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Fig. 15. (a) Clustering test results. (b) The extracted parameters are plotted versus their true values. The gain error in g extraction is due to component mismatch;
and the deviation of exponent from 2 in ¢ extraction is due to body effect in the X* /Y circuit; both can be tolerated by the algorithm. (¢) Clustering results with

bad initial condition without and with the starvation trace enabled.

A. Input Referred Noise

We use a statistical approach to measure the input referred
noise of the non-linear ADE system. In the measurement,
memory adaptation is disabled and the node is configured into
a classifier, modeled as an ideal classifier with an input referred
current noise (Fig. 14(a)). With two centroids competing, the
circuit classifies the inputs to one centroid (class = 1) or the
other (class = 0). When the inputs are close to the decision
boundary and the classification is repeated for multiple times,
the noise causes uncertainty in the outcome. Assuming additive
Gaussian noise, it can be shown that the relative frequency of
the event class = 1 approaches the cumulative density function
(c.d.f.) of a normal distribution. The standard deviation oy
of this distribution is extracted using curve fitting, shown in
Fig. 14(b), and can be interpreted as the input-referred rms
noise. The measured input-referred current noise is 56.23 pA, ..
and with an input full scale of 10 nA, the system shows an SNR
of 45 dB, or 7.5 bit resolution.

B. Clustering Test

The performance of the node is demonstrated with clustering
tests. 40,000 8-D vectors are generated as the input dataset, con-
sisting of four underlying clusters, each drawn from a Gaussian
distribution with different mean and variance. The centroids are
first initialized to separated means and a same variance (the ini-
tial condition is not critical since the circuit adaptively adjusts
to the inputs). During the test, the centroid means are read out
every 0.5 sec, plotted on top of the data scatter in Fig. 15(a),
and shown together is the learned variance values at the end
of test. For easier visual interpretation, 2-D results are shown.
The extracted cluster means and variances from several tests
are compared to the true values and show good agreement in
Fig. 15(b). The performance of the starvation trace is verified
by presenting the node with an ill-posed clustering problem. It
can be seen that one of the centroids is initialized too far away
from the input data, therefore never gets updated without the ST

enabled. However, with the starvation trace enabled, the starved
centroid is slowly pulled toward the area populated by the data,
achieving a correct clustering result, shown in Fig. 15(c).

C. Feature Extraction Test

We demonstrate the full functionality of the chip by doing fea-
ture extraction for pattern recognition with the setup shown in
Fig. 16(a). The input patterns are 16 x 16 symbol bitmaps cor-
rupted by random pixel errors. An 8 X 4 moving window defines
the pixels applied to the ADE’s 32-D input. First the ADE is
trained unsupervised with examples of patterns at 4.5 kHz. The
training converges after about 30k samples (7 sec), as shown in
Fig. 16(b). After the training converges, adaptation can be dis-
abled and the circuit operates in recognition mode at 8.3 kHz.
The 4 belief states from the top layer (shown in Fig. 16(c))
are used as rich features, achieving a dimension reduction from
32 to 4. A software neural network then classifies the reduced-
dimension patterns. Three chips were tested and average recog-
nition accuracies of 100% with pixel corruption level lower
than 10%, and 94% with 20% corruption are obtained, which
is comparable to the floating-point software baseline, as shown
in Fig. 16(d), demonstrating robustness to the non-idealities of
analog computation.

D. Performance Summary and Comparison

The measured performance of the ADE is summarized in
Table 1. It achieves an energy efficiency of 480 GOPS/W in
training mode and 1.04 TOPS/W in recognition mode. The per-
formance and energy breakdown in the training mode are shown
in Fig. 17. Table II compares this work with state-of-the-art bio-
inspired parallel processors utilizing analog computation. It can
be seen that this work achieves very high energy efficiency in
both modes. Although it operates relatively slow, the ultra-low
power consumption, together with the advantages of nonvolatile
memory and unsupervised online trainability make it ideal for
autonomous sensory applications. Because this work is the first
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Fig. 16. (a) Feature extraction test setup. (b) The convergence of centroid during training. (c) Output rich feature from the top layer, showing the effectiveness of
normalization. (d) Measured classification accuracy using the feature extracted by the chip. The plot on the right shows the mean accuracy and 95% confidence
interval (27) from the three chips tested, compared to the software baseline.

TABLE I
PERFORMANCE SUMMARY
Techonology IPSM 0.13um CMOS
Power Supply 3V
Active Area 0.9mmx0.4mm
Memory Non-Volatile Floating Gate
Memory SNR 46dB
Training Algorithm | Unsupervised Online Clustering
Input Referred Noise 56.23pAms
System SNR 45dB
1/0 Type Analog Current
. Training Mode 4.5kHz
Operating Frequency —
Recognition Mode 8.3kHz
Power Consumption Tram",‘g Mode 27w
Recognition Mode 11.4uW
- Training Mode | 480GOPS/W
Energy Efficiency —
Recognition Mode | 1.04TOPS/W

reported analog DML system to the best of the authors’ knowl-
edge, the foregoing comparison is based only on elementary op-
erations. To better assess the advantage of this design, a digital
equivalent of the ADE was implemented in the same process
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Fig. 17. Performance and energy breakdown in training mode.

using standard cells with 8-bit resolution and 12-bit memory
width. According to post-layout power estimation, this digital
equivalent running at 2 MHz in training mode consumes 3.46 W,
yielding an energy efficiency of 1.66 GOPS/W, compared to
which this work’s energy efficiency is 288 times higher.

V. CONCLUSIONS

In this work, we develop an analog deep machine-learning
system, the first reported in the literature to the best of the au-
thors’ knowledge. It overcomes the limitations of conventional
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TABLE II
COMPARISON TO PRIOR WORKS

This work JSSC'13 [9] ISSCC'13 [10] JSSC'10 [11]
Process 0.13pm 0.13pum 0.13um 0.13um
Purpose DML Feature Extraction [ Neural-Fuzzy Processor | Object Recognition | Object Recognition
Non-volatile Memory Floating Gate NA NA NA
Power (W) 11.4pW 57TmW 260mW 496mW
Peak Energy Efficiency 1.04TOPS/W 655GOPS/W 646GOPS/W 290GOPS/W

digital implementations by exploiting the efficiency of analog
signal processing. Reconfigurable current-mode arithmetic
realizes parallel computation. A floating-gate analog memory
compatible with digital CMOS provides non-volatile storage.
Algorithm-level feedback mitigates the effects of device mis-
match. System-level power management applies power gating
to inactive circuits. We demonstrate online cluster analysis
with accurate parameter learning, and feature extraction in
pattern recognition with dimension reduction by a factor of 8.
In these tests, the ADE achieves a peak energy efficiency of
1 TOPS/W and accuracy in line with the floating-point software
simulation. The system features unsupervised online train-
ability, nonvolatile memory and good efficiency and scalability,
making it a general-purpose feature extraction engine ideal for
autonomous sensory applications as well as a building block
for large-scale learning systems.
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