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Fig. 11. SNR as a function of bias current in the analog floating-gate memory. Fig. 12. (a) Clean and (b) noisy synthetic clustering data used for evaluation
of analog computation inaccuracies.
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obtained using foundry-provided models and show good agree-
ment. The high-frequency drain current noise simulations indi-
cated excess noise beyond that predicted by the shot current
model. This excess noise is fitted using a correction factor of
1.2 applied to the shot noise model. The total root-mean-square
(RMS) noise current can be obtained by integrating shot and
flicker noise respectively over the system noise bandwidth and
then adding them in power. The result from our noise model
is compared to the simulation and shows a good agreement,
as in Fig. 10(c).

Based on the analysis on a single transistor above, it can
be seen that there exists a tradeoff between the SNR and
the power consumption. This can be illustrated in Fig. 11.
In the figure, the SNR of the floating-gate memory shown in
Fig. 2 is plotted against its bias current, which is proportional
to the power consumption. From this noise versus power
tradeoff, designers can estimate the available room for power
scaling down given the lower boundary of SNR acceptable
by the learning algorithm. The continuous-time noise in the
current or voltage signal is converted into a discrete-time noise
process when the signal is effectively sampled by the distance
comparison to determine the class probabilities and centroid
updates. For the purposes of this investigation, we will assume
that this sampling results in a white noise sequence.

Noise should have no effect on the calculated centroid
means since it is a zero-mean process. For clusters with a
smaller variance than the noise level, the calculated variance
will be similar to the noise level rather than similar to the true
variance. If the true variances are less than the noise level
for all centroids, then the beliefs will be calculated on the
basis of a distance measure that is approximately the Euclidean
distance than the normalized Euclidean distance because of the
inaccurate calculated variances. The beliefs will then have less
information than they otherwise would, but the beliefs will still
be meaningful because of the accurate mean values.

Incorporating the nonideal effects into (19)—(23) yields the
following relationships, where any n* denotes additive noise
occurring at the same location in the circuit where a* occurs:
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IV. SYSTEM-LEVEL IMPACTS: MODELING INACCURACIES

Given the inaccuracies discussed above, in this section
we examine the impact of error sources on the algorithmic
performance. This is accomplished by using computational
models of the inaccuracies present in analog computation
extracted from transistor-level simulations of the circuit. First,
a metric for algorithmic performance must be defined. Since
the common method for using DeSTIN in pattern recognition
tasks is to extract the beliefs as features, performance is
defined as the mean absolute error (MAE) between what the
ideal belief values should be and those calculated considering
errors in the system. It is important to note that this means
performance is not directly tied to the numerical accuracy
of the calculated centroid means and variances, which are
being calculated in a space altered by the error sources. In
the remainder of this section, we first explore the effects of
the analog error sources on a synthetic dataset in order to
demonstrate the effect on calculated belief states when the
true centroids are known. Then, we present a nonsynthetic
classification problem using the MNIST dataset in which
classification performance is the best metric to evaluate the
success of the system.

To demonstrate the effect of the various errors and mis-
matches, a simple clustering problem is considered. The data
shown in Fig. 12 is clustered using a single DeSTIN node
with varying levels of error and noise. The noise is always
additive Gaussian noise, while gain errors and bias errors are
implemented according to (25) and (25), respectively, where
ry is the difference between the maximum and minimum
values x can take. Noise is added to select signals in the
system in the same manner as bias error. The use of currents
to represent variables generally leads to gain errors, while
voltage-based signals lead to offset errors. We modeled the
cases of full current-mode signaling and full voltage-mode
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Fig. 13.  Accuracy versus level of error (o). Gain errors on clean dataset
(top) and noisy dataset (bottom). This figure illustrates that the update and
input errors have the lowest impact on performance, while noise has the most
significant impact. In addition to the individual effects of each noise, this
figure includes the effect of all the error sources combined and all the error
sources and noise combined.

signaling to explore the different effects. The impact of gain
and offset errors on a system using mixed-mode signaling can
be expected to fall between these two cases

X' =xA4(1,0)
x'=x+40,0)r.

(24)
(25)

The resulting error in the belief is calculated as the MAE
between the ideal belief vector and that obtained using analog
computation. Figs. 13 and 14 illustrate the effect of the
errors discussed in this section on a single node’s belief
values. As can be observed, none of the errors introduces
any notable degradation below a standard deviation value
of 1073.

When modeling all errors as gain errors, additive noise
in the system has a much larger impact than even the rest
of the errors combined. Thus, it is demonstrated that the
inconsistency caused by noise is much more harmful than
the consistent gain and bias errors. The most destructive gain
errors are the distance comparison, distance, and memory
adaptation variation errors. The update asymmetry, input, and
update variation errors have much less impact.

When all errors are modeled as bias errors, additive noise
has much the same effect as the distance comparison, distance,
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Fig. 14.  Accuracy versus level of error (o). Bias errors on clean dataset
(top) and noisy dataset (bottom). The update and input errors have the lowest
impact, while the remaining error components have an impact similar to that
of the additive noise of the same level. In addition to the individual effects of
each noise, this figure includes the effect of all the error sources combined
and all the error sources and noise combined.

and memory adaptation variation errors. The update asym-
metry, input, and update variation errors still have much less
impact.

It is important to remember, however, that “correct” cluster-
ing as defined by the metric used for these clustering datasets is
not necessary for the DeSTIN hierarchy to produce meaningful
beliefs. To test this ability, a full DeSTIN hierarchy is utilized
to form features for a standard multilayer perceptron (MLP)
neural network classifier. The DeSTIN hierarchy used contains
three layers. The top, middle, and bottom layers contain 1,
4, and 16 nodes, respectively, with the nodes in each layer
using 25, 18, and 25 centroids. The belief states are then
sampled from three movements over the image. These beliefs
are then provided to the classifier. Thus, we are testing the
ability of our system which contains noise and errors to form
a model of the regularities it observes and to produce features
for a MLP classifier. The classifier used is a feed-forward
neural network with two hidden layers with 128 neurons in
the first hidden layer and 64 neurons the second hidden layer.
The dataset used is the MNIST hand written digits dataset
[33]. Results are shown in Fig. 15, where the robustness
of the DeSTIN architecture to the gain errors, bias errors,
and additive noise introduced by the analog computation
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Fig. 15. MNIST performance versus system error/noise level. The results
here demonstrate the effect of different error/noise levels when the analog
error and noise sources are modeled in different ways. The best results here
are 97.6%. However, when using a decorrelated ensemble of classifiers and
using elastic distortions [34], results of 99% have been achieved with the
DeSTIN architecture, which is more comparable to state of the art. These
methods were not used to produce this plot, however, in order to produce
results for such a wide range of variables in a timely manner.

models is illustrated. In particular, the errors have little to
no effect until the standard deviation of the errors becomes
larger than the operating range (0—1). High levels of noise
result in inconsistent beliefs that hold less information for the
classification module, as one would expect, but the system can
be seen to be robust to significant levels of noise.

The results from the clustering performance tests and the
MNIST classification test allow some important conclusions
to be drawn. A significant amount of error and noise can be
introduced to the DeSTIN architecture and its clustering algo-
rithm without having a destructive effect upon performance. It
is particularly noteworthy that noise is the most harmful error
source by a significant margin. This is intuitively reasonable,
as noise represents a dynamic error source to which the learn-
ing system cannot adapt. In contrast, the other error sources
distort the input space in a static way, leaving relationships in
the underlying data intact. Even noise does not significantly
degrade MNIST performance for normalized levels below
1072, corresponding to an SNR of 40 dB. Fortunately, this
modest level of noise performance is easily attainable even
at extremely low current levels in the nanoampere range as
shown in Fig. 11. It is important to consider such implications
when designing analog circuits that retain performance while
maintaining low power and area profiles.

Another aspect that should be better understood is how noise
interacts with the depth of the architecture. It is imperative
that global features generated at the higher layers, which
are subject to errors introduced in the lower layers, remain
meaningful. This is examined in Fig. 16, where classification
results using only the bottom layer belief states are compared
to classification results using the belief states from all layers.
These results clearly demonstrate that features from the upper
layer are able to add global information to the local informa-
tion obtained from the lower layers, across all levels of error
and noise.
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Fig. 16. MNIST performance versus error level. Providing the classifier with
belief states from all layers is always better than only providing the belief
states from the bottom layer for every error/noise level. These results are
created with all errors modeled as gain errors and with additive noise.

V. CONCLUSION

This paper explored the promising implications of realizing
deep layered machine learning architectures using custom
analog VLSI. It is argued that the homogeneous nature of
deep architectures, combined with the inherent simplicity in
the computations involved, pave the way for scalable and effi-
cient implementation of such systems using analog circuitry.
While digital circuits have become ubiquitous over the last
two decades in large part because of their simplicity and
repeatability, analog circuits still retain advantages in the con-
text of machine learning systems. Analog computation offers
an improvement in power efficiency over equivalent digital
systems, ranging from an order of magnitude for the simple
x2/y circuit described above to several orders of magnitude for
more complex systems [15], [35]. Such dramatic reductions
in power consumption offer the potential to deliver DML
to severely power-constrained devices such as micro-scale
wireless sensors and implantable medical devices. The analysis
presented here demonstrates that the precision requirements
of machine learning systems are compatible with ultralow-
power analog circuits. In order to leverage the advantages of
analog computation while maintaining excellent performance
on learning tasks, it is critical that system designers understand
the impact of various error sources on system performance.
The results discussed in this paper can help guide designers
so that the resources of power, chip area, and design effort
can be focused on those areas where the impact is greatest.
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