A High-Speed Reconfigurable Architecture for
Heterogeneous Multimodal Packet Traffic

(Generation
Brad Matthews, Student Member, IEEE, Itamar Elhanany, Senior Member, IEEE*

Abstract— Traffic modeling plays a key role in the study of
packet switching systems, such as Internet routers. As line
rates increase towards tens of gigabits per second, the du-
ration of individual packets decreases, rendering real-time
traffic generation a fundamental engineering challenge. In
evaluation of these systems, it is critical to reproduce traffic
conditions that approximate the target environment. Ad-
ditionally, the ability to generate traffic flows that establish
the limitations of a given algorithm or architecture is highly
desirable. To address these issues, we propose a reconfig-
urable high-speed hardware architecture for heterogeneous
multimodal packet generation. FPGA results demonstrate
the scalability and flexibility of the proposed framework.

Keywords— Traffic Engineering, High-Speed Digital Archi-
tectures, Packet Switching

I. INTRODUCTION

Packet switching architectures are represented in many
different forms with a primary characteristic being the
location of the internal buffering used to store pack-
ets. The many variants included input-queued (IQ)[1]
switches, output-queued (OQ), combined input-output
queued (CIOQ)[2] and shared memory solutions [3] to name
a few. Evaluation of these architectures focuses on obtain-
ing performance metrics, such as latency, accepted-versus-
offered bandwidth, and jitter [4], under diverse traffic sce-
narios. In addition to obtaining performance metrics, de-
termining architectural limitations is also highly desirable.
Simulation to locate such limitations requires the ability to
both vary the load offered to the fabric as well as produce
heterogeneous and highly aggregated traffic to replicate the
thousands of simultaneous connections found in a typical
Internet link [5].

Processing requirements to generate such traffic flows
eliminate the use of software-based simulation. A
hardware-based approach to ATM traffic generation [6] has
been proposed, however our desire is to allow per-flow con-
figurability for traffic aggregation. For this reason, we
present an efficient method for the real-time generation
of highly aggregated packet traffic in hardware, predom-
inantly for the purpose of evaluating packet switching ar-
chitectures.

Real-time traffic generation in hardware dictates that the
rate at which packets are being presented at each input
(ingress) port interface be identical to the maximum line

*The authors are with the Electrical and Computer Engineer-
ing Department at the University of Tennessee (e-mails: brad-
matthewsQ@ieee.org, itamar@ieee.org). This work has been partially
supported by the Department of Energy research contract DE-FG02-
04ER25607.

rate supported by the target switch fabric. As line rates
have increased towards tens of gigabits per second [7], the
duration of individual packet times has decreased, further
reducing the available time to generate a packet. Concur-
rently, the number of ports and flows supported has in-
creased as well, adding considerable complexity to the gen-
eration process. The combination of these obstacles ren-
ders real-time traffic generation a considerable engineering
challenge.

II. TRAFFIC MODEL ELEMENTS

Typical packet switching platforms comprise of N ports,
each potentially carrying k flows. Letting a flow be tightly
coupled with a source-destination pair, we can define flow
aggregation to be the dynamic mixing of packets originat-
ing from different sources. In this paper, we consider an
architecture whereby packets in flows are generated accord-
ing to either a Bernoulli or two-state Markov-modulated
arrival process.

The Bernoulli arrival process produces an uncorrelated
stream of packets, with p denoting the probability of gener-
ating a packet for any given. Moreover, p represents the of-
fered load, for a Bernoulli arrival process, produced by any
given flow. In order to support flow aggregation, packets
are selected from one of k flows, with a per-flow probability
of %

While Bernoulli arrivals are independent, the two-state
Markov modulated arrival process generates a stream of
correlated bursts that are geometrically distributed in
length. For the two-state Markov modulated model pre-
sented in Figure 1, arrivals occur when the process is in
the ON state, while no packets are generated while the
process is in the OFF state. The load offered by the two-
state Markov modulated process is given by

1—¢q

eyt 1)
where p and ¢ denote the probability of remaining in the
ON and OFF states, respectively. Each packet in an in-
terleaved burst is associated with a single flow and, conse-
quently, contains identical source-destination pairs. Bursts
are again selected from one of k flows. However, a new flow
is only selected once the previous burst terminates.

For systems implementing first-come-first-serve (FCFS)-
based scheduling, we also present an efficient method for
computing the packets’ departure times. This provides a
mechanism to verify correct implementation of the sched-
uler without requiring the switch architecture to calculate

i-q
» (U

Fig. 1.

1-p

A two-state Markov-modulated arrival process.

departure times. Moreover, departure times can also be
used in performance analysis by conducting a comparison
with actual departure times.

III. TRAFFIC GENERATOR ARCHITECTURE

The traffic generator proposed, as shown in Figure 2,
offers a modular architecture that is scalable with respect
to the number of packet generation modules and switch-
ing port densities. It comprises of five major compo-
nents: a random number generator, arrival process gen-
erator, source-destination lookup, packet formatter and a
departure-time calculation module. Each module, with the
exception of the departure time calculation module, can be
replicated IV times and is capable of generating traffic from
one of k flows. The scalability property of the departure
time calculation module is derives from its Olog(N) com-
plexity that enables N departure times to be calculated,
according to a FCFS scheduling algorithm, in a single time
slot.

In establishing the arrival process, we have stated
support for both the Bernoulli and two-state Markov-
modulated arrival processes. In the case of the Bernoulli
process, packets are uncorrelated and possess no temporal
properties. Thus, each packet can be viewed as having a
unique source-destination pair from cycle to cycle. For this
reason, the Bernoulli arrival process module is designed to
compare a random arrival process value, r,, produced by
the random number generator, with the user-configurable
per-flow probability, pg, in order to determine whether a
packet should be transmitted on a per-cycle basis. The
value of py represents the probability that a packet will be
transmitted when flow k is selected. This set of k proba-
bilities is stored in the Source-Destination RAM, with the
index denoting the flow selected, using the random flow
value, ¢, that is again produced by the random number
generator. By dividing the n-bit number space of ¢ into
k distinct regions, the flow index can be determined us-
ing comparators that identify the k" region in which ¢
resides. Upon calculation of both r, and ry, the packet
formatter is instructed to send a packet when the following
inequality holds 7, < pg.

The two state Markov-modulated arrival process is re-
alized as an extension of the Bernoulli arrival process ar-
chitecture. The per-flow probability is again selected using
the random flow value, ry, by dividing its n-bit number
space into k distinct regions to determine the k** region in
which ry resides. However, the flow index is now used to

Departure
Time
Calculation
__________________ I W W
F I
| |
| Src:Dest | |,lw [w.
: | RAM I, ;
| = -k -
: Ei?:gg‘: | Arrival —— |
iy |
| | Generator Process | N
| |
| AR
I !
| | Payload Packet |TP Inpit FD”.J
: Generator Formatter : !
I |4
| -
___________________ !
[:
[!
[| To Input Pnrt_N
Packet
Generator o A—
-—
Modules
Fig. 2. Traffic generator architecture comprising multiple packet

synthesis modules and a departure time calculation unit.

retrieved two flow probabilities, pi and ¢x. The value of py
represents the probability that the Markov chain remains
in the ON state and continues to transmit packets, while
the value of g represents the probability that the chain
remains in the OFF state and does not generate a packet.
These transition probabilities are compared to the random
arrival process value, r,, during each cycle to determine
whether a state transition should occur. The bursty nature
of the two-state Markov-modulated process can be main-
tained by storing new flow probability values only when
the chain transitions to the OFF state.

Prior to transmitting a packet to the packet formatter,
the arrival process module must also produce a source-
destination pair. This is done as a preliminary step to the
packet construction. The source-destination pair is stored
in a RAM of depth k. The entire solution can be realized
with three RAMs located in the source-destination RAM
module; two RAMs contain the arrival probabilities, prand
G, while the third RAM contains only the destination ad-
dress for the packet. Given that the source address is iden-
tical for all k& flows of any packet generator module, it can
be represented by a single register that is programmed dur-
ing the initialization phase.

Once the target destination for packets presented at each
port has been determined, the associated departure time
can be calculated prior to transmission to the switch fab-
ric. The packet generation architecture we consider sup-
ports systems implementing first-come-first-serve (FCFS)-
based scheduling. Packets arriving at a single port can have

monotonically increasing departure times based on their ar-
rival order. To calculate the departure times for a system
with N ports, one must be able to compute departure times
for the adversarial case where all N packets are destined for
the same output port. The computation of departure times
in a serial order would require that each computation com-
pletes in % nsec (for 10 Gbps links). Given that packet
switching architectures consisting of 64 ports or more are
common, this would require that each departure time be
calculated in less than one nanosecond. Clearly, this is not
practical. Instead, departure times must be calculated in
parallel at the cost of silicon area.

In Figure 3, the architecture of the departure time calcu-
lation fabric is depicted. Since departure times monoton-
ically increase as packets arrive at a given output, a reg-
ister file containing the current departure times for each
output is stored in the base departure time register file.
To compute the departure time at each port, an encoded
destination address presented to the fabric input is first
split into an N-bit vectored request, whereby a single ac-
tive bit represents the packet destination. Once the N-bit
vector has been generated for each destination address, the
base departure time offset is computed by summing the ¢
bit, where ¢ identifies each output port in each N-bit vec-
tor. The result of the summation represents the number of
packets arriving at output port ¢q. This base departure time
offset is then added to the base departure time at the end
of each clock cycle. Such computation contains the critical
path in the design due to the requirement of N logs(N)-to-
N multiplexors, whose output is immediately fed to a set
of N adders that sum the N bits. This summation is then
added to the base departure time register prior to being
latched.

Next, we describe the method for calculating per-packet
departure times. The departure time for each packet is
a function of the destination address for every one of the
packets arriving at the same time cycle, and the base de-
parture time for each output port. Since we have the base
departure time for each destination, all that is needed is
to assign an offset relative to other packets arriving during
the same time slot. The offset for each packet is calculated
relative to the input port at which it was received. This
effectively establishes a priority to each input port in terms
of calculating its departure time offset. The first input port
automatically has the highest priority. For each successive
port, a comparator is required to determine if a higher pri-
ority input contains a matching destination address. The
result of each boolean comparison is appended to the pack-
ets departure time offset. From this, we can establish that
a packet arriving at input port 1 is automatically given a
departure time of 1. Hence, input port 2 will require one
comparator and possess a departure time of either 1 or 2.
For input port N, a total of N — 1 comparators is required
to produce a departure time that can vary from 1 to V.
Once the departure time offset is calculated, it is added to
the base departure time offset register, specified by the des-
tination address, to obtain the per-packet departure time.
The selection of the base offset register requires N N-to-1

Destination R
(Encoded)

Destination
(Bit Vector)

Generate

Vectored
Request
«+— CRITICAL PATH
Base N
Departure
Tirme
Base —_—
Departure .
Time 17
Register Computs
File Base
Departure Base
Time Dep_arlure
Offset Time
Base
Departure A Departure
Time - Time
—_—
Destination
—_— = Compute
Departure
Time

Offset

Fig. 3. Departure Time Calculation Architecture

multiplexors since each packet can be associated with one
of the IV possible destinations.

Once the departure time has been calculated, its output
is forwarded to the packet formatter which is responsible for
synchronizing the departure time, destination and packet
transmission information. The departure time and packet
validity are considered as verification information. For
this reason, such information is embedded in the payload,
by the packet formatter, for evaluation and performance
analysis purposes at the output of the switch. Upon com-
pleting the formatting process, the packet is presented to
the ingress interface of the packet switch fabric.

IV. IMPLEMENTATION RESULTS
A. FPGA Realization

The design of the packet generator architecture has been
coded in Verilog HDL and synthesized using the Synplic-
ity SynplifyPro synthesis tool, targeting a Xilinx Virtex-4
XC4VLX80-11-FF1148 FPGA device [8]. The implemen-
tation consists of 64-ports and supports 128 flows. Packets
are produced at the output of the packet generator every
50 ns.

TABLE 1
FPGA IMPLENTATION COST AND EXPECTED SLACK

Module LUTs | Slack (ps)
Departure 24674 | +0.657
Time Calcula-

tion

Packet Genera- | 19214 | 42.83

tor

Complete 43793 | 4+0.27
Design

In order to maximize the utilization of the target devices,
we proposed to reduce the logic resources required to com-
pute departure times by limiting the computations to N/2,
or 32, departure times in a single cycle. By clocking the
departure time calculation fabric at least 2 times faster
than the rest of the system, 64 departure times could be
computed in the required 50 ns period. However, synchro-
nization of the two clock domains necessitates an additional
two clock cycles. For this reason, the departure time com-
putation fabric effectively operates at 12.5 ns, or 4 times
faster than the rest of the system.

The full implementation of the 64-port packet genera-
tor required 43,793 Lookup-Tables (LUTS), or 61% of the
LUTs available in the target device. With the goal of 20
MHz operation frequency, synthesis was able to meet tim-
ing with 27 ps of slack Since three RAMs (two for prob-
abilities and one for the source-destination pairs) are re-
quired by each generator module, a 3N RAM architecture
resulted. Accordingly, this implementation consumed 192
of the 200 RAMs made available by the device.

Lookup-Table (LUT) resource consumption, presented in
Table 1, reflects the implementation cost of each module.
The departure time computation fabric fits comfortably in
this device suggesting that the actual computation fabric
could be designed to operate at the same clock rate as the
rest of the system.

B. Software Simulation

Correct operation of our packet generator architecture
was verified using stimulus written in SystemC, and co-
simulated with the Verilog HDL implementation, using the
Synopsys VCS-MX simulator. Programming the individ-
ual packet generators, as well as simultaneously starting all
packet generators after configuration, was performed using
this stimulus. Configuration of the device was carried out
using a single shared bus with a per-generator address de-
coder that is located at the top-level of the packet generator
implementation. The user has the ability to set values for
each of the 2k flow probabilities, the k£ source-destination
pairs, seeds for the two random number generators, and
the arrival process type on an individual packet generator
basis. Hence, the duration of the configuration process for
the entire system consists of (2k + 3)N clock cycles.

Once the device is configured, each packet generator is
enabled to synthesize packets concurrently. To validate

TABLE II
OFFERED LOAD VARIANCE

Simulated Expected| Actual
Samples | Offered Offered
Load Load
1500 0.8 0.806832
200,000 0.8 0.800771
12107 0.8 0.799683

the correct operation, the load offered by each packet gen-
erator was measured as means of determining the variance
between the expected offered load and the offered load pro-
duced via simulation. Table 2 illustrates the simulation
results for the 64-port packet generator configured to pro-
duce a normalized offered load of 0.8. The variance between
the expected and offered load decreases as the simulation
length increases, indicating that a real-time implementa-
tion would yield results that closely approximates the de-
sired offered load.

V. CONCLUSION

In this paper, a reconfigurable high-speed hardware ar-
chitecture for heterogeneous multimodal packet genera-
tion has been presented. The proposed architecture pro-
vides flow aggregation using both Bernoulli and two-state
Markov modulated arrival processes. Furthermore, FPGA
implementation and simulation results were presented to
emphasize the viability of this architecture. Future work
will focus on supporting additional arrival processes, in-
corporating quality of service (QoS) provisioning, as well
as studying architectural trade-offs to enable increased port
density support in FPGA-based realizations.

REFERENCES

[1] I. Elhanany and D. Sadot, “Disa: A robust scheduling algorithm
for scalable crosspoint-based switch fabrics,” IEEE Journal of
Selected Areas in Communications, vol. 21, pp. 535-545, May
2003.

(2] J. Dai and B. Prabhakar, “The throghput of data switches with
and without speedup,” IEEE INFOCOM 2000, pp. 556564,
March 2000.

[3] S. Iyer, R. Zhang, and N. McKeown, “Routers with a single stage
of buffering,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 251-264, 2002.

[4] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A. Poursep-
anj, “The network processing forum switch fabric benchmark
specifications: An overview,” IFEFE Network Magazine, pp. 4—
9, March/April 2005.

[5] S. Floyd and V. Paxson, “Difficulties in simulating the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 4, 2001.

(6] E.Z. T. Antonakopoulos and V. Makios, “On mapping stochastic
processes into hardware and its application on atm traffic emula-
tion,” IEEE Transactions on Instrumentation and Measurement,
vol. 52, no. 3, 2003.

[7] S. Iyer and N. McKeown, “Analysis of the parallel packet switch
architecture,” IEEE/ACM Transactions on Networking, vol. 11,
pp. 314-324, April 2003.

(8] Xilinx Virtex-4 technical
http://www .xilinx.com.

documentation available at

