A REINFORCEMENT LEARNING PERSPECTIVE ON AGI

Itamar Arel, Machine Intelligence Lab (http://mil.engr.utk.edu)
The University of Tennessee
Tutorial outline

- What makes an AGI system?
- A quick-and-dirty intro to RL
- Making the connection RL ↔ AGI
- Challenges ahead
- Closing thoughts
What makes and AGI system?

- Difficult to define “AGI” or “Cognitive Architectures”
- Potential “must haves” …
 - Application domain independence
 - Fusion of multimodal, high-dimensional inputs
 - Spatiotemporal pattern recognition/inference
 - “Strategic thinking” – long/short term impact

Claim - If we can achieve the above, we’re off to a great start …
RL is learning from interaction

- Experience driven learning
- Decision-making under uncertainty
- **Goal**: Maximize a utility ("value") function
 - Maximize long-term rewards prospect
- Unique to RL: solves the **credit assignment problem**

Stochastic, Dynamic Environment

Observations → Actions → Rewards
RL is learning from interaction (cont’)

- A form of unsupervised learning
- Two primary components
 - Trial-and-error
 - Delayed rewards
- Origins of RL: Dynamic Programming

Origins of RL: Dynamic Programming

Observations → Stochastic, Dynamic Environment → Actions → Rewards → Observations
Brief overview of RL

- Environment is modeled as a Markov Decision Process (MDP)
 - \(S \) – state space
 - \(A(s) \) – set of actions possible in state \(s \in S \)
 - \(P_{ss'}^a \) – probability of transitioning from state \(s \) to \(s' \) given that action \(a \) is taken
 - \(R_{ss'}^a \) – expected reward when transitioning from state \(s \) to \(s' \) given that action \(a \) is taken

Goal is to find a good policy: States → Actions
Backgammon example

- Fully-observable problem (state is known)
- Huge state set (board configurations) $\sim 10^{20}$
- Finite action set – permissible moves
- Rewards: $\text{Win } +1$
 $\text{Lose } -1$
 else 0
RL intro: MDP basics

- An MDP is defined by the state transition probabilities

\[P_{ss'}^a = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\} \]

and the expected reward

\[R_{ss'}^a = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\} \]

- Agent’s goal is to maximize the rewards prospect

\[R(t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{\tau=0}^{\infty} \gamma^\tau r_{t+\tau+1} \]
The state-value function for policy π is

$$V^\pi(s) = E_\pi[R_t \mid s_t = s] = E_\pi\left[\sum_{k=0}^{\infty} \gamma^k r_{t+1+k} \mid s_t = s \right]$$

Alternatively, we may deal with the state-action value function

$$Q^\pi(s,a) = E_\pi[R_t \mid s_t = s, a_t = a] = E_\pi\left[\sum_{k=0}^{\infty} \gamma^k r_{t+1+k} \mid s_t = s, a_t = a \right]$$

The latter is often easier to work with.
Bellman equations

\[V^\pi(s) = \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')] \]

\[Q^\pi(s, a) = \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma Q^\pi(s', a')] \]

Temporal difference learning

\[V(s_t) = r_{t+1} + \gamma V(s_{t+1}) \]
We’re looking for an optimal policy π^* that would maximize $V_\pi(s) \ \forall s \in S$.

Policy evaluation — for some π:

$$V_{k+1}(s) = \sum_{s'} P_{ss'} \left[R_{ss'}(s) + \gamma V_k(s') \right]$$

RL problem — solve MDP when environment model is unknown.

Key idea — use samples obtained by interaction with the environment to determine value and policy.
RL intro: policy improvement

- For a given policy π with value function $V^\pi(s)$

$$\pi'(s) = \arg\max \sum_a P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')]$$

- The new policy is always better

- Converging iterative process (under reasonable conditions)
Exploration vs. exploitation

- **A fundamental trade-off in RL**
 - **Exploitation** of actions that worked in the past
 - **Exploration** of new, alternative action paths so as to learn how to make better action selections in the future

- The dilemma is that neither pure exploration nor pure exploitation is good

- **Stochastic tasks** — must explore

- Real-world is stochastic — forces explorations
Back to the real (AGI) world …

- No “state” signal provided
 - Instead, we have (partial) observations
 - Agent needs to infer state
- No model - dynamics need to be learned
- No tabular form solutions (don’t scale) …
 - Huge/continuous state spaces
 - Huge/continuous action spaces
 - Multi-dimensional reward signals
Toward AGI: what is a “state”?

State is a consistent (internal) representation of perceived regularities in the environment.

- Each time agent sees a “car” the same *state* signal is invoked.
- States are individual to the agent.
- State inferences can occur only when environment has regularities and predictability.
Toward AGI: learning a Model

- Environment dynamics unknown
- What is a model — any system that helps us characterize the environment dynamics
- Model-based RL — model is not available, but is explicitly learned
Toward AGI: replace tabular form

- **Function approximation (FA) - a must**
 - Key to generalization

- **Good news:** many FA technologies out there
 - Radial basis functions
 - Neural networks
 - Bayesian networks
 - Fuzzy logic
 - ...

\[V(s) \]
Hardware vs. software

- Historically, ML has been in CS turf
 - Von Neumann architecture?
- Brain operates @ ~150 Hz
- Hosts 100 billion processors
- Software limits scalability
 - 256 cores is still not “massive parallelism”
- Need vast memory bandwidth
 - Analog circuitry
Toward AGI: general insight

- Don’t care for “optimal policy”
- Stay away from reverse engineering
- Learning takes time!
- Value function definition needs work
 - Internal (“intrinsic”) vs. external rewards
 - Exploration vs. exploitation
- Hardware realization
- Scalable function approximation engines
Tripartite unified AGI architecture

- **Actor**
- **Critic**
- **Environment**
- **Model**

Actions:
- From Actor to Environment
- From Environment to Critic
- From Critic to Actor

Observations:
- From Environment to Model
- From Model to Environment

State-action value est.:
- From Critic to Model
- From Model to Actor

Rewards:
- From Environment to Critic
- From Critic to Environment

Action correction:
- From Actor to Critic

Closing thoughts

- The general framework is promising for AGI
 - Offers elegance
 - Biologically-inspired approach
- Scaling model-based RL
- VLSI technology exists today!
 - >2B transistors on a chip

AGI IS COMING
Thank you