b), whereb is some bias, we can introduce a parameter that can tunedtstgpf the
network, allowing for a more powerful trade-off betweenwaexcy and computational efficiency.
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