
Unsupervised Neuron Selection for Mitigating
Catastrophic Forgetting in Neural Networks

Ben Goodrich
Department of Electrical Engineering and

Computer Science
University of Tennessee

Knoxville, TN 37996-2250
Email: bgoodric@utk.edu

Itamar Arel
Department of Electrical Engineering and

Computer Science
University of Tennessee

Knoxville, TN 37996-2250
Email: itamar@ieee.org

Abstract—Catastrophic forgetting is a well studied problem
in artificial neural networks in which past representations are
rapidly lost as new representations are constructed. We hy-
pothesize that such forgetting occurs due to overlap in the
hidden layers, as well as the global nature in which neurons
encode information. We introduce a novel technique to mitigate
forgetting which effectively minimizes activation overlapping
by using online clustering to effectively select neurons in the
feedforward and back-propagation phases. We demonstrate the
memory retention properties of the proposed scheme using the
MNIST digit recognition data set.

I. INTRODUCTION

Catastrophic forgetting (also known as catastrophic inter-
ference) is the tendency of an artificial neural network to
rapidly lose old representations upon being presented with new
inputs/samples. Multi-Layer Perceptrons (MLPs) in particular
are highly susceptible to this problem due to the inherent
shared neuron activations through which the network encodes
information.

Catastrophic forgetting can severely hinder learning in non-
stationary environments. Traditionally, when training a MLP
one shuffles the training data to ensure that the observations
are presented in an order that makes it appear stationary (in
the sense that each sample is independently and identically
distributed). Should the data be presented in a nonstationary
manner, the network may not adequately capture the represen-
tations pertaining to all samples due to temporal bias toward a
particular subset of samples. This presents serious limitations
to the usefulness of MLP neural networks in online learning
tasks where one may not have the convenience of deciding
what order to present the training samples to the network.

A classical example whereby MLPs may fail in an on-
line setting is when applied in the context of reinforcement
learning, where a value function must be estimated in an
online manner and the input samples are correlated [1] [2].
There is a close connection between catastrophic forgetting
and what is known in neuroscience as the stability vs plasticity
dilemma. Considering biological systems also suffer from the
same effect, it is unlikely that an optimal solution to this
dilemma exists, even for narrow application domains. Neural
networks seem to suffer in a more pronounced way, however,
motivating the need to better understand the underlying causes
for the phenomenon as well as attempt to find solutions that
would mitigate the effect.

It appears that catastrophic forgetting is caused primarily
by two main factors. The first is overlapping representations in
(dense) hidden layer activations. When a network is trained on
a given sample point, due to hidden-layer activations overlap,
adjustments of weights for this sample would impact the
manifold learned in regions that pertain to a different mapping.
This effect can be especially disastrous for networks that use
activation functions that are non-zero over most of the input
space - such as sigmoidal or hyperbolic tangent activations.
Updating weights to a sigmoidal neuron can have conse-
quences for that neuron’s output if it is shown a completely
unrelated input [3].

The other factor is simply the lack of any redundancy
within the weights of most network models. In the feed-
forward phase, all weights are generally involved in computing
the network output. During the back-propagation and weight
updating phases, almost every weight in to the network is being
updated. Network models that partition the weights so they are
not always used, or that selectively update certain weights, tend
to better cope with catastrophic forgetting.

With these two factors in mind, we propose a technique that
uses online clustering, as an unsupervised learning process, to
select (or mask) neurons during the feed-forward pass. This
reduces overlap when presented with samples from different
regions, as well as introduces redundancy to the network
model. Each neuron is thus assigned a centroid, in addition
to its weights set. Finally, only the neurons that have cen-
troids that are nearest to the sample point are selected. This
effectively imposes overlapping sub-networks out of a large
network.

The rest of the paper is structured as follows. In Section
II we briefly review prior attempts at mitigating catastrophic
forgetting in supervised learning settings. Section III describes
the proposed scheme and its implementation details. Section
IV discusses results of applying the scheme to challenging
non-stationary settings, while in Section V the conclusions are
drawn.

II. EXISTING TECHNIQUES

Over the years, many techniques have been proposed
for mitigating catastrophic forgetting in supervised learning
systems. One family of solutions proposed relates to the radial
basis function (RBF) network, a type of neural network which



uses a localized activation function that eliminates overlap
in the hidden representation. RBFs have been applied with
some success [2], however they present several key challenges.
First, they do not generalize well to higher dimensional spaces
[4]. Second, the center vectors of the basis function must be
predetermined in a way that covers the entire possible input
space requiring at least some prior knowledge of the input
space before training commences.

Another technique that has been explored is to simply
promote sparse representations in the hidden layer. This helps
eliminate overlapping representations in the hidden layer. An
older approach, known as activation sharpening, attempted to
achieve this [5]. Other sparsity techniques have been used with
mixed success [6].

Recently, schemes such as Dropout [7], Local Winner Take
All [8] networks, and Maxout [9] networks have been consid-
ered with varying degrees of success [10]. These techniques
all add redundancies within the network weights. Dropout
is a technique that randomly selects neurons to use during
the feed forward and back propagation pass. This facilitates
redundancy in the network by ensuring that only some of
the weights are used on each pass. Dropout is also generally
combined with Rectified Linear activation units which promote
sparsity by their nature, and also help to eliminate overlapping
representations. Local Winner Take All and Maxout networks
are very recent techniques that employ rules to selectively
choose neurons to use during the feed forward pass. This can
greatly promote redundancies within the network weights.

III. UNSUPERIVSED NEURON SELECTION FOR
RETAINING PREVIOUS REPRESENTATIONS

A. Online Clustering

The framework proposed here seeks to introduce redun-
dancy to the network as well as reduce overlapping repre-
sentations by selectively choosing which neurons are to be
activated in the feed-forward pass. This section provides a
brief review of how neural network training is typically done
to establish some notation, then describe how we include the
centroid based selection scheme.

With regular feedforward networks, each neuron can be
seen as having a weight vector. Generally all of the weights
from neurons in a single layer are combined to obtain a weight
matrix W . The weight matrix consists of all of the weight
vectors (as row vectors). More specifically, the elements of W
are wji where i is an index into the previous layer and j is
an index into the current layer. W (1) refers to the weights of
the first hidden layer, W (2) refers to the weights of the next
layer. (This discussion will only deal with networks having
one hidden layer)

On each feed forward one typically passes a group of
samples through each layer as a minibatch. By defining the
matrix of samples as X where each sample is a column vector
in this matrix, one can compute the output of the hidden layer
using simple matrix algebra. Y ← f(W (1)X) where Y is
a matrix of column vectors of outputs for the hidden layer
and f(•) is the hidden activation function. The final network
output can be computed as Z ← g(W (2)X) where g is the
output activation function (if any).

To apply dropout in a feed forward pass, one could define
a R matrix of random binary values that take on 0 or 1 with
probability 0.5. All one would need to do is define Y ← f(R�
(W (1)X)) where � denotes element-wise multiplication.

Every neuron can be given a centroid by defining a centroid
matrix that has the same dimensions of W (call it C). That is,
every neuron’s centroid is a row vector in this matrix. This
matrix will be used to select neurons whose centroids are
nearest to the sample point. A matrix Y d needs to be defined
that tells the distance of each neuron’s centroid to each sample
point.

The elements of Y d can be computed by finding centroid
distances. Using euclidean distance this becomes the following.

ydjl ← (cj1 − x1l)2 + (cj2 − x2l)2 + · · ·+ (cjn − xnl)2 (1)

More generically, Y d is a matrix of distances from a row
of C to a column of X (neuron centroid to sample point).

ydjl = dist(Cj,∗, Xt
∗,l) (2)

Once Y d has been computed, it can be used to deactivate
neurons that are too far away. That is, if a neuron’s distance is
beyond some threshold for a particular sample, its activation
is set to 0. That neuron is also not updated in the back
propagation phase since it was unused. Selective feed forward
and updating is done by generating a mask matrix from Y d

defined as M consisting of binary 0,1 values. M is the same
dimensions as both W and C and is used to deactivate neurons.
If ydjl exceeds the threshold, then that neuron’s centroid is
too far away and the corresponding md

jl element in the mask
matrix is set to 0.

mjl ←

{
1 if ydjl < y

d,(k)
l

0 else
(3)

Selecting k nearest neurons for each sample requires doing
a column-wise sort operation on Y d and taking the kth row
and using that as a threshold. In the notation above y

d,(k)
l

represents the k’th order statistic (k’th smallest value) on the
l’th column of Y d.

On feed forward the M matrix is used to mask out neurons
whose centroids are too far away from the samples by doing
Y ← f(M � (W (1)X)). This matrix is also used in the back
propagation phase to ensure that weights are not updated for
neurons that were not selected.

B. Centroid Placement

Ideally, one would want to have centroids placed in a
way that minimizes overlap between old and new classes.
Clustering should be done in a way that preserves the topology
of the input space where nearby sample points cause the same
neurons to be selected while distant and unrelated sample
points would cause different paths in the network to be
activated.



One way to place centroids would be to attempt to detect
when the network error suddenly increases beyond its normal
value. When this occurs, it is assumed that the network is being
presented with something new. The neurons that were selected
are inadequate to handle this new information, previously
unselected neurons must be selected to handle this new sample
data.

A concept from reinforcement learning known as an eli-
gibility trace is kept for each neuron [11]. If a neuron k is
selected then its eligibility gets increased by 1.0.

ek ← ek + 1 ∀ k selected (4)

All neurons have their eligibility decayed by a small factor
β = 0.99 (regardless if they are selected).

ej ← β ∗ ej ∀j (5)

The purpose of eligibility is to keep track of neurons
that have remained unused over the longest period of time.
When placing new centroids, neurons are selected that have
the lowest eligibility to overwrite their centroid location.

A moving average is kept for the average class label error
rate for each label the network recognizes. If the error increases
beyond this moving average by a certain threshold then new
centroids are placed. The k neurons that have the lowest
eligibility are chosen to have their centroids replaced. New
centroids are placed at the location of the input samples that
had a larger than normal error (The moving average error is
also reset so it won’t be immediately triggered again next
time).

Before training begins, centroids are initialized to some
very far away location (These can be considered unused
centroids). The moving average error detection scheme is
initialized to a very small value, this will cause it to trigger
on the first epoch which will place new centroids then. After
the first epoch, the network trains using the centroids that were
placed on the first epoch to select neurons. The error detection
scheme waits until a sudden increase in error is detected, at
which time it allocates new centroids to the locations of the
sample data that caused the increase. This will cause those
sample points to use the new centroids while preserving the
older centroids.

In addition to manually placing centroids, centroids are
moved closer to the sample points that triggered their selection.
That is, the average location of all sample points that selected
a centroid is used as a new location to move the centroid to
by some velocity.

IV. RESULTS

The training task that was conducted was similar to the
task in [8]. However, unlike [8] weight restoration was not
done as we feel that this invalidates the task. All 10 MNIST
digits were divided into two sample sets. 5 of the digits were
placed into dataset P1, and the other 5 were placed into dataset
P2. Training was performed on a neural network with a single

Algorithm 1: Anti-forgetting centroid based training
Initialize all centroids to some far away value
Initialize errorl ∀ l to a very small value
for each minibatch of training do training loop

Feed forward minibatch using centroid selection.
Compute error
for each class label do

Compute class label error as errorl
if errorl > moving average threshold then

Choose centroids from samples that caused
error increase. Place the new centroids on
least eligible neurons.
moving averagel ← errorl (reset moving
average error to prevent re-triggering)

end
moving averagel ←
0.95 ∗moving averagef + 0.05 ∗ errorl

end
C ← Cold + α ∗ (C′ − Cold)
Back Propagate Error & Update Weights

end

hidden layer and 5 outputs (one for each label) to recognize
P1. At epoch 1000 training was switched to dataset P2 and
continued. While the network learned to associate class labels
for P2, performance was evaluated on the test set for P1.

All networks had 2048 hidden neurons. They used tanh
activations and tanh outputs as described in [4]. Results are
included from one network that had 2048 Rectified Linear
hidden activation units with a softmax output and dropout for
comparison to an existing technique that is known to help
with forgetting. All runs have a learning rate of .0025 with
a minibatch size of 1024.

Centroid movement speed was set to α = 0.001 per
minibatch. That is, the average position of the k samples that
each centroid selected are used to build a matrix (denoted by
C′). The centroid positions are then updated to be:

C ← Cold + α ∗ (C ′ − Cold) (6)

The threshold for the error detection scheme was set to
5.0, and 128 new centroids were placed if the threshold was
exceeded. That is, if the class label error was more than 5
times greater than the moving average error for that label, 128
centroids were placed.

The threshold for the error detection scheme is an important
parameter. This threshold could be done away with and new
centroids could simply be placed when the P1 to P2 switch
occurs, but that defeats the purpose.The reason for having this
threshold is so that the network could innately detect when
something new is seen, in essence the network becomes a
black box that is capable of handling non stationary problems.
Ideally it should be set to a value that triggers only when the
P1 to P2 switch occurs. If it is set too low, it may be triggered
at inappropriate epochs, and if it is set too high it won’t trigger
at the P1 to P2 switch. From the measurements on this MNIST
task, any value from 4.0 to 11.0 would have worked.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P1 Miss Rate

0.1

0.2

0.3

0.4

0.5
P2

 M
is
s 
Ra

te

No Clustering
4 Selected
8 Selected
16 Selected
Rectified Linear with Dropout

Fig. 1. P1 Miss Rate vs. P2 Miss Rate Possibilities Frontiers for MNIST
Forgetting Task

1000 1250 1500 1750
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
is
cl
as

s 
Pe

rc
en

ta
ge

No Clustering
4 Selected
8 Selected
16 Selected
Rectified Linear with Dropout

Fig. 2. P1 Miss Rate while training on P2

Figure 1 shows a possibilities frontiers curve for the P1
error rate vs. The P2 error rate. This plot is similar to the
plots provided in [10]. It traces the error for P1 relative to P2,
in this case lower error for both tasks is better so the curve
that is nearest to the bottom left shows a network that is able
to learn both P1 and P2.

A possibilities frontiers plot is useful because it shows that
there were at least one or more epochs where the network was
able to retain memory for both tasks, however this may not
tell the whole story. It does not show how relatively quickly

each network forgot. The network could have learned both P1
and P2 well for only one epoch, then very quickly forgot. It
also does not show how the network forgot over time, that is if
the forgetting follows a linear trajectory or if it loses accuracy
at an exponential rate.

Figure 2 shows the forgetting rates for each network start-
ing at the epoch where the P1 to P2 switch occurred. As can
be seen, the regular network with no clustering immediately
loses P1, while the other networks forget at a more gradual
rate.

V. CONCLUSION

This paper has argued that building a path through a
network using online clustering can help mitigate catastrophic
forgetting in a data-driven manner. Building such paths through
the network based on deterministic rules addresses both issues
of injecting redundancy within the network as well as reducing
activation overlap. The technique proposed can be efficiently
implemented over parallel processing platforms. Moreover, the
approach can be broadened and applied to other connectionist
architectures, such as recurrent neural networks.

REFERENCES

[1] J. A. Boyan and A. W. Moore, “Generalization in reinforcement
learning: Safely approximating the value function,” in Advances in
Neural Information Processing Systems 7. MIT Press, 1995, pp. 369–
376.

[2] V. U. Cetina, “Multilayer perceptrons with radial basis functions as
value functions in reinforcement learning.”

[3] S. Weaver, L. Baird, and M. Polycarpou, “Preventing unlearning during
online training of feedforward networks,” in Intelligent Control (ISIC),
1998. Held jointly with IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation (CIRA), Intelligent
Systems and Semiotics (ISAS), Proceedings, 1998, pp. 359–364.

[4] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,” in
Neural Networks: Tricks of the trade, G. Orr and M. K., Eds. Springer,
1998.

[5] R. M. French, “Using semi-distributed representations to overcome
catastrophic forgetting in connectionist networks,” in In Proceedings
of the 13th Annual Cognitive Science Society Conference. Erlbaum,
1991, pp. 173–178.

[6] R. French, “Dynamically constraining connectionist networks to pro-
duce distributed, orthogonal representations to reduce catastrophic in-
terference,” 1994.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[8] R. K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, and J. Schmid-
huber, “Compete to compute,” in Advances in Neural Information
Processing Systems, 2013, pp. 2310–2318.

[9] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[10] I. J. Goodfellow, M. Mirza, X. Da, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgeting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[11] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.


