Follower Circuits: Output Resistance

- Follower $R_{Out} = (R_{iE} \parallel R_L) \sim 1/g_m$
- But, does driving resistance matter?
 - Consider extreme case: Base driven by current source.
Follower Circuits: Output Resistance

Current is injected into emitter of BJT.

\[v_e = \frac{\alpha_o i}{g_m} + \frac{R_{th} i}{\beta_o + 1} \]

Current \(\alpha_o i \) coming out of collector must be supported by \(v_{eb} = \frac{\alpha_o i}{g_m} \), given by the first term. \(i_b = -\frac{i}{\beta_o} + 1 \) creates a voltage drop in \(R_{th} \) given by second term

In case of FET, \(R_{IS} = \frac{1}{g_m} \)

Thus equivalent resistance looking into emitter or source of a transistor is approximately \(\frac{1}{g_m} \).
Emitter (Source) Degeneration

- Emitter (source) resistor often used in CE (CS) amps.
- What is its effect?
- Examine transconductor by itself.
- Assume V_C is small-signal ground.
Emitter (Source) Degeneration

- We will view NPN+RE as transconductor
- From CD analysis: gain from \(v_x \) to \(v_e \)?
 - \(g_m R_E/(1+g_m R_E) \)
- For \(G_m = i_c/v_x \), find \(v_{be}/v_x \)
- \(v_{be}/v_x = 1 - g_m R_E/(1+g_m R_E) \)
 = \(1/(1+g_m R_E) \)
- \(i_c = g_m v_{be} \), so \(G_m = g_m/(1+g_m R_E) \)
- For \(g_m R_E \gg 1 \), \(G_m \to 1/R_E \)
- Why reduce \(G_m \)? Sensitivity, linearity
Emitter (Source) Degeneration

- R_{In}?
- $v_{be} = v_x/(1 + g_m R_E)$
- $i_b = v_{be}/r_\pi$

 \[= v_x/[r_\pi(1 + g_m R_E)]\]
- $R_{\text{In}} = v_x/i_b = r_\pi(1 + g_m R_E)$
- R_{Out}?
Emitter (Source) Degeneration

- R_{out}? (Ignore i_b)
- Find i_c
 \[i_c = -g_m v_e + \frac{(v_c - v_e)}{r_o} \]
 \[= \frac{v_c}{r_o} - v_e \left(g_m + \frac{1}{r_o} \right) \]
- Get rid of v_e? KCL @ v_e
 \[v_e \left(\frac{1}{R_E} + \frac{1}{r_o} + g_m \right) = \frac{v_c}{r_o} \]
 \[v_e = \frac{v_c}{r_o \left(\frac{1}{R_E} + \frac{1}{r_o} + g_m \right)} \]
Emitter (Source) Degeneration

- R_{Out}? (Ignore i_b)
- Combine

$$i_c = v_c \left[\frac{1}{r_o} - \frac{g_m + 1/r_o}{1 + g_m r_o + r_o/R_E} \right]$$

$$= \frac{1/r_o + g_m + 1/R_E - g_m - 1/r_o}{1 + g_m r_o + r_o/R_E}$$

$$\frac{i_c}{v_c} = \frac{1}{R_E + g_m r_o R_E + r_o}$$

$R_{Out} \sim r_o (1 + g_m R_E)$ If $r_o >> R_E$

- Error significant if $R_E >> r_\pi$
Terminal Impedances - Collector

- Current across R_E decreases i_E, increasing R_{iC}.
- Some “escapes” through base, increases v_{BE} & limiting R_{iC}

\[i_c = g_m v_{be} + (v_c - v_e)/r_o \]
\[v_e = i_c R_E || (R_B + r_\pi) \]
\[= i_c \frac{R_E (R_B + r_\pi)}{R_E + R_B + r_\pi} \]
\[v_b = i_c \frac{R_E}{R_E + R_B + r_\pi} R_B \]
\[v_{be} = i_c \frac{R_E R_B - R_E R_B - R_E r_\pi}{R_E + R_B + r_\pi} \]
\[i_c = g_m i_c \frac{-R_E r_\pi}{R_E + R_B + r_\pi} + v_c/r_o - \frac{1}{r_o} \left(i_c \frac{R_E (R_B + r_\pi)}{R_E + R_B + r_\pi} \right) \]
\[v_c/r_o = i_c \left(1 + \frac{g_m R_E r_\pi + 1/r_o (R_E (R_B + r_\pi))}{R_E + R_B + r_\pi} \right) \]
\[R_{iC} = \frac{v_c}{i_c} = r_o \left(1 + R_E \frac{\beta + (R_B + r_\pi)/r_o}{R_E + R_B + r_\pi} \right) \]
\[R_{iC} = \frac{v_c}{i_c} = r_o \left(1 + R_E \frac{\beta + R_B/r_o + \beta/(g_m r_o)}{R_E + R_B + r_\pi} \right) \]
\[R_{iC} = \frac{v_c}{i_c} = r_o \left(1 + R_E \frac{\beta + R_B/r_o}{R_E + R_B + r_\pi} \right) \]
Terminal Impedances - Collector

- Expression is cumbersome and unhelpful. Make some approximations.
- Important when trying to maximize gain

\[R_{iC} = r_o \left(1 + R_E \frac{\beta + R_B/r_o}{R_E + R_B + r_\pi} \right) \]

\[R_{iC} \approx r_o \left(1 + \frac{R_E \beta}{R_E + R_B + r_\pi} \right) \]

If \(\beta \to \infty \) (MOS); recall \(r_\pi = \beta/g_m \)

\[R_{iC} \approx r_o \left(1 + R_E \frac{\beta}{\beta/g_m} \right) = r_o (1 + g_m R_E) \]

If \(\beta \) finite and \(R_E \gg r_\pi \)

\[R_{iC} \approx r_o (1 + \beta) \]