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Deep machine learning offers a comprehensive framework for extracting meaningful features from
complex observations in an unsupervised manner. The majority of deep learning architectures described
in the literature primarily focus on extracting spatial features. However, in real-world settings, capturing
temporal dependencies in observations is critical for accurate inference. This paper introduces an
enhancement to DeSTIN – a compositional deep learning architecture in which each layer consists of
multiple instantiations of a common node – that learns to represent spatiotemporal patterns in data
based on a novel recurrent clustering algorithm. Contrary to mainstream deep architectures, such as deep
belief networks where layer-by-layer training is assumed, each of the nodes in the proposed architecture
is trained independently and in parallel. Moreover, top-down and bottom-up information flows facilitate
rich feature formation. A semi-supervised setting is demonstrated achieving state-of-the-art results on
the MNIST classification benchmarks. A GPU implementation is discussed further accentuating the scala-
bility properties of the proposed framework.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The mainstream approach for addressing high-dimensional
data is to employ a feature extraction process charged with map-
ping the data to a lower-dimensional space, while retaining as
much information as possible in order to accurately process (e.g.
classify) the data. As a result, it is argued that the intelligence
behind most pattern recognition engines rests on the human-
engineered feature extraction process used. At times, such feature
extraction can be challenging to construct and highly application-
dependent. Moreover, if incomplete or erroneous features are
produced, the classification process is inherently limited in its
performance.

Recent research into the mammalian brain has inspired new
ideas for designing systems that represent information. This re-
search claims that the neocortex, which is responsible for many
cognitive abilities, does not perform explicit pre-processing of sen-
sory signals. Instead, these signals are propagated through a com-
plex hierarchy of modules (Lee and Mumford, 2003), that learn to
represent the information based on the regularities that exist in the
signals over time. This finding led to the emergence of the field of
deep machine learning (DML) (Arel et al., 2010), which focuses on
extracting data efficiently in an unsupervised manner.

While the spatial information in real-life data is important, the
temporal information is also very important. When humans ob-
serve a sequence of patterns, they can gain an understanding of
what is occurring that could not be inferred from a single pattern.
We often infer a meaning from events observed in short time
periods (Wallis and Bulthoff, 1999; Wallis and Rolls, 1997). Thus,
modeling the temporal regularities that exist in a sequence of pat-
terns is vital to effective information representation. Therefore,
capturing the spatiotemporal dependencies should be viewed as
a principal objective for deep learning systems.

Despite the importance of representing temporal information,
there has been little work published on deep learning architectures
that naturally integrate the spatial and temporal components that
exist in many spatial sensor datasets such as microphone arrays,
video, or traffic monitoring. This paper introduces an enhancement
to DeSTIN – a compositional deep learning architecture in which
each layer consists of multiple instantiations of a common node.
Spatiotemporal dependencies are naturally captured by employing
a novel recurrent clustering algorithm that serves as an unsuper-
vised learning mechanism embedded in each node of the DeSTIN
hierarchy. Since each node operates independently and in parallel
to all other nodes, the proposed framework offers exceptional sca-
lability attributes, particularly in the context of graphical processor
unit (GPU) implementation. Modern GPUs are highly parallel pro-
grammable processors that have a peak arithmetic and memory
gnition
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bandwidth much greater than any CPU (Owens et al., 2008) and
they do so at a very affordable price. Thus, the ability to map
DeSTIN to a GPU implementation is very important in order to
tackle large problems that use typical image or video resolutions,
as opposed to the small resolutions used in many of the current
datasets being used in DML research such as the MNIST (Lecun
and Cortes, 1998) and CIFAR-10 (Krizhevsky et al., 2009) datasets.

Several enhancements to previous realizations of DeSTIN are
described. Previously, each node was performing several dissimilar
tasks resulting from modeling of the system dynamics. The mem-
ory and/or computation requirements of these methods dwarfed
the resource requirements of the clustering algorithm that resides
at the core of each node. Even without the resource requirements
imposed by these methods, the fact that there are many dissimilar
operations required makes mapping the architecture to a parallel
computing platform, such as a GPU, very challenging. The enhance-
ments introduced here aim to include this functionality into the
core clustering algorithm in order to significantly relax the re-
source requirements thus greatly enhancing the scalability attri-
butes of the system. In addition to shifting more functionality to
each node, changes were made to the clustering algorithm in order
to eliminate unnecessary computation and facilitate the formation
of richer features.

The rest of the paper is structured as follows. Section 2 provides
an overview of deep machine learning and the DeSTIN architecture,
which serves as basis for the proposed scheme. Section 3 describes
the enhanced DeSTIN node and its utilization within the hierarchi-
cal architecture. In Section 4 a GPU implementation is described,
highlighting the scalability attributes of the proposed scheme. Sec-
tion 5 provides simulation results on a set of benchmark tasks,
while in Section 6 the conclusions are drawn.
2. Deep machine learning and the DeSTIN architecture

2.1. Overview of deep learning architectures

Deep belief networks (DBN) (Arel et al., 2010; Hinton et al.,
2006) and Convolutional Neural Networks (CNN) (Arel et al.,
2010; Lee et al., 2009) are two of the mainstream DML paradigms
that have been successfully demonstrated in addressing pattern
recognition problems in high dimensional data (e.g. images). CNNs
are a family of multi-layer neural networks particularly designed
for use on data structured on a two-dimensional grid, such as
images and videos. CNNs were proposed as a deep learning frame-
work that is motivated by minimal data preprocessing require-
ments. In CNNs, small portions of the image (dubbed a local
receptive field) are treated as inputs to the lowest layer of the hier-
archical structure. Information generally propagates through the
different layers of the network, and at each layer digital filtering
is applied in order to obtain salient features of the data observed.
This method provides a level of invariance to shift, scale and rota-
tion as the local receptive field allows the neuron or processing
unit access to elementary features such as oriented edges or cor-
ners. One of the seminal papers on the topic (LeCun et al., 1998) de-
scribes an application of CNNs to the problem of handwriting
analysis. Essentially, the input image is convolved with a set of N
small filters whose coefficients are either trained or pre-deter-
mined using some criteria. Thus, the first (or lowest) layer of the
network consists of ‘‘feature maps’’ which are the result of the
convolution processes, with an additive bias and possibly a com-
pression or normalization of the features. This is followed by a
sub-sampling (typically a 2 � 2 averaging operation) which further
reduces the dimensionality and offers some robustness to spatial
shifts. The sub-sampled feature map then receives a weighting
and trainable bias and finally propagates through an activation
Please cite this article in press as: Young, S.R., et al. Hierarchical spatiotempora
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function. Some variants of this exist with as few as one map per
layer (Chen et al., 2006) or summations of multiple maps (LeCun
et al., 1998).

DBNs, initially introduced by Hinton et al. (2006), are probabi-
listic generative models which stand in contrast to the discrimina-
tive nature of traditional neural nets. Generative models provide a
joint probability distribution over observable data and labels, facil-
itating the estimation of both PðObs:jLabelÞ as well as PðLabeljObs:Þ,
while discriminative models are limited to estimating the latter,
PðLabeljObs:Þ. DBNs address problems encountered when tradition-
ally applying back-propagation to neural networks, namely: (1)
necessity of a substantial labeled data set for training, (2) slow
learning (i.e. convergence) times, and (3) inadequate parameter
selection techniques that lead to poor local optima. Although there
has been some success in training DBNs in a completely unsuper-
vised manner (Lee et al., 2011), most current work also performs
supervised training after this unsupervised step. DBNs do not
explicitly address learning of temporal relationships between
observables, though there has been recent work in stacking tempo-
ral RBMs (Sutskever et al., 2007) or generalizations of these,
dubbed temporal convolution machines (Lockett et al., 2009), for
learning sequences. The application of such sequence learners to
audio based problems, where DBNs have made recent headway, of-
fer an avenue for exciting future research. CNNs have recently been
trained with a temporal coherence objective to leverage the frame
to frame coherence found in videos (Mobahi et al., 2009), though
this objective need not be specific to CNNs.

Recent literature treats pure multi-layer perceptron (MLP) neu-
ral networks with more than two hidden layers as deep learning
architectures. Although one can argue that technically this is a cor-
rect assertion, the mere fact that a learning system hosts multiple
layers is insufficient to be considered as a deep learning architec-
ture. The latter should also encompass the idea of a hierarchy of
abstraction, whereby as one ascends the hierarchy more abstract
notions are formed. This is not directly attainable in a simple
MLP consisting of a large number of hidden layers. Moreover, there
is no temporal information representation in such schemes.

The concept of partitioning large data structures into smaller,
more manageable units, and revealing dependencies that may or
may not exist between such units, has proven to be a very promis-
ing direction of research. However, there remains a need for an
architecture that can represent temporal information with the
same ease in which spatial structure is discovered. Additionally,
some key constraints are imposed on the learning schemes driving
these architectures, namely the need for layer-by-layer training
and often times pre-training, which limit their scalability and
accuracy.

2.2. The DeSTIN architecture

The focus of the work presented here is the Deep Spatiotempo-
ral Inference Network (DeSTIN) architecture, first introduced in
Arel et al. (2009). DeSTIN consists of multiple instantiations of an
identical functional unit called a node which learns through a com-
pletely unsupervised learning process, unlike most of the previ-
ously discussed DML methods that rely on labeled information.
These nodes are arranged in layers and each node is assigned chil-
dren nodes from the layer below and a parent node from the layer
above as shown in Fig. 1. Nodes at the lowest layer receive as input
a subset of the raw sensory data while nodes at all other layers
receive the belief states, or outputs, from their children nodes as
input. This subset, or receptive field, will be unique for each node.
The receptive fields are disjoint in the work presented here, but
could be overlapping depending on the application. Each node
attempts to capture the salient spatiotemporal regularities
contained in its input and continuously update a belief state meant
l feature extraction using recurrent online clustering. Pattern Recognition
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Fig. 1. Typical node configuration and signal flow in a DeSTIN hierarchical
architecture.
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to characterize the input and the sequences thereof. The belief
state (or belief) is a probability vector that indicates the probability
of each possible state given the information we know about the
system. The beliefs formed throughout the architecture can then
be used as rich features for a classifier that can be trained using
supervised learning. Beliefs extracted from the lower layers will
characterize local features and beliefs from higher layers will char-
acterize global features. Thus, DeSTIN can be viewed as an unsu-
pervised feature extraction engine that forms features from data
based on regularities it observes. This stands in contrast to the
user-engineered features based approach, which relies on previous
knowledge of the problem at hand. The unsupervised nature of
DeSTIN renders it much simpler to train than other DML architec-
tures (Karnowski et al., 2012). It also suggests that the features
generated by DeSTIN need not be unique in the sense that they
converge to singular values in order to be meaningful to a given
application.

As outlined above, the core function of each node is to form a
belief state that characterizes the inputs observed. This belief
state is expressed through the following conditional probability
function

btðstjaÞ ¼
PrðojstÞ

P
st2SPrðst jst�1; at�1Þbðst�1Þ

n o

P
s0t2S Prðojs0tÞ

P
s00t 2SPrðs00t jst�1; aÞbðst�1Þ

n o ð1Þ

which serves as an update equation, as the system transitions from
one time step to the next. This function maps the input o from the
layer below, belief state b (which is a function of the system state s),
and parent’s belief state (i.e. advice) a from the layer above to an
updated belief state btðstÞ. The denominator of this equation is a
normalization factor. This equation should be viewed as two
parts: (1) a posterior over the observations, PrðojstÞ, that is modu-
lated by a (2) construct that reflects the system dynamics,
Please cite this article in press as: Young, S.R., et al. Hierarchical spatiotempora
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P
st2SPrðstjst�1; at�1Þbðst�1Þ. These building blocks of the architecture

are the pieces of information which must be learned from the data.
In this paper, several changes to previous implementations of

DeSTIN are presented. Previously, each node was performing sev-
eral dissimilar tasks resulting from modeling of the system dynam-
ics. The memory and/or computation requirements of these
methods dwarfed the resource requirements of the clustering algo-
rithm that is supposed to be the core of each DeSTIN node. Even
without the resource requirements imposed by these methods,
the fact that there are many dissimilar operations required renders
mapping the architecture to a GPU platform rather challenging.
The changes presented here aim to include this functionality into
the core clustering algorithm in order to lessen these resource
requirements and make the process of implementing DeSTIN in
GPU platforms a more attainable task. In addition to shifting more
of the functionality of DeSTIN into the clustering algorithm at the
individual nodes, modifications were made to the clustering algo-
rithm itself in order to eliminate unnecessary computation and
help generate richer features.

2.3. Incremental clustering

Since DeSTIN was designed as a system that is scalable using
simple hardware, an incremental clustering algorithm is employed
for learning PrðojstÞ in order to minimize memory requirements.
Young et al. (2010) introduced the winner-take-all incremental
clustering algorithm used as the core of each DeSTIN node. This
algorithm finds centroids which are represented by a mean l
and variance r2 in each dimension. Based on the centroids formed
and their relationship to the input vector o;PrðojstÞ is obtained
where st corresponds to a particular centroid in the set of cen-
troids. A key idea of this algorithm was the introduction of the star-
vation trace which addressed centroids that happen to be
initialized far from any dense regions of the observation space
and thus would never be selected for update. The starvation trace
is used to shrink the apparent distance of a starved centroid to all
input vectors until it is selected for update. A starvation trace va-
lue, w, is maintained for each centroid and is decayed by a con-
stant, c, each time that centroid is not updated and increases
once the centroid is selected, as reflected by

wc ¼ cwc þ ð1� cÞ1x¼c ð2Þ

where x represents the chosen centroid. Starvation trace is utilized
to weigh the distances used to select the centroid to be updated,
such that

x ¼ argminc2C wc o� lc

�� ��� �
ð3Þ

where x is the centroid to be updated and C is the set of all
centroids.

When a centroid is selected for an update, its mean is updated
in the direction of the input vector and its variance estimate is up-
dated as follows:

lx ¼ lx þ aðo� lxÞ ð4Þ

r2
x ¼ r2

x þ b ðo� lxÞ
2 � r2

x

h i
ð5Þ

Upon updating the selected centroid, the posterior distribution,
Prðojs0Þ, is obtained using the normalized Euclidean distance be-
tween the input and each centroid c, such that

nc ¼
Xd

i¼1

ðoi � lc;iÞ
2

r2
c;i

ð6Þ

pc ¼
n�1

cP
c02Cn�1

c0
ð7Þ
l feature extraction using recurrent online clustering. Pattern Recognition
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where pc represents the probability the observation belongs to the
centroid c.

This is a departure from previous work (Karnowski et al., 2012;
Karnowski et al., 2010), where the posterior distribution was calcu-
lated as either a simple function of the Euclidean distance or by
sampling an exponential probability density function centered at
the centroid mean. The former method is lacking because it does
not take into account the variance of the data a centroid represents.
The latter method is lacking because it tends to form unreasonably
confident beliefs for input vectors that are not near any centroid. It
also complicates the calculation without adding any more informa-
tion content to the belief construct.
Fig. 2. In recurrent clustering the previous belief is latched and augmented to the
input over which clustering is performed.
3. The DeSTIN node revisited

3.1. Recurrent clustering

In order to more easily map the DeSTIN architecture to a parallel
implementation, the mechanism used by the original DeSTIN archi-
tecture to pass information top-down, reflected by the construct
Prðstjst�1; at�1Þ, needed to be revised. The philosophical approach
taken was to integrate the feedback/recurrence mechanism as an
inherent part of the clustering process. In previous work, the tem-
poral regularities Prðst jst�1; at�1Þwere captured by maintaining a ta-
ble populated with the likelihoods of transitioning between states
or through a function approximation method that attempted to
predict the next state given the current state. Though keeping a
table of transition probabilities seems simple enough, the manner
in which it was being used necessitated that an array be kept for
every movement made across the image and for every possible be-
lief state provided by the parent node. This results in a table that has
a memory requirement for a single node of Mtab ¼ K2AL , where K is
the number of centroids for the node, L is the number of move-
ments, and A is the number of belief states from the parent. In addi-
tion to the large memory requirement, using this table mandated an
additional set of operations outside of the core node functionalities
of clustering and calculating PrðojstÞ. The other previously used
mechanism to estimate Prðstjst�1; at�1Þ is function approximation
(Karnowski et al., 2011). While this method has a more modest
memory footprint, it requires an extensive set of operations outside
the core functionality of the node. These additional operations
make it incredibly difficult to map the DeSTIN architecture to a par-
allel platform like a GPU. For this reason, it is desired to couple the
learning of temporal regularities and parent advice more closely
with the clustering mechanism.

To address this problem, recurrent clustering is proposed as
illustrated in Fig. 2. Recurrent clustering takes as input the external
input augmented by the node’s previous time step belief. This al-
lows the clustering to form beliefs that are based on both spatial
and temporal attributes. Consequently, l and r2 have dimensions
K � ðN þ KÞ, where K is the number of centroids and N is the num-
ber of input dimensions. It is important to note that in addition to
allowing the clustering mechanism to capture temporal dependen-
cies, this method allows the clustering algorithm to form centroids
that represent relationships between the spatial and temporal fea-
tures of the data. During the clustering process, the centroids will
converge to values that represent spatial and temporal regularities
in the data. Previously, the clustering algorithm could only observe
the input vector and characterize it’s similarity to other input vec-
tors, but now the clustering results in belief states that represent
information about transitions between belief states or, more gen-
erally, about a sequence of transitions between belief states, since
each belief is dependent on the preceding belief.

There are many hazards to consider in designing the recurrent
clustering mechanism due mainly to the introduction of a feedback
Please cite this article in press as: Young, S.R., et al. Hierarchical spatiotempora
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loop. The most important aspect to consider is the method used for
determining which centroid is to be updated and the calculation of
its respective belief state. It is imperative that the clusters formed
characterize both the temporal and spatial attributes of the data.
As a result, it is important to balance the contributions of the spa-
tial and temporal components of the input structure when select-
ing the centroid to update. This means that a selection method that
uses the centroid variances to weight the importance of each
dimension cannot be used because it encourages the recurrent
clustering algorithm to form very confident beliefs that look only
at the temporal features. The result is a system that can only act
as a counter and provides no information about the input it ob-
serves. For this reason, the selection method used is based solely
on the Euclidean distance between the centroid means and the
combined input/belief vector, as suggested by the selection rule
of Eq. (3). If the variances in the beliefs were expected to be much
different than the variances in the input data, it might be necessary
to use a normalized Euclidean distance with a constant normaliza-
tion vector in order to prevent either the spatial or temporal
features from improperly dominating the clustering process, how-
ever this has not been necessary in DeSTIN or any other applica-
tions explored here. Once the winning centroid has been
updated, the belief state is calculated as outlined in Eqs. (6) and (7).

3.2. Enhanced cortical circuit

Examining Eq. (1) reveals that the system needs to be able to
estimate the probability of the subsequent state given the informa-
tion received from the parent node. This may be achieved simply
by providing the belief state of the parent node as an additional in-
put to the clustering algorithm of the child node, as depicted in
Fig. 3. Thus, parent belief is handled much like the node’s own pre-
vious belief and hence harmful feedback is avoided using the same
mechanisms already employed inside the recurrent clustering
algorithm. The system is now able to form beliefs based on local
spatial information (the input), local temporal information (the
node’s previous belief state), and a more global form of advice in
the form of the parent node’s belief state.
l feature extraction using recurrent online clustering. Pattern Recognition
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The revised DeSTIN architecture is greatly simplified relative to
its predecessor. The memory footprint has been reduced and con-
solidated into a simple set of two-dimensional matrices. Taking
into account the dominating constructs involved, namely the
centroid means, variances, starvation traces, and previous belief
state, the memory requirement for a single node becomes
Mnode ¼ 2KðK þ NÞ þ 2K where K is the number of centroids and
N is the number of input dimensions. There are only two core pro-
cesses taking place at each node and those are very similar and
share the same data structure. This reduced architecture, outlined
in Algorithm 1, makes implementing DeSTIN on a GPU a far more
realistic undertaking. It also suggests that larger topologies, which
would be needed for larger problems (e.g. streaming video data),
can fit onto a single GPU.

Algorithm 1. DeSTIN Pseudocode: This process is performed
at every node in the pipelined hierarcy each when an example
is presented to the hierarchy

1: o child1:pc . . . childN:pc self :pc parent:pc½ �
2: if TRAINING then
3: x argminc2C wc o� lc

�� ��� �
4: lx  lx þ aðo� lxÞ
5: r2

x  r2
x þ b ðo� lxÞ

2 � r2
x

h i

6: wc  cwc þ ð1� cÞ1x¼c

7: end if

8: nc  
Pd

i¼1
ðoi�lc;iÞ

2

r2
c;i

9: {Synchronize Nodes}

10: pc  
n�1

cP
c02C

n�1
c0
4. Mapping DeSTIN to a parallel platform

4.1. Algorithmic analysis

In conventional software implementations, for each new obser-
vation an iteration of the DeSTIN algorithm for a single node is out-
lined by the following steps:

1. Calculate the distance from the observation to each centroid
and take its reciprocal to obtain the unnormalized belief vector.

2. Normalize the belief vector and determine the winning
centroid.

3. Apply the centroid update rule to the winning centroid.

To motivate an efficient implementation of DeSTIN using parallel
processing platforms, the parallel algorithm’s work, span, and
degree of parallelism must be derived (Cormen et al., 2009). The
distance calculation is the simple Euclidean distance, and its work
is O Nj j Dj jmax Cj jmaxð Þ, where Nj j is the number of nodes in the net-
work, and Dj jmax and Cj jmax are the maximal dimensionality and
maximum number of centroids in the network, respectively. The
belief vector calculation is O Nj j Cj jð Þ, as we need to iterate over
the list of centroids twice for each centroid: once to obtain the nor-
malization sum and the winner, and once to normalize the vector.
The update equation is O Nj j Dj jð Þ, as we need to update each com-
ponent of the winning centroid for each node in the network. Alto-
gether, the overall work T1 of the algorithm is O Nj jð Þ.

On a parallel computing platform, the distance calculation’s
span is O log Dj jð Þ – each centroid is independent of the others,
and the summation for the Euclidean distance is most efficiently
computed through parallel reduction. Similarly, the belief vector’s
span is O log Cj jð Þ, as a reduction sum is necessary to obtain the
Please cite this article in press as: Young, S.R., et al. Hierarchical spatiotempora
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normalization term. The update equation’s span is O 1ð Þ, as the up-
date in each dimension is entirely independent of other dimen-
sions and other nodes. Altogether, the span T1 for one iteration
of the algorithm is O log Dj jmax þ log Cj jmaxð Þ, yielding the parallelism
of DeSTIN to be:

T1

T1
¼ O Nj j Dj jmax Cj jmaxð Þ

O log Dj jmax þ logCmaxð Þ

There is a clear motivation for implementing DeSTIN over a parallel
computing platform, especially given that the number of nodes in a
DeSTIN hierarchy grows in Oð4lÞ, where l is the number of layers in
the network.

4.2. Implementation details

4.2.1. Pipelining the DeSTIN architecture
In the serial implementation of DeSTIN, each layer depends on

the result of the previous layer prior to completing its calculations.
Since a serial implementation is only capable of processing one
node at a time, this is not a detriment to speed. However, in a par-
allel implementation, this poses severe penalties on performance.
If a layer must wait on another layer to be processed, then some
parallel resources are idle when they could be utilized more effi-
ciently. To address this deficiency, a pipelined approach is consid-
ered. During each time step of the algorithm, a particular node
reads its input, executes the online clustering algorithm, and
writes its output to a pipeline register. The output for each node
on a given layer is then copied into the input for each node on
the subsequent layer. Thus, each node n in layer l is operating on
the beliefs of layer l� 1 at time t � l, implying an increasing time
delay for each layer.

4.2.2. GPU implementation considerations
At the core of the high-level CUDA API is the manipulation of

grids, blocks, and threads (NVIDIA, 2012). A thread is an individual
computation, a block is a collection of threads, and a grid is a col-
lection of blocks. Threads communicate only with other threads in
the same block, so it is ideal that each block is computationally
independent of other blocks. The distance calculation works on
a two-dimensional grid composed of blocks. The index in dimen-
sion i references a particular node and the index in the j dimension
references a node’s particular centroid. Each block is made of a
one-dimensional array of threads where each thread k pertains
to a particular component of a node’s belief. Each thread computes
the square of the difference dk between node i’s centroid’s location
ci

j;k and the input observation oi
k to the node, such that

dk ¼ ci
j;k � oi

k

� �2

A parallel reduction sums up the vector dk and stores the reciprocal
of this summation into bi

j, which is the jth belief for node i.
The belief normalization works on a one-dimensional grid

where each block in the i dimension references a particular node.
Each block is a one-dimensional collection of threads where each
thread in the j dimension references a node’s belief. A parallel
reduction computes two numbers: the summation of node i’s belief
and the index j of node i’s most confident belief. Each belief is then
normalized and the winning centroid is stored for the update
procedure.

The belief update works on a one-dimensional grid where each
block in dimension i references a particular node and each block is
a one-dimensional collection of threads where each thread in
dimension j relates to each component in the winning centroid’s
state. The update for each state component is calculated indepen-
dently and in parallel.
l feature extraction using recurrent online clustering. Pattern Recognition
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Fig. 3. A 4-layer DeSTIN architecture illustrating the bottom-up and top-down signaling that is involved. All nodes operate independently and in parallel such that each layer
is delayed by one unit of time relative to the layer below it.
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4.3. Speedup gain

To evaluate the relative speed gain of the GPU implementation
compared to a CPU implementation, the network is instantiated
with a four-layer hierarchy and a varying number of centroids
20 30 40
0

20

40

60

80

100

120

140

160

180

200

Num. Centroid

Ti
m

e 
(s

)

Comparison of CPU vs

GPU Time
CPU Time
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per node and trains on some arbitrary input for 10,000 iterations.
Constant-time operations such as network initialization are
ignored and only the 10,000 iterations are timed. Fig. 4 shows a
significant decrease in execution time for the GPU implementation
versus the CPU implementation.
50 60 70 80
s per Node

. GPU Execution Time

on time given a four-layer hierarchy and a varying number of centroids per node.
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5. Simulation results

We next present a series of experimental results that demon-
strate the revised DeSTIN architecture’s ability to capture temporal
dependencies. In particular, we begin by focusing on the recurrent
clustering algorithm as a key enabler for DeSTIN. First, its capabil-
ities will be explored in depth in order to demonstrate its
contribution in extracting temporal information from data even
when the time scales of the important information is large. Conse-
quently, the performance of the algorithm within a fully-hierarchical
structure, as applied to a standard benchmark, will be presented.

5.1. Recurrent clustering for time-series prediction and sequence
detection

A key attribute expected of recurrent clustering is recognition of
patterns across time. As means of demonstrating this capability,
the proposed recurrent clustering algorithm is applied to time-
series prediction tasks. The first task explored is a frequency dou-
bler where the objective is for system to take as input a sampled
sinusoid signal with a period of N and to produce belief states that
can be used as features to a simple feed-forward neural network
whose output should be a sinusoid with half the period. This prob-
lem requires that the belief state captures information that at least
spans the current and previous inputs.

Fig. 5 depicts the results of the frequency doubler test case. The
algorithm was run with 24 centroids and the feed-forward neural
net is resourced with 32 hidden neurons. As can be seen, the incre-
mental algorithm was easily able to create features capturing tem-
poral dependencies even for fairly slow, small changes taking place
in the input, as reflected by larger periods. When the input signal
period became too large, prediction error began to grow as a result
of the small differences between samples which are challenging to
represent using limited centroids. However, the resulting predic-
tion remains consistently better than a random guess.

The second experiment was targeted at the algorithm’s ability
to capture temporal attributes, particularly in the context of
detecting a binary sequence of interest within a general stream
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of binary inputs. The goal was to demonstrate the property of
latching onto long-term temporal regularities. The length of the se-
quence of interest was varied in order to observe the impact of long
sequences on the accuracy of the algorithm. The sequence of inter-
est was a randomly chosen binary sequence of specific length. To
further increase the challenge at hand, the overall input sequence
was generated by randomly selecting (with probability 0.5) either
the sequence of interest or the sequence of interest with the first
binary element inverted. The belief states for the sequences of
interest and the sequence with only the first bit altered were pro-
vided to a feed-forward neural network for the purpose of classify-
ing each sequence. If the belief states accurately learn to represent
regularities in the sequences presented, the classifier should be
able to achieve a classification rate of 100%. A purely random selec-
tion (i.e. guessing) is represented by a classification rate of 50%.

Classification results for the sequence detection task are pre-
sented in Fig. 6 for varying sequence lengths and number of cen-
troids. The classification rate observed decays exponentially with
the length of the sequence, which is anticipated as a result of the
unsupervised nature of the algorithm. Since there is no supervision
that guides the algorithm to best identify a sequence of any specific
length, the beliefs will always hold more information about more
recent observations. The results indicate that there is an optimal
range for the number of centroids used where the algorithm per-
forms best. In the case of too few centroids, the belief state may
not capture long time spans, while if there are too many centroids,
the belief state may represent features in the data that are not rel-
evant for identifying the sequence of interest. However, the algo-
rithm exhibits weak sensitivity to the number of clusters, which
is a desired property.

5.2. MNIST dataset

Leveraging the ability of the recurrent clustering algorithm to
capture temporal dependencies, the scheme is next evaluated in
the context of a full-scale deep architecture applied to a larger
classification problem – the MNIST dataset (Lecun and Cortes,
1998). This dataset has been used extensively in the literature
15 20 25
mple units)
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lustering and for a case where only the current value of the input is provided to the
ility of the algorithm to capture information in long period sine waves is evaluated.
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and contains 60,000 training images of digits 0–9 and 10,000
testing images. The images are 28� 28 pixels in size, roughly cen-
tered, and are gray-scale. The images were padded with zeros to a
size of 32� 32 pixels in order to accommodate the movement se-
quence that provided the input to the lowest layer of the DeSTIN
architecture. The 60,000 training images were elastically deformed
(Simard et al., 2003) in order to form an additional 120,000 training
images.

The DeSTIN hierarchy employed consisted of 3 layers with 4� 4
nodes in the bottom layer, 2� 2 nodes in the middle layer, and 1
node at the top layer. The movement sequence used is shown in
Fig. 7. Each of the nodes in the bottom layer received a different
4� 4 pixel patch of the input image, which results in the bottom
layer viewing a 16� 16 window during each movement. Nodes
in every layer hosted a different number of centroids with the bot-
tom, middle, and top layers having 32, 24, and 32 centroids,
respectively. For training purposes, a random sampling of 15,000
of the training set images was used. Only 15,000 images are used
since the clustering algorithm only needs to be able to accurately
calculate the mean and variance of each centroid. Thus, as long
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Fig. 7. This figure is a pictorial representation of the sequence of movements used
for the MNIST dataset.
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as there are enough samples to accurately characterize the regular-
ities in the data, no benefit will be gained by training on additional
samples. Next, all 180,000 training images and 10,000 testing
images were provided to the DeSTIN network in order to generate
feature vectors for each image. A feature vector for each image con-
sisted of the belief state of every node in the hierarchy sampled at
every 12th movement. These feature vectors were then provided to
a supervised learning based classifier in order to obtain classifica-
tion results.

The supervised classifier consisted of an ensemble of 11
feed-forward neural networks trained with negative correlation
learning. Each network hosted two hidden layers with 128 and
64 hidden neurons, respectively, and was trained to predict the
posterior probability distribution over the classes. The cross-
entropy error function was used in conjunction with a softmax
output activation function, which ensured that the network
outputs were within the range [0,1] and summed to one. All
180,000 training feature vectors (both elastic and non-elastic) were
used in training, and inputs to the networks were scaled to the
range [-1,1]. Using this experimental setup, a classification accu-
racy of 98.71% was achieved which is comparable to previous work
involving the first-generation DeSTIN architecture which involved
an additional layer and more complex computations. These
results are also competitive results obtained for this benchmark
achieved with other state of the art methods (Kégl et al., 2009;
Salakhutdinov and Hinton, 2007; Simard et al., 2003).
5.3. PEMS-SF dataset

The proposed method was also tested on the PEMS-SF database
(Cuturi et al., 2011). This dataset gives the relative occupancy rate
of many lanes of traffic on the San Francisco area freeways. The
data from 963 sensors was collected over 440 days every 10 min
and the task is to classify each day as the correct day of the week
(e.g. Monday). The dataset consists of 267 training samples and
173 testing samples. The DeSTIN hierarchy used was the same as
before, except it had 50, 30, and 20 centroids in the nodes in the
three layers respectively. Only 256 (16� 16) of the 963 sensors
were used in our tests to accommodate the 16� 16 ‘‘viewing win-
dow’’ of the bottom layer and only 33 time-steps, every 4th start-
ing from the beginning, were provided to the system. Now, instead
of using the next movement over an image, the input layer is pro-
vided with data from the next time-step. Then, a feature vector was
produced from the belief state of every node for every 11th time-
step. This resulted in a feature vector made up of belief states that
characterized each third of the day. This feature vector was then
provided to the same classifier as before. A classification accuracy
of 80.92% was achieved, which is comparable to other state of the
art methods (Cuturi et al., 2011; Cuturi and Doucet, 2011) as can be
seen in Table 1. Although this method did not establish new state
of the art results on this dataset, it has demonstrated an ability to
perform well on two very different types of datasets without any
preprocessing or changes in the method to handle these differ-
ences. This ability to discover structure in many different types
of data without altering the dataset to fit the method being used
Table 1
Comparison of results on PEMS-SF.

Method Classification accuracy (%)

AR-Kernel 75
AR-Kernel using k 81
BOV Kernel 82
GA Kernel 79
SS Kernel 81
DeSTIN 81

l feature extraction using recurrent online clustering. Pattern Recognition
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is important to the proliferation of DML methods into new problem
domains.

6. Conclusions and future work

This paper proposed a highly-scalable deep learning architec-
ture that inherently captures both spatial and temporal dependen-
cies in complex data yielding a rich, general-purpose feature
extraction engine. Experimental results on image recognition tasks
clearly demonstrated the performance attributes of the system
achieved without the need for any user-defined features or param-
eter tuning. The scalability properties of the method, originating
from its massively parallel nature, were substantiated via a GPU
implementation, paving the path for employing the framework to
other large-scale application domains, such as action sequence rec-
ognition in video streams or using DeSTIN as a state inference en-
gine for control problems. The work done here in mapping DeSTIN
to the GPU has cleared a trail for implementing it in custom analog
hardware. While GPUs offer a far better price for performance com-
pared to CPUs, custom analog hardware could provide much lower
power requirements and scalability.
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