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ABSTRACT

Federated learning (FL) provides a variety of privacy advantages by
allowing clients to collaboratively train a model without sharing
their private data. However, recent studies have shown that private
information can still be leaked through shared gradients. To fur-
ther minimize the risk of privacy leakage, existing defenses usually
require clients to locally modify their gradients (e.g., differential
privacy) prior to sharing with the server. While these approaches
are effective in certain cases, they regard the entire data as a single
entity to protect, which usually comes at a large cost in model
utility. In this paper, we seek to reconcile utility and privacy in FL
by proposing a user-configurable privacy defense, RecUP-FL, that
can better focus on the user-specified sensitive attributes while
obtaining significant improvements in utility over traditional de-
fenses. Moreover, we observe that existing inference attacks often
rely on a machine learning model to extract the private information
(e.g., attributes). We thus formulate such a privacy defense as an
adversarial learning problem, where RecUP-FL generates slight per-
turbations that can be added to the gradients before sharing to fool
adversary models. To improve the transferability to un-queryable
black-box adversary models, inspired by the idea of meta-learning,
RecUP-FL forms a model zoo containing a set of substitute models
and iteratively alternates between simulations of the white-box and
the black-box adversarial attack scenarios to generate perturbations.
Extensive experiments on four datasets under various adversarial
settings (both attribute inference attack and data reconstruction
attack) show that RecUP-FL can meet user-specified privacy con-
straints over the sensitive attributes while significantly improving
the model utility compared with state-of-the-art privacy defenses.
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1 INTRODUCTION

Over the past few years, deep learning models are being integrated
into more and more mobile and edge/IoT applications to bring
convenience to the users and help improve the user experience.
Successful applications can be found in almost every business sec-
tor, including but not limited to personal shopping recommenda-
tion [54], speech recognition [18], smart healthcare [29], and fraud
prevention in mobile banking [37]. However, to power these intelli-
gent applications, massive data need to be gathered from end users,
which would inevitably cause privacy concerns.

Federated learning (FL) [35], an emerging platform for distributed
machine learning, has recently received considerable attention for
its privacy benefits. In a typical FL system, a central server coordi-
nates multiple data providers (i.e., clients) to collaboratively train
a machine learning model. To protect privacy, clients do not di-
rectly share their private data during this learning process. Instead,
the server and the clients exchange focused model updates (e.g.,
gradients) to achieve the learning objective. While offering prac-
tical privacy improvements over traditional centralized learning
schemes, there is still no formal privacy guarantee in this vanilla
form of FL [28]. In fact, prior research has shown that different
levels of private information may still be leaked through the shared
model updates, ranging from membership information [36], sensi-
tive attributes [13, 34], to even complete reconstruction of private
training data samples [15, 55].

In response to these threats, several privacy-preserving tech-
niques have been proposed. For instance, secure multiparty compu-
tation (MPC) [9, 11] seeks to leverage cryptographic solutions to
secure “how it is computed” so that only the results of the compu-
tation are revealed to the intended parties. In addition, given the
potential threats from other clients or malicious eavesdroppers on
the client’s communication channel, a formal privacy guarantee
is needed on such client-level basis to protect “what is computed”
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(i.e., model updates shared by participating clients). For instance,
to prevent gradient leakage without requiring trust in a centralized
server, existing strategies require clients to apply a “local trans-
formation” to their gradients before sharing with the server, such
as applying local differential privacy (local-DP) [16, 46], gradient
compression [53] and representation perturbation [44], etc.
Limitations of Existing Efforts.Despite offering remarkable pri-
vacy improvement, existing client-level approaches usually require
adding a significant amount of noise (e.g., local-DP [16, 46]) or
largely modifying the gradients [44, 53], which will inevitably de-
preciate the utility and usability of the resulting model. Moreover, it
is usually more challenging to maintain a reasonable utility-privacy
trade-off with these client-level approaches. For instance, local-DP
requires adding much higher noise than what is required by central-
DP1. On the other hand, existing solutions consider each client’s
private data as a single entity and attempt to protect all attributes,
even including the ones that are helpful for the target learning task,
and therefore they often come at a large cost in model utility.
Key Insights. To improve the utility-privacy trade-offs of privacy
defenses in FL, we draw inspirations from the following key insights:
(1) Users may value different aspects of privacy differently, which
may result in different privacy requirements [41]. For example,
people may have different comfort level sharing certain attributes,
such as their political view, sexual orientation or religion. Thus, the
actual privacy requirements can be relaxed by allowing user-specific
privacy configurations. (2) Recent data protection regulations, such
as General Data Protection Regulation (GDPR) [1], and California
Consumer Privacy Act (CCPA) [2], require giving data providers
(e.g., clients in FL) their explicit consent to collect and process
their sensitive personal data. GDPR also makes a clear distinction
between sensitive personal data and non-sensitive personal data,
and sensitive data have more stringent requirements in terms of
data collection and processing. While the non-sensitive data do not
need to be treated with extra security, existing privacy defenses in
FL regard all data equally sensitive and aim to sanitize the gradients
to protect the whole data. Thus, we believe there is still much room
for further reconciling utility and privacy preservation in FL. (3)
Most privacy leakages through gradients are caused by inference
attacks, which usually rely on a machine learning model to learn
the mapping between the exchanged model updates and private
attributes. On the other hand, learning models have been proven
to be naturally vulnerable to adversarial examples [17], which can
potentially be leveraged to mitigate such privacy leakage.
Our Solution. Based on these insights, in this paper, we propose
RecUP-FL, the first user-configurable local privacy defense frame-
work that seeks to reconcile the utility and privacy in FL. Unlike
existing solutions that attempt to protect clients’ entire training
data, our objective is to focus on protecting a subset of sensitive
attributes specified by each user (i.e., client) according to their
privacy preferences. By relaxing the privacy constraints on the
non-sensitive attributes, RecUP-FL can achieve a relaxed notion
of privacy that better focuses on the identified sensitive attributes
and at the same time obtain significant improvements in model

1Local-DP requires a lower bound of noise magnitude Ω (
√
𝑛/𝜖) , while the central-DP

only requires O
(
1/𝜖

)
, where 𝑛 is the number of participating clients and 𝜖 is the

privacy loss [47].

utility over traditional defenses. For instance, voice data carry a set
of sensitive information besides speech contents, such as identity,
personality, geographical origin, emotions, gender and age, etc [13].
Users would value the privacy of these attributes differently given
where and how their voice-controllable devices are used. Similarly,
images also contain different types of sensitive information, such as
visited location, nationality, and fingerprint, etc. A wide user study
conducted by Orekondy et al. [41] shows that most people think
the leakage of fingerprint extremely violates their privacy while
nationality is the least private information. RecUP-FL provides a
means for users to select any sensitive attributes that they would
like to protect from all carried information before participating in
the training, which can enhance privacy and raise their willingness
to get involved in the training.

To achieve maximized privacy (i.e., reduce the attack success
rate of attackers who leverage learning models to launch infer-
ence attacks as much as possible), RecUP-FL is designed to be a
local defense solution: at each communication round in FL, besides
computing the model updates, each client also locally computes a
perturbation based on the specified sensitive attributes and only
shares the perturbed model updates to the server. In this way, the
clients can ensure their targeted data privacy without trusting
any other parties. To protect specified sensitive attributes while
maintaining a good level of utility, for each user-specified sensitive
attribute, we formulate the defense as an optimization problem
where the goal is to find the minimal perturbation that can prevent
the adversary frommaking the correct prediction. Such formulation
is equivalent to launching an adversarial attack against the adver-
sary model that aims to classify the victim’s sensitive attributes
from the shared model updates. However, computing such pertur-
bations is not trivial, since the clients (1) possess no information
about the configuration of the adversary model, including model
parameters, model architecture, and even model type (e.g., Random
Forest or Neural Network); and (2) do not have any query access to
the adversary model, which makes existing query-based black-box
adversarial attack methods [25] inapplicable.

To tackle the aforementioned challenges, RecUP-FL adopts a
two-stage method for calculating the defensive perturbation. In
the first stage, RecUP-FL forms a model zoo by loading a set of
pre-trained substitute models (referred to as defender models). For
each selected sensitive attribute, the defender models mimics the
behavior of the adversary by attempting to infer the attribute from
the clients’ model updates. In the second stage, RecUP-FL obtains
the perturbations by launching an adversarial attack against the de-
fender models. To enable the defense to be generalizable to unseen
adversary models, RecUP-FL exploits the meta gradient adversarial
attack [50] to improve the transferability of the calculated adver-
sarial perturbations. Note that RecUP-FL targets ex-post empirical
privacy instead of providing a formal differential privacy guarantee.
We compare RecUP-FL with four state-of-the-art baseline privacy
defenses, including applying local differential privacy with both
Gaussian noise [46] and Laplace noise [31], gradient sparsifica-
tion [30], and Soteria [44], under different settings with various
types of threat models. We consider two settings of threat models:
(1) a third party eavesdropping on the communication channel and
(2) an honest but curious central server. Both of them are able to
infer the potential sensitive attribute information without affecting
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the training process. The results show that the proposed RecUP-FL
can maximize the model utility and satisfy user-specified privacy
constraints against various privacy attacks.
Contributions. We summarize our main contributions as follows:
• To the best of our knowledge, RecUP-FL is the first framework
that seeks to reconcile utility and privacy via user-configurable
local privacy defenses in FL .
• To improve utility and privacy trade-off, RecUP-FL finds the
minimal perturbation for protecting user-specified attributes
by generating adversarial examples against a set of substitute
defender models.
• In order to improve the generalizability of RecUP-FL over unseen
and un-queryable adversary models, we exploit the meta gradi-
ent adversarial attack method to iteratively improve the trans-
ferability of the defense by leveraging a collection of carefully-
configured defender models.
• We evaluate the proposed RecUP-FL on four datasets, including
AudioMNIST, Adult Income, LFW and CelebA, under various
adversary settings. We show that RecUP-FL is able to resist both
attribute inference and data reconstruction attacks while achiev-
ing better utility-privacy trade-offs.

2 RELATEDWORK

2.1 Privacy Leakage in Federated Learning

Attribute Inference Attack. Attribute inference attack aims to
infer certain input attributes of the client’s private training data
through analyzing shared gradient information. This type of attack
was first formulated in centralized learning against Hidden Markov
Models (HMMs) and Support Vector Machine (SVM) classifiers [6]
and then was extended to work on fully connected neural networks
(FCNNs) [14] to determine whether the training data has a certain
set of properties. In FL settings, Hitaj et al. [20] considered the
adversary works as a client inside the privacy-preserving collabo-
rative protocol and aims to infer class-representative information
about a label that the adversary does not own. Further, Melis et
al. [36] showed that an adversarial client can infer certain attributes
of another client that are independent of its training task based on
the exchanged model gradients (e.g., whether people in the training
data wear glasses in a gender classification task). More recently, Lyu
et al. [34] considered a more practical scenario where clients share
their epoch-averaged gradients instead of small batch-averaged
gradients, and an honest but curious server will infer the sensi-
tive attributes of local training data via a gradient-matching-based
method. Feng et al. [13] proposed an attribute inference attack that
can infer sensitive attributes (e.g., the client’s gender information)
from shared gradients while training a speech emotion recognition
classifier via shadow training.
Data Reconstruction Attack. Prior studies showed the possibil-
ity of recovering class-level [20] or even client-level [45] data rep-
resentatives through generative models. More recent studies [15,
49, 52, 55] showed that an adversary could even fully restore the
training data from its shared gradient information. Specifically,
Zhu et al. recently [55] proposed to solve this gradient inversion
problem by solving for the optimal pair of input and label that best
matches the exchanged gradients. As a follow-up study, Zhao et
al. [52] provided an analytical computation method to precisely
infer the label information by performing binary classification to

the direction of the last layer’s gradient. It can effectively involve
label information in the reconstruction process and thus improve
the attack performance. However, they can only work on shallow
network architectures with low-resolution images. To launch such
attacks in more realistic scenarios, Geiping et al. [15] proposed
to use a magnitude-invariant design along with various optimiza-
tion strategies to restore ImageNet-level high-resolution data in
large batch size from deeper networks (e.g, ResNet [19]). Yin et
al. [49] also achieved image batch reconstruction by utilizing batch
normalization statistics and image fidelity regularization.

2.2 Privacy Defenses in Federated Learning

Crypto-based Defenses. One line of defense strategy is to pro-
tect the aggregation of model updates through secure multi-party
computation (MPC) [9, 11, 39], where a set of parties jointly com-
pute a common function of interest without revealing their private
inputs to other parties. For instance, Danner et al. [11] proposed
a secure sum protocol using a tree topology and homomorphic
encryption. SecureML [39] adopt a two-server model for preserv-
ing privacy, in which clients process, encrypt, and/or secret-share
their data among two non-colluding servers to train a global model.
Additionally, Bonawitz et al. [9] require the aggregation of model
updates in FL to be logically performed by the virtual, incorrupt-
ible third party so that the server can only receive the aggregated
model update. However, these crypto-based methods would in-
evitably cause high computational overhead, and recent inference
attacks [36] showed that the adversary can still reveal private in-
formation even though they can only access the aggregated model
update. Therefore, to ensure rigorous privacy guarantees in FL,
secure computation techniques is usually deployed in parallel with
the techniques for privacy-preserving disclosure, such as gradient-
degradation-based defenses [28] to be mentioned next.
Gradient-degradation-based Defenses.To prevent privacy leak-
age via shared gradient information in FL, a very straightforward
way is to intentionally “degrade” the fidelity of gradients on the
client prior to sharing them with the server. As a standard and
common method, differential privacy (DP) can be either applied
at the client side (i.e., local DP) or the server side (i.e., central DP)
to perturb the client’s shared gradients and the aggregated gra-
dients [16, 46], respectively, and thereby mitigate privacy risks.
Compared with central DP, local DP usually provides a better no-
tion of privacy since it does not require trust in a centralized server.
However, local DP requires injecting random noises to the gradients
at a large number of clients, making this local approach often come
at a large cost in utility. Zhao et al. [53] theoretically and empiri-
cally proved that DP makes data private by adding a significantly
large amount of noise, but it simultaneously filters out much useful
information. In addition to DP, Zhu et al. [55] demonstrated that
performing gradient sparsification (i.e., gradients with small mag-
nitudes are pruned to zero) can also help prevent privacy leakage
from the gradient. A more recent work, Soteria [44], proposed to
compute the gradients based on perturbed data representations to
maintain a good level of model utility while achieving a certified ro-
bustness guarantee to FL. While these gradient-degradation-based
methods can mitigate privacy risks in certain cases, they can only
achieve a sub-optimal utility-privacy trade-off because they treat
the entire training data (including non-sensitive information) as a
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single entity, thereby redundantly degrading the gradients’ fidelity.
Different from the above methods, RecUP-FL only protects the
sensitive attributes identified by users instead of the whole data,
thus obtaining an improved utility-privacy trade-off. The general
framework of our approach is under the umbrella of context-aware
privacy defenses (e.g., [22, 23, 42]), which can leverage the context
(e.g., dataset statistics, dataset’s utility) to achieve better utility-
privacy trade-offs. However, to the best of our knowledge, this is
the first work that leverages the knowledge of user-specific sensi-
tive attributes to improve utility-privacy trade-offs in FL.

3 PROBLEM FORMULATION &

RECUP-FL DESIGN OBJECTIVES

3.1 Problem Formulation

Federated Learning.Without loss of generality, we assume there
are 𝐾 participating clients C = {𝐶1, ...,𝐶𝐾 } and one central server
in our FL setting. The clients C will collaboratively train a global
model G under the organization of the central server. The client
𝐶𝑖 holds its local data 𝐷𝑖 which is composed by 𝑁 individual data
records (X𝑖 ,Y𝑖 ) = {(𝑥𝑖,1, 𝑦𝑖,1), ..., (𝑥𝑖,𝑛, 𝑦𝑖,𝑛)}, 𝑛 ∈ [1, 𝑁 ], where
𝑥𝑖,𝑛 denotes the 𝑛-th data sample in the 𝑖-th client, and 𝑦𝑖,𝑛 denotes
its corresponding label of the training FL task.

At the beginning of the FL process, the central server first ini-
tializes the global model G with random initial weights𝑤0. After
initialization, the central server repeatedly interacts with clients for
𝑇 communication rounds until the global model converges. Each
communication round 𝑡 ∈ [1,𝑇 ] contains the following steps:
• Step 1: Synchronization. The central model sends the current
model G with weights𝑤𝑡 to all 𝐾 clients.
• Step 2: Local Training. Each client 𝐶𝑖 performs one or more
training steps on the received model G using its local data 𝐷𝑖 .
After training, each client sends its model update (i.e., gradients)
∇𝑤𝑡,𝑖 back to the central server.
• Step 3: Aggregation. The central server averages all partici-
pating clients’ model updates to update the global model [35]:
𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ·

∑𝐾
𝑖=1
∇𝑤𝑡,𝑖

𝐾
via gradient descent, where 𝛼 is the

learning rate.

Unlike the centralized training scheme that requires clients to
send their local data 𝐷𝑖 to the central server, FL only requires
the model updates ∇𝑤𝑡,𝑖 to be shared with the central server, and
thereby the privacy concerns can be mitigated.
Threat Models. Despite the fact that training data can be kept
locally in FL, the shared model updates still carry much sensitive
information about the local data, which can be leveraged by an
adversary to gain knowledge of the client’s private data. In order
to evaluate our defense under the worst-case scenario, we assume
a very powerful adversary with the ability to access each client’s
update. In practice, the adversary can be either (1) a third party
outside the training process eavesdropping on the communication
channel [51], gathering the model updates, and launching attacks,
or (2) an honest but curious central server, who executes the regular
training procedure but also attempts to infer the client’s private
information from the received model updates [34]. The goal of
the adversary is to reveal as much sensitive information about the
client’s private data as possible.

To investigate the worst-case scenario, we consider two criti-
cal privacy leakage attacks in FL: attribute inference attack and
data reconstruction attack. In the attribute inference attack, the
adversary aims to infer the sensitive attributes of the client’s private
training data from the shared model updates. As stated in prior stud-
ies [14, 43], it usually builds an adversary model I, intercepts the
model updates ∇𝑤𝑡,𝑖 , and infers the sensitive attribute value 𝑎𝑖 uti-
lizing the pre-trained adversary model (i.e., 𝑎

′
𝑖
= I(∇𝑤𝑡,𝑖 )). In the

data reconstruction attack, the adversary aims to completely recover
the client’s private training data 𝑋𝑖 from the shared model updates
by solving a gradient-matching optimization problem [15, 52, 55]
as 𝑋

′
𝑖
= R(∇𝑤𝑡,𝑖 )) where R denotes the reconstructor.

Privacy Defense. A common way to defeat inference attack in FL
is to apply a defensive local transformation function 𝜑 (·) on the
model update before sharing as follows:

∇𝑤 ′𝑡,𝑖 = 𝜑 (∇𝑤𝑡,𝑖 ), (1)
where ∇𝑤 ′

𝑡,𝑖
is the perturbed model update after applying the trans-

formation.We consider the following four state-of-the-art defensive
transformation functions:
(1) DP (Gaussian) [46]: One of the most common solutions to
defend against privacy leakage attacks in FL is DP (Gaussian). It
restricts the model updates within the given clipping bound 𝐵 by
𝐶𝑙𝑖𝑝 (∇𝑤𝑡,𝑖 , 𝐵) = ∇𝑤𝑡,𝑖

max(1, ∥∇𝑤𝑡,𝑖 ∥2/𝐵) . Then it injects Gaussian noise
on the clipped model updates before sharing by 𝜑𝑔 (∇𝑤𝑡,𝑖 , `, 𝜎, 𝐵) =
𝐶𝑙𝑖𝑝 (∇𝑤𝑡,𝑖 , 𝐵) + N (`, 𝜎2), where N(·) is a normal distribution, `
and 𝜎 are the mean and standard deviation of the noise.
(2) DP (Laplace) [31]: Similar to DP (Gaussian), given the loca-
tion `, the scale 𝑏 and clipping bound 𝐵, the transformation func-
tion of adding Laplace noise is 𝜑𝑙 (∇𝑤𝑡,𝑖 , `, 𝑏, 𝐵) = 𝐶𝑙𝑖𝑝 (∇𝑤𝑡,𝑖 , 𝐵) +
𝐿𝑎𝑝 (`, 𝑏), where 𝐿𝑎𝑝 (·) denotes the Laplace distribution.
(3) Gradient Sparsification [30]: Gradient sparsification is origi-
nally proposed to reduce the communication cost in FL and is later
proved to be also effective in defending against certain gradient
leakage attacks [55]. Given a sparsification rate 𝑝 ∈ (0, 1), a bi-
nary mask 𝑀 is first calculated byM ← ∥∇𝑤𝑡,𝑖 ∥ > 𝑝 of ∥∇𝑤𝑡,𝑖 ∥,
then the mask is applied to the original model update according to
𝜑𝑠 (∇𝑤𝑡,𝑖 , 𝑝) =M ⊙ ∇𝑤𝑡,𝑖 , where ⊙ denotes the point-wise multi-
plication operation.
(4) Soteria [44]: A recent solution to defend against data recon-
struction attacks in FL. Soteria perturbs the representation of the
input data that learned from a fully-connected layer 𝐿 (called the
defend layer) to maximize the reconstruction error. Suppose the
global model of FL consists of a feature extractor before the defend
layer and the classifier denoted as 𝑓𝑟 . 𝑓𝑟 first learns to map the
target input data sample 𝑥𝑖,𝑛 ∈ R𝑑 to a 𝑙-dimension representation
𝑟 ∈ R𝑙 . Then, the classifier maps the learned representation 𝑟 to
the classes of the training task. Specifically, given a pruning rate
𝑝 ∈ (0, 1), the client first evaluates the impact ]𝑖 of each element
𝑟𝑖 ∈ 𝑟 by calculating ]𝑖 = ∥𝑟𝑖 (∇𝑥𝑖,𝑛 𝑓𝑟 (𝑟𝑖 ))−1∥2. Then, the client
prunes the 𝑝 × 𝑙 elements in the defender layer to the largest value
in ]𝑖 , 𝑖 ∈ [0, 𝑙 − 1] to get a perturbed representation 𝑟 ′ of the input
dataset 𝐷𝑖 . Finally, the client computes and shares the update com-
puted on the perturbed representation 𝑟 ′. Therefore, the defensive
transformation function of Soteria can be considered as applying
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Figure 1: Overview of RecUP-FL.

a maskM only to the update of the defend layer, which can be
written as 𝜑𝑠𝑜𝑡 (∇𝑤𝑡,𝑖 , 𝑝) =M ⊙ ∇𝑤𝑡,𝑖 .

While the above-mentioned client-level defenses can prevent
privacy leakage in certain cases, the applied local transformation
𝜑 (·) on the model update will inevitably degrade its fidelity and
thereby greatly impacts the utility of the resulting model. Addition-
ally, we can observe from their transformation functions that all of
them treat the whole model update as an entire entity and regard
all attributes as equally important. However, sensitive attributes
usually have unequal emphases at different layers/positions of the
gradients [38], and more importantly, users may value different
aspects of privacy differently [41]. Therefore, to meet actual pri-
vacy constraints, such a general treatment, which provides either
redundant protection on non-sensitive gradients or insufficient
protection on sensitive gradients, can hardly achieve an optimal
utility-privacy trade-off.

3.2 Design Objectives

To address the limitations of existing efforts, we propose RecUP-FL,
a user-configurable local privacy defense framework that seeks to
reconcile the utility and privacy in FL. Unlike existing approaches,
RecUP-FL can achieve a relaxed notion of privacy by providing
effective protection only on the sensitive attributes specified by
each user (i.e., client) according to their preference. This way the
defense can be more flexible and can better adjust to different users’
privacy requirements in practice while obtaining significant im-
provements in model utility. Specifically, RecUP-FL allows each
client to specify a set of attributes A𝑖 = {𝑎𝑖,1, ..., 𝑎𝑖,𝑀 } to protect
its local training data before the FL training. To protect the user-
specified attributes, RecUP-FL will leverage the idea of adversarial
learning to find the optimal (minimal) perturbation 𝑝𝑡,𝑖 to be added
to the original model update ∇𝑤𝑡,𝑖 for the client 𝐶𝑖 at the 𝑡-th com-
munication round before sharing. This can be formally described
as 𝜑RecUP-FL (∇𝑤𝑡,𝑖 ) = ∇𝑤𝑡,𝑖 + 𝑝𝑡,𝑖 . The objectives of RecUP-FL are
twofold:

• Objective I (Privacy): The perturbed model update should be
able to prevent the adversary from inferring the user-specified
sensitive attributes.
• Objective II (Utility): RecUP-FL should find the minimal per-
turbation to maintain a good level of utility of the global model.
To achieve Objective I, we require the attributes inferred from

the perturbed updates to be as different from the genuine attributes
as possible:

argmax
𝑝𝑡,𝑖

𝑑 (F (𝑝𝑡,𝑖 + ∇𝑤𝑡,𝑖 ),A𝑖 ), (2)

where 𝑑 (·) measures the distance between the inferred and gen-
uine attributes and F (·) denotes the adversarial prediction func-
tion, which takes model update as input and outputs the predicted
sensitive attributes. That is, instead of attempting to degrade the
reconstructed data quality, we only aim to prevent the updates from
leaking information about the user-specified sensitive attributes.

To achieve Objective II, we seek to minimize the global model’s
training loss:

argmin
𝑝𝑡,𝑖

L(𝑤𝑡 + 𝛼
𝑁∑︁
𝑖=1
(𝑝𝑡,𝑖 + ∇𝑤𝑡,𝑖 ), 𝐷𝑡𝑒𝑠𝑡 ), (3)

where L(·) is the training loss function (e.g., cross-entropy) and
𝐷𝑡𝑒𝑠𝑡 is the evaluation set.
4 DESIGN OF RECUP-FL

4.1 System Overview

As shown in Figure 1, the proposed RecUP-FL can be implemented
as an add-on defense module on the client side to prevent privacy
leakage. To improve model utility while still meeting user’s pri-
vacy requirements, RecUP-FL provides users withmore control over
their privacy and allows each client to configure their privacy needs
before the FL training by identifying a set of sensitive attributes (i.e.,
Ai for the 𝑖-th client). In practical applications, the sensitivity and
configuration of attributes only rely on users’ personal preferences
instead of any external regulations. For example, for most people,
voice biometrics in general are often considered more private than
emotion in speech data. They may only identify voice biometrics as
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a sensitive attribute to protect. This way we can achieve a relaxed
notion of privacy that only needs to meet users’ actual privacy
needs. Specifically, in FL, at the communication round 𝑡 , the 𝑖-th
client needs to calculate the model update ∇𝑤𝑡,𝑖 first through learn-
ing its private data with the FL model𝑤𝑡 . To protect the identified
sensitive attributes while maintaining a good level of utility, we
formulate the defense as an adversarial machine learning attack
problem that seeks to find a minimal perturbation to be added to
the model update before sharing to mislead the adversary model
so that the adversary cannot reveal any private information from
the perturbed update, i.e., ∇𝑤 ′

𝑡,𝑖
. Note that RecUP-FL does not re-

quire the server to execute any additional tasks besides aggregation.
We use FedAvg [35] in this work for simplicity, but in practice,
RecUP-FL can also work with other secure aggregation rules, such
as Krum [8], and Median [48], etc.

Although the client-level privacy defense can be formulated as
launching an adversarial attack against the privacy-leakage ad-
versary model, solving such an optimization problem to generate
gradient perturbations is not trivial. Unlike existing adversarial
attacks (mostly in white-box [10, 17] or black-box [25] settings),
for the privacy defense purposes in FL, we need to consider a very
restricted no-box setting as clients do not possess any knowledge
about the configuration of the adversary model (e.g., model archi-
tecture and parameters) and, more importantly, they are not able
to query the adversary model to counterfeit its functionality. Ad-
ditionally, existing studies [27, 36] showed the feasibility of using
non-neural-network approaches (e.g., Random Forest and Support
Vector Machines) to infer sensitive attributes from model param-
eters. To make our gradient perturbation applicable to arbitrary
adversary models regardless of their model type, architecture, and
parameters, we need to improve the cross-model transferability of
our generated defensive gradient perturbations.

Meta-learning [40] is proposed for solving unseen tasks by learn-
ing to learn. Ameta-learningmodel first learns knowledge and seeks
the inner connections from multiple training tasks (i.e., meta-train).
Then later the model is adapted to the unseen task by fine-tuning
with only few training samples (i.e., meta-test). A detailed introduc-
tion to meta-learning can be founded in Appendix A. Inspired by
the meta-learning technique, we propose to use a two-step itera-
tive method to generate perturbations for unseen and unquerable
adversary models. As shown in Figure 1, at each iteration, we have:
(1) Meta-learn: using a set of known defender models (i.e., S), as
substitutes of the adversary model, to sequentially generate a uni-
versal adversarial perturbation (equivalent to launching white-box
attacks); and (2) Meta-test: leveraging the prior knowledge in its
learned universal perturbation to fine-tune itself to a new unseen
defender model (equivalent to launching black-box attacks). By
iteratively conducting white-box and black-box attacks, RecUP-FL
can narrow the gap between the gradient directions in white-box
and black-box attacks and gradually learn to adjust the perturbation
from known defender models to the unknown adversary model.
Further, we repeat the above two-step iterative method several
times. The different compositions of substitute models each time
make the generated perturbation will not bias to any specific model.

4.2 Methodology

Suppose RecUP-FL generates defensive perturbations to protect
the model update ∇𝑤𝑡,𝑖 calculated by the 𝑖-th client at the 𝑡-th com-
munication round, and the client specifies its sensitive attribute set
A𝑖 = {𝑎𝑖,1, ..., 𝑎𝑖,𝑀 }. For simplicity, we first use the single attribute
protection as an example to introduce our method and then expand
it multi-attribute protection. The complete process of generating
defensive perturbations can be found in Appendix Algorithm 1. A
theoretical analysis can be found in Appendix Section I.
Single Attribute Protection. In this case, we consider 𝑎𝑖,𝑚 ∈ A𝑖
as the targeted attribute to provide protection. Before the FL train-
ing, a model zoo, S, consisting of multiple diverse pre-trained sub-
stitute models (referred to as defender models) needs to be created.
These models all mimic the behavior of the adversary model, that
is, predicting the 𝑎𝑖,𝑚 through model updates. In practice, we can
create an ensemble of models for every possible sensitive attribute
prior to the FL training and pre-load the corresponding ensemble
models to the clients according to their attribute specifications.
To improve the transferability of the defensive perturbations to
the unseen and un-queryable adversary model, we randomly sam-
ple {𝑆1, ..., 𝑆𝑄 } from S and perform the following meta-train and
meta-test to compute defensive gradient perturbations.
• Meta-train. Meta-train utilizes the first 𝑄-1 models from the se-
lected𝑄 models to simulate white-box adversarial attacks to gen-
erate defensive perturbations. Considering clients usually only
have limited computational resources, we adopt the Fast Gradi-
ent Sign Method (FGSM) [17] as our white-box attack method
due to its fast execution and “free” adversarial training features
compared to other computationally expensive attacks such as
projected gradient decent (PGD)-based attacks [10].Specifically,
FGSM directly utilizes the gradient information of the targeted
model by modifying the benign input to the opposite direction
of the correct prediction. The perturbation generation in FGSM
can be described as:

∇𝑤𝑞
𝑡,𝑖

= ∇𝑤𝑡,𝑖 +
𝜖

𝑄
· 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑡,𝑖 ), 𝑎𝑖,𝑚)), (4)

where ∇𝑤𝑞
𝑡,𝑖

denotes the perturbed model update that aims to
fool the defender model 𝑆𝑞 , 𝜖 denotes the perturbation budget,
and 𝑔𝑞 (·) denotes the loss function of the model 𝑆𝑞 . To gener-
ate a universal perturbation that can be applied to the first 𝑄-1
defender models, we employ the iterative FGSM as:

∇𝑤𝑞
𝑡,𝑖

= ∇𝑤𝑞−1
𝑡,𝑖
+ 𝜖
𝑄
· 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑞−1𝑡,𝑖

), 𝑎𝑖,𝑚)), 𝑞 ∈ [0, 𝑄 − 1],
(5)

where ∇𝑤0
𝑡,𝑖

= ∇𝑤𝑡,𝑖 . After 𝑄-1 iterations, the universal adver-
sarial example (perturbed model update),𝑤𝑄−1

𝑡,𝑖
, can be obtained.

• Meta-test. After gaining prior knowledge from the meta-train,
the meta-test step is used to fine-tune the perturbation to make it
adapt to the unseen model. In this step, we perform the black-box
attack against the last sampled model 𝑆𝑄 to improve the general-
ity of the perturbation obtained from the meta-train step. As we
cannot access the model’s loss function in the black-box setting,
we adopt FGSM onto the cross-entropy (LCE) between the model
predictions and ground-truths to generate perturbations, which
can be formulated as:
∇𝑤𝑄

𝑡,𝑖
= ∇𝑤𝑄−1

𝑡,𝑖
+ 𝜖 · 𝑠𝑖𝑔𝑛(∇LCE (𝑆𝑄 (∇𝑤𝑄−1𝑡,𝑖

), 𝑎𝑖,𝑚)) . (6)
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The perturbation generated by the meta-test step (𝑝𝑒𝑏𝑡𝑒𝑠𝑡 =

∇𝑤𝑄
𝑡,𝑖
− ∇𝑤𝑄−1

𝑡,𝑖
) is the defensive perturbation we are seeking for.

It relies on the prior knowledge from the meta-train (i.e., using
the perturbed model update as the basis) and fine-tuning it to
cover the unseen model in the meta-test. Then we can add it back
to the original model update𝑤𝑡,𝑖 as follows:

∇𝑤 ′𝑡,𝑖 = ∇𝑤𝑡,𝑖 + (∇𝑤
𝑄

𝑡,𝑖
− ∇𝑤𝑄−1

𝑡,𝑖
) = ∇𝑤𝑡,𝑖 + 𝑝𝑒𝑏𝑡𝑒𝑠𝑡 . (7)

• Avoiding Bias. We notice that only performing meta-train and
meta-test for one time results in bias to some of the models,
and the performance will be highly dependent on the one-time
choice. Therefore, we propose to iteratively repeat the two-step
process by composing different combinations of various models
to improve the transferability further. Specifically, RecUP-FL
takes the original model update ∇𝑤𝑡,𝑖 as input, and repeats the
meta-train/meta-test for 𝑃 iterations in total. Each iteration takes
the output of the last iteration as its input. It can be formulated
as follows:

∇𝑤𝑝 ′
𝑡,𝑖

= ∇𝑤𝑝−1′
𝑡,𝑖
+ 𝑝𝑒𝑏𝑝𝑡𝑒𝑠𝑡 , 𝑝 ∈ [0, 𝑃], (8)

where ∇𝑤0′
𝑡,𝑖

= ∇𝑤𝑡,𝑖 and ∇𝑤𝑃 ′𝑡,𝑖 will be the final perturbation for
the single attribute protection, by repeating the meta-train/meta-
test steps, the final perturbation will not bias to any model and
thus obtain a better transferability to mislead the unseen and
unqueyable adversary model.

Multi-Attribute Protection.To expandRecUP-FL to protectmore
than one attribute simultaneously, we will first conduct single at-
tribute protection for each attribute 𝑎𝑖,𝑚 ∈ A𝑖 individually, and
then combine all the attribute-specific defensive perturbations by
taking into account their protection levels.

𝑝𝑒𝑏𝑡,𝑖 =

𝑀∑︁
𝑚=1

𝛾𝑚 · ∇𝑤𝑃,𝑚′𝑡,𝑖
, (9)

where 𝛾𝑚 ∈ (0, 1) denotes the protection level on the𝑚-th attribute
given by the client’s preference. Finally, 𝑝𝑒𝑏𝑡,𝑖 is the perturbation to
be added on the model update ∇𝑤𝑡,𝑖 , which can effectively protect
attributes A𝑖 .

5 EXPERIMENTAL SETUP

5.1 Datasets

We use four datasets to evaluate RecUP-FL: (1) AudioMNIST [7]
contains 30,000 audio recordings of spoken English digits, (2) Adult
Income [12] contains income records of 48,842 individuals, (3) La-
beled Faces in theWild (LFW) [24] contains 13,233 facial images from
5,749 people, each image is cropped to 62×47 pixels with RGB chan-
nels, and (4) CelebFaces Attributes (CelebA) [32] contains 202,599
RGB facial images of 32 × 32 pixels covering 10,177 identities.

Unless stated otherwise, we divide each dataset into 𝐷𝑡𝑟𝑎𝑖𝑛 and
𝐷𝑡𝑒𝑠𝑡 with 80% and 20% randomly selected samples, respectively.
For the FL setting, by default, we assume each client possesses
one sample in 𝐷𝑡𝑟𝑎𝑖𝑛 . We will study the case where each client
possesses multiple data samples in Section 6.4.
5.2 FL Model

We adopt different FL model architectures for the four datasets.
More details of the architectures can be found in Appendix B.
(1) AudioMNIST. We use a CNN model to perform a 10-class clas-
sification of the spoken digits (i.e., zero to nine). We first process the

audio into a spectrogram and then apply a model containing three
convolutional layers, one hidden layer, and one output layer. The
model is trained on the cross-entropy loss function with a learning
rate of 10−4.
(2)Adult Income. We use a 2-layer fully-connected neural network
to perform binary classification on the income level (i.e., > 50𝑘 or
not). The model is trained on the Mean Squared Error (MSE) loss
function with a learning rate of 0.01.
(3) LFW. We use a CNNmodel to perform binary emotion classifica-
tion (i.e., smiling or not). The model consists of three convolutional
layers, one hidden layer, and one output layer.
(4)CelebA. We adopt a CNNmodel to perform binary classification
on gender. The model composes three convolutional layers, one
hidden layer, and one output layer and is trained on the cross-
entropy loss function with a learning rate of 0.01.
5.3 Defense Settings

Model Zoo Setting. To achieve good defense generalizability on
various types of adversary models, the model zoo should include
a sufficient number of defender models with diverse structures.
Unless mentioned otherwise, in our implementation, we choose to
construct the model zoo with 20 defender models for better trans-
ferability and utility-privacy trade-off. We also study the impact of
model zoo size in Section 6.6. Our empirical study finds that using
defender models with deeper structures (e.g., 4 or 5 layers) would
not provide any significant performance benefit over shallow mod-
els. Therefore, to maintain a minimal model size and enable more
computational efficiency on clients’ local devices, we configure the
defender models as 3-layer fully-connected neural networks with
varying numbers of neurons for each layer (i.e., 128 to 2,048).
Parameter Setting. Unless otherwise stated, we empirically set
the number of iterations, 𝑃 , to 10 and the number of selected
models for each iteration, 𝑄 , to 5 for all the datasets to improve
the transferability of the defensive perturbations while maintain-
ing a reasonable level of computational cost. Additionally, we ex-
plore different perturbation budget ranges for different datasets:
𝜖 ∈ [5 × 10−5, 0.5] for AudioMNIST dataset; 𝜖 ∈ [1 × 10−5, 0.1]
for Adult Income dataset; 𝜖 ∈ [5 × 10−5, 0.5] for LFW dataset; and
and 𝜖 ∈ [5 × 10−6, 0.5] for CelebA dataset. We study the impact of
privacy budgets in Appendix D.
5.4 Adversary Models

Attribute Inference Attack. The adversary uses a pre-trained
classifier to infer sensitive attributes from gradients. We train the
adversary classifiers by the same training set as the defender mod-
els (i.e., 𝐷𝑡𝑟𝑎𝑖𝑛) to simulate the strongest adversary who has the
knowledge of the defender models’ training set. Following a prior
study [36], we assume that the adversary applies max-pooling on
the received gradients to reduce dimensionality. We explore the
following adversary model settings:
(1) Structure-known Neural Network (Stru-NN). We assume
the adversary model architecture is included in the defender model
zoo (i.e., a 3-layer fully-connected neural network). Stru-NN is
trained on the cross-entropy loss function using a Stochastic Gra-
dient Descent (SGD) optimizer with a learning rate of 0.01 for 80
epochs.
(2) Unknown Neural Network (Unkwn-NN). We assume that
the adversary model architecture is not included in the defender
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model zoo. It is a 4-layer fully-connected neural network, each
layer contains 1,024, 1,024, 512, and 128 neurons, respectively. The
training setting of Unkwn-NN is the same as Stru-NN.
(3) Support Vector Machine (SVM). We assume the adversary
model is a Support Vector Machine classifier with an RBF kernel.
(4) Random Forest (RF). We assume the adversary model is a
Random Forest (RF) classifier containing 120 trees.
Data Reconstruction Attack. Unlike attribute inference attacks,
recent studies [49, 52, 55] showed that the adversary can even com-
pletely reconstruct private data by solving a gradient-matching
problem. In this paper, we adopt the more advanced method pro-
posed by Geiping et al. [15] given its capability in reconstructing
high-resolution images and robustness against different random
initializations. Specifically, the adversary will run 2,000 iterations
to match gradients for the data reconstruction.

5.5 Defense Baselines

The following state-of-the-art defense baselines (described in Sec-
tion 3.1) are used as baselines. To better compare their utility-
privacy trade-offs, we also adjust their defense parameters (level of
gradient transformations) in different ranges.
(1) DP (Gaussian) [46]. We set ` = 0 for all datasets. We set 𝜎 ∈
[5 · 10−5, 0.5], 𝜎 ∈ [1 · 10−5, 0.1], 𝜎 ∈ [5 · 10−5, 0.5], and 𝜎 ∈
[5 · 10−6, 0.5] for AudioMNIST, Adult Income, LFW, and CelebA
datasets, respectively. We set 𝐵 ∈ [20, 22], 𝐵 ∈ [20, 22], 𝐵 ∈ [1 ·
10−8, 1·10−3], and 𝐵 ∈ [2·10−6, 0.1] for AudioMNIST, Adult Income,
LFW, and CelebA datasets, respectively.
(2) DP (Laplace) [31]. We set ` = 0 for all datasets. We set 𝑏 ∈ [2 ·
10−5, 0.5], 𝑏 ∈ [1 ·10−5, 0.1], 𝑏 ∈ [2 ·10−5, 0.2] and 𝑏 ∈ [2 ·10−6, 0.1]
for AudioMNIST, Adult Income, LFW, and CelebA datasets, respec-
tively. The settings of 𝐵 follow DP (Gaussian).
(3) Gradient Sparsification [30]. We set 𝑝 ∈ [20%, 90%], 𝑝 ∈
[15%, 80%], 𝑝 ∈ [80%, 99%], and 𝑝 ∈ [10%, 90%] for AudioMNIST,
Adult Income, LFW, and CelebA datasets, respectively.
(4) Soteria [44]. We set 𝑝 ∈ [25%, 95%], 𝑝 ∈ [20%, 90%], 𝑝 ∈
[80%, 95%], and 𝑝 ∈ [50%, 90%], for AudioMNIST, Adult Income,
LFW, and CelebA datasets, respectively.
5.6 Evaluation metrics

(1) Learning Loss: the loss value of the global model evaluated on
𝐷𝑡𝑒𝑠𝑡 , used as the utility metric. A lower learning loss means better
model performance.
(2) Attack Success Rate (ASR): the ratio of correct predictions
over the total number of attribute inferences performed by the
adversary, used as the privacy metric. A lower ASR means better
protection against the attribute inference attack.
(3) Mean Square Error (MSE): the pixel-wise mean-square-error
between the reconstructed image and the original image. A higher
MSE means better protection against the data reconstruction attack.
6 EXPERIMENTAL RESULTS

6.1 Single Attribute Protection

To evaluate RecUP-FL against single-attribute inference attacks,
we use three datasets and investigate three typical stages of the FL
process, namely, the beginning, the middle, and the end stage of
training. Specifically, according to their convergence speeds, for
AudioMNIST, we consider the 1st, 3rd, and 5th rounds with identity
(i.e., male native speaker, female native speaker, male non-native

speaker and female non-native speaker) as the sensitive attribute;
for Adult Income, we consider the 1st, 3rd, and 5th rounds with
race (i.e., white, asian-pac-islander, amer-indian-eskimo, black and
the other) as the sensitive attribute; and for LFW, we consider the
1st, 10th, and 50th rounds with race (i.e., asian, white and black) as
the sensitive attribute.
Utility-Privacy Trade-off. For each defense, we tweak its param-
eter as mentioned in Section 5.5 to get a set of privacy and utility
value pairs and plot the utility-privacy trade-off curve accordingly.
It is worth noting that some curves such as gradient sparsification
and Soteria are shorter than others. This is because their impacts
on the gradients are limited by the parameters’ range (e.g., the
maximum sparsity is 100%).
(1)AudioMNIST. The results of theAudioMNIST dataset are shown
in Figure 2. Since we aim at achieving lower ASR and learning loss,
the left bottom corner is the optimal point. Our general observation
is RecUP-FL achieves the best utility-privacy trade-off (i.e., closer
to the optimal point). For example, when defending against the
Stru-NN at the 1st round, RecUP-FL can achieve a low ASR (< 30%)
without scarifying much utility while other baselines keep a rel-
atively large ASR (i.e., around 70%). When defending against the
Unkwn-NN at the 5th round, other baselines can provide sufficient
protection only when increasing the perturbation budget to rela-
tively large values, while RecUP-FL can reduce the ASR to around
25% by adding a much smaller perturbation.
(2) Adult Income. The results of the Adult Income dataset are
shown in Appendix Figure 10. We observe that the best trade-off
still happens in RecUP-FL. For instance, when defending against the
Stru-NN at the 3rd round, achieving the same privacy protection
(ASR around 35%), RecUP-FL can keep almost zero utility loss, but
other baselines suffer a significant drop of learning loss. However,
we notice that when defending against the RF, our defense performs
similarly to the DP (Gaussian) and all baselines cannot get low ASR
when adding small perturbation. One of the possible reasons is that
RF is more robust against the added noise [26].
(3) LFW. The results of the LFW dataset are shown in Appendix Fig-
ure 11. Similarly, we can see that we still achieve the best trade-off.
For example, in the case of Stru-NN at the 1st round, when achiev-
ing the same learning loss (around 0.53), RecUP-FL can largely
reduce the ASR by 33.18% while other baselines can only reduce
the ASR by 6.35%.

In summary, RecUP-FL achieves the best utility-privacy trade-off
in the three datasets. This is because RecUP-FL only perturbs the
neurons that carry more sensitive information about the specified
attributes while preserving the neurons that are relevant to the
training task. As a result, the generated perturbation would have
less negative effects on the FL training while still being able to
provide good protection on the sensitive attributes.
Transferability of RecUP-FL.Next, we examine the transferabil-
ity of RecUP-FL by comparing the performance against different
adversary models at the same round.
(1) AudioMNIST. As shown in Figure 2, we can see that Unkwn-
NN are more difficult to defend than Stru-NN due to the unknown
structure. RecUP-FL is still able to achieve an ASR that is on average
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(b) 1st Round, Unkwn-NN
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(c) 1st Round, SVM
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(d) 1st Round, RF
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(e) 3rd Round, Stru-NN
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(f) 3rd Round, Unkwn-NN
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(g) 3rd Round, SVM
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(h) 3rd Round, RF
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(i) 5th Round, Stru-NN
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(j) 5th Round, Unkwn-NN
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(k) 5th Round, SVM
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Figure 2: Utility-privacy trade-off curves on AudioMNIST (Some baselines have shorter trade-off curves due to the adjustable

range limits of their parameters).

23.7% lower than other baselines. Also, we can observe that gradi-
ent sparsification can hardly defend against non-neural-network
adversaries, especially at the 3rd and 5th rounds.
(2) Adult Income. As shown in Appendix Figure 10, RecUP-FL
can still achieve the best utility-privacy trade-off regardless of the
adversary model architecture. For example, when defending against
Unkwn-NN, RecUP-FL achieves 29.79% ASR scarifying with almost
no learning loss at the 1st round. Also, we can observe that RecUP-
FL can effectively defend the SVM adversary on the Adult Income
dataset by lowering the ASR to around 28%, and other baselines
can hardly defend them under similar learning loss.
(3) LFW. As shown in Appendix Figure 11, we can observe that
RecUP-FL also achieves good transferability on the LFW dataset
with the lowest ASR in defending against Unkwn-NN at all three
stages. Even when defending against RF which has the best robust-
ness against noise, RecUP-FL can still outperform other baselines.

To sum up, these results show that RecUP-FL has the capability
in defending against both neural-network and non-neural-network
adversary models. Because the various architectures in the model
zoo have a strong ability to fit non-linear mapping functions from
gradients to attributes. SVM and RF can also be considered as non-
linear functions, and thus the generated perturbation can be utilized
to defend against non-neural-network adversary models.
6.2 Multi-Attribute Protection

We further evaluate the effectiveness of RecUP-FL on the LFW
dataset when the clients specify multiple sensitive attributes. Specif-
ically, we assume the clients consider their race and age (i.e., baby,
child, youth, middle-aged, senior) to be equally important (i.e.,
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Figure 3: Multi-attribute protection on LFW.

𝛾𝑔𝑒𝑛𝑑𝑒𝑟 = 𝛾𝑎𝑔𝑒 = 0.5). For the adversary model, we consider two
separate Stru-NN adversary models that aim to predict race and
age to evaluate their ASR respectively.
Utility-Privacy Trade-off. As shown in Figure 3, compared to
other baselines, RecUP-FL can still provide a better level of protec-
tion on both attributes under the same utility budget. For example,
in Figure 3(a), we can see that when the learning loss is 0.55, RecUP-
FL can achieve an ASR that is 2 times lower than DP (Laplace). In
addition, as shown in Figure 3(b), when the learning loss reaches
0.68, RecUP-FL can achieve around 0.2 ASR while other baselines
cannot provide adequate protection on age (ASR > 30%).
Impact of 𝛾 . Following the above-mentioned setting, we set the
𝛾𝑟𝑎𝑐𝑒 in the range of [0, 1] with a step 0.25 and 𝛾𝑎𝑔𝑒 = 1−𝛾𝑟𝑎𝑐𝑒 . As
shown in Figure 4(a), given the same utility budget, as we gradually
increase 𝛾𝑟𝑎𝑐𝑒 , the ASR against race drops, and the ASR against age
increases. This is because increasing 𝛾𝑟𝑎𝑐𝑒 results in more protec-
tion over the race attribute while making the age attribute more
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Figure 4: Multi-attribute protection with varying 𝛾 on LFW.
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Figure 5: Multi-attribute protection with varying𝑀 on LFW.

vulnerable. A similar trend can be observed on the age attribute in
Figure 4(b). We also notice that even with the 𝛾𝑟𝑎𝑐𝑒 = 0, the ASR
of the race inference attack would still drop slightly when a large
perturbation is used. Therefore, even when RecUP-FL is set to focus
on a particular attribute, it still has a certain degree of effect over
other attributes due to the correlation between these attributes.
Impact of the Number of Sensitive Attributes. Next, we con-
duct experiments on the LFW dataset to study the impact of the
number of sensitive attributes𝑀 on the performance of RecUP-FL.
Specifically, we consider emotion (i.e., smiling or not) as the FL
training task and investigate the following five sensitive attributes:
(1) Race: asian, white and black, (2) Gender : male or female, (3) Age:
baby, child, youth, middle-aged, senior, (4) Glasses: eyeglasses, sun-
glasses, no eyewear, and (5) Hair : black hair, blond hair, brown hair,
bald. We assume that the clients treat every attribute equally (i.e.,
𝛾 = 1

𝑀
). Figure 5 shows the utility-privacy trade-offs of RecUP-FL

against the Stru-NN adversary that aims to infer the client’s race
information at the 1st round of FL training. We can observe as we
gradually increase the number of protected attributes, the utility-
privacy trade-off is becoming worse. This is expected since given
the same utility budget, protecting a smaller number of attributes al-
lows each attribute to be assigned with a larger weight 𝛾 . Moreover,
when trying to protect a large number (e.g., 5) of sensitive attributes,
RecUP-FL still outperforms existing defenses that consider all pri-
vate information as a single entity compared with the baselines in
Appendix Figure 11. For instance, RecUP-FL can decrease the ASR
to 0.65 even protecting five attributes simultaneously, while Soteria
only reduces the ASR to around 0.75 when they both achieve 0.55
learning loss. These results verify that by selecting a few important
sensitive attributes, RecUP-FL can achieve a relaxed form of privacy
and thus provide a better utility-privacy trade-off. In some extreme
cases, where users want to protect most (or even all) the possible
attributes, they can also choose to use traditional privacy defenses
to protect the entire data.
6.3 Defend against Data Reconstruction Attack

To evaluate the effectiveness of RecUP-FL against data reconstruc-
tion attacks, we further conduct experiments on the LFW and
CelebA datasets. Specifically, for the LFW dataset, we consider
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Figure 6: Defending against data reconstruction attack on

LFW.

the 1st, 10th, and 50th rounds with race as the sensitive attribute;
and for the CelebA dataset, we consider the 1st, 5th, and 10th rounds
with age as the sensitive attribute. For a fair comparison, we tweak
the parameters of each defense to achieve a similar level of learning
loss (within 10−3).
(1) LFW. The reconstructed images and the measured MSE on LFW
dataset are shown in Figure 6. Some visual information can still be
revealed from the reconstructions in some situations (e.g., gradient
sparsification at the 1st and 10th rounds). However, with RecUP-
FL, the reconstructed images do not show any information about
specified attributes (i.e., gender). In addition, our defense outper-
forms other baselines in terms of the measured MSE. For example,
RecUP-FL achieves an 8.2 times greater MSE compared with DP
(Gaussian) at the 1st round, a 4.6 times greater MSE compared with
gradient sparsification at the 10th round, and a 2.5 times greater
MSE compared with gradient sparsification at the 50th round.
(2)CelebA. The reconstructions and MSE on the CelebA are shown
in Appendix Figure 13. We observe that the facial structure can
still be reconstructed after applying DP (Laplace) at the 1st and
5th rounds. In comparison, no useful information can be seen from
the reconstruction results when RecUP-FL is applied. Specifically,
RecUP-FL can achieve a 3.2 times greater MSE compared with
gradient sparsification at the 1st round, a 2.1 times greater MSE
compared with DP (Laplace) at the 5th round, and a 2.3 times greater
MSE compared with gradient sparsification at the 10th round.

In summary, the results demonstrate RecUP-FL can effectively
defend against data reconstruction attacks and achieve better utility-
privacy trade-offs compared with other baselines.

6.4 Convergence Results

We examine the convergence of the resulting global model when
applying RecUP-FL in a non-IID setting with the FedAvg aggregator.
We distribute 𝐷𝑡𝑟𝑎𝑖𝑛 of the LFW dataset to 100 clients with no
overlap according to their identities, where each client maintains
81 images on average, and evaluate the learning loss of the trained
model on 𝐷𝑡𝑒𝑠𝑡 . We consider a practical situation where half of the
clients select race as their specified attribute and the other clients
select gender. The perturbation budget 𝜖 is set to 0.01, while the
local training epoch and batch size are set to 1. We evaluate the
impact of the participation ratio of clients (ranging from 0.2 to 1.0).
The convergence results are presented in Figure 7. We can see that
when RecUP-FL is applied, the model is still able to converge with
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Table 1: Time consumption on defenses.

Defense RecUP-FL
DP

(Gaussian)
DP

(Laplace)
Gradient

Sparsification
Soteria

Time (s) 7.22 × 10−2 5.92 × 10−3 1.88 × 10−1 1.67 × 10−2 5.18

various participation ratio. We observe that a lower ratio result in
a slower convergence speed as expected because less training data
is involved. In addition, we observe that when the ratio is greater
than 0.8, the final learning loss is around 0.42, which is comparable
with the case where no defense is applied.

6.5 Comparison with Different FGSM Variants

To verify the effectiveness of the proposed meta-learning-inspired
method, we further conduct experiments to compare RecUP-FL
with four versions of FGSM under Stru-NN and Unkwn-NN. We
use the same set of parameters as in Section 5.3 and the details of
each variant can be found in Appendix E. As shown in Appendix
Figure 9, all variants can effectively defend against Stru-NN and
Unkwn-NN, but RecUP-FL achieves the best trade-off among them.
The one-step FGSM achieves the worst trade-offs in all situations as
expected. For example, one-step FGSM only achieves around 0.53
ASR while momentum FGSM achieves 0.36 ASR when defending
Stru-NNat the 10th round and both of them reach 0.45 learning
loss. One possible reason is that perturbation generated by one-step
FGSM only relies on one randomly selected model, which is hard to
be coincidentally optimal. The iterative FGSM and average FGSM
perform well, reaching similar ASR when defending Stru-NN at all
three rounds (ASR differences are within 5%), as they fully utilized
all the defender models to generate their perturbation.

6.6 Computational Resource Analysis

Consumed Time Comparison.We compare average consumed
time to apply the defenses per communication round (i.e., ClientUp-
date() in Algorithm 1 line 10 to 25) on LFW dataset using a Nvidia
Quadro A100 GPU. As shown in Table 1, our defense achieves a
comparable computation time with gradient sparsification and is
much faster than Soteria. To evaluate the feasibility of implement-
ing RecUP-FL on users’ personal devices such as smartphones and
laptops, we estimate the consumed training time via FLOPS (i.e.,
floating point operations per second). FLOPS measures the compu-
tational power of the given hardware and the ratio of FLOPS of two
devices can be considered as the ratio of consumed time if they are
running the same task [33]. The FLOPS of A100 GPU, popular chips
used in smartphones (i.e., Apple A16 Bionic) and laptops (i.e., Intel
Core I7 12700H) are 9.7 × 106 FLOPS [5], 2 × 106 FLOPS [3] and
1.69 × 106 [4] FLOPS, respectively. Thus the estimated consumed
time of RecUP-FL on smartphones is 0.35 seconds and 0.41 seconds
for laptops, which are still acceptable for edge users who typically

have a small-sized local dataset. Although the training time of some
baselines that do not rely on a model to generate the perturbation
(e.g., gradient sparsification) is shorter than our defense, they fail
to provide a good level of utility-privacy trade-offs.
Memory Usage Analysis. Memory consumption is also critical
for the deployment clients’ local devices. We further conduct exper-
iments on the LFW dataset to investigate the impact of the model
zoo size when defending against Unkwn-NN. Specifically, we vary
the model zoo size from 5 to 20 with a step size of 5. When the size
is 5, each iteration shares the same substitute models. As shown
in Figure 8, we can observe that as the model zoo size increases,
the trade-off is also improved due to the increased diversity in
the model zoo. What’s more, even with only five defender mod-
els in the zoo, RecUP-FL still outperforms others compared with
Figure 11(b). Specifically, when achieving the same learning loss
(around 0.55), RecUP-FL with only five defender models reduces
the ASR to less than 0.5, while the ASR of DP (Gaussian) and DP
(Laplace) is still higher than 0.6. In our Pytorch implementation,
each model is ~45MB. Thus RecUP-FL requires ~900 MB even with a
large model zoo size of 20, which is still acceptable on most modern
devices. The required storage can be further reduced by using a
smaller number of models.
7 CONCLUSION AND LIMITATIONS

Conclusion.We proposed RecUP-FL, the first user-configurable
local privacy defense framework seeking to reconcile the utility
and privacy in FL. By relaxing the notion of privacy, we focus on
the user-specified attributes and thus obtain a significant improve-
ment in model utility. Inspired by meta-learning, RecUP-FL finds a
minimal defensive perturbation to add on the model update before
sharing by iteratively conducting white-box and black-box attacks
against a set of substitute adversary models. Extensive experiments
on four datasets under both attribute inference attacks and data
reconstruction attacks show that RecUP-FL can effectively meet
user-specified privacy constraints while improving themodel utility
compared with four state-of-the-art privacy defenses.
Limitations and Future Work.Our system has the following lim-
itations: 1) Additional Storage Space: As we rely on a set of de-
fender models to generate defensive perturbations, additional stor-
age space (∼hundreds MB) is required on each device. If the device’s
storage space is not sufficient for the model zoo, we can leverage
model compression/quantization techniques to reduce the size of
each model; 2) Extra Computational Cost: As the computation of
defensive perturbations relies on the proposed two-stage method,
extra consumed time (∼0.3 seconds on smartphones) is required.
We can leverage the approximate computation to further accelerate
RecUP-FL. For example, it is not necessary to get the accurate values
of gradients in lines 17 and 20 of Algorithm 1 since only the sign of
gradient values will be used; 3) Degraded Utility-Privacy Trade-off
with a Large Number of Attributes: In some extreme cases, if users
want to protect most (or even all) the possible attributes, we can
directly apply traditional approaches instead. Our future research
includes: 1) theoretically deriving certified robustness guarantee
and convergence guarantee to FL; and 2) improving the fairness of
FL model by reducing its dependency on unrelated attributes.
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A INTRODUCTION OF META-LEARNING

In traditional machine learning, we decide on a learning algorithm
by hand for the desired task and train the model from scratch.
However, when the data is expensive or hard to obtain, or computa-
tional resources are unavailable, the performance of the traditional
scheme will be limited. Meta-learning targets to replace prior hand-
designed learners with learned learning algorithms [21]. Such a
scheme is also called ’learning to learn’. Many definitions and per-
spectives on meta-learning can be founded in the existing literature.
The goal of meta-learning is to learn a model initialization such
that it can be quickly adapted to new tasks using limited training
samples. Inspired by the intuition of meta-learning, which utilizes
prior knowledge learned from a wide distribution of models and
adopts it to new tasks, we generate perturbations for the unseen
and uncurable adversary models by the proposed two-step iterative
method as described in Section 4.2.

B FL MODEL ARCHITECTURES

The detailed FL model architectures of four datasets are shown in
Appendix Table 2.

Table 2: FL Models Architecture for four datasets.

Layer Type Parameters

Input 224 × 224
Convolution 16 × 3 × 3, strides=(2,2)
BatchNorm. 16
Activation ReLU
Pooling MaxPooling(2 × 2)

Convolution 32 × 3 × 3, strides=(2,2)
BatchNorm. 32
Activation ReLU
Pooling MaxPooling(2 × 2)

Convolution 64 × 3 × 3, strides=(2,2)
BatchNorm. 32
Activation ReLU
Pooling MaxPooling(2 × 2)
Flatten

Fully Connected 32
Activation ReLU

Fully Connected 10

(a) AudioMNIST

Layer Type Parameters

Input 1 × 103
Fully Connected 50

Activation ReLU
Fully Connected 1

Activation Sigmoid
(b) Adult Income

Layer Type Parameters

Input 62 × 47
Convolution 32 × 3 × 3, strides=(1,1)
Pooling MaxPooling(2 × 2)

Activation ReLU
Convolution 64 × 3 × 3, strides=(1,1)
Pooling MaxPooling(2 × 2)

Activation ReLU
Convolution 128 × 3 × 3, strides=(1,1)
Pooling MaxPooling(2 × 2)

Activation ReLU
Flatten

Fully Connected 256
Activation ReLU

Fully Connected 2
Activation Sigmoid

(c) LFW

Layer Type Parameters

Input 32 × 32
Convolution 16 × 3 × 3, strides=(2,2)
Pooling MaxPooling(2 × 2)

Activation ReLU
Convolution 32 × 3 × 3, strides=(2,2)
Pooling MaxPooling(2 × 2)

Activation ReLU
Convolution 64 × 3 × 3, strides=(2,2)
Pooling MaxPooling(2 × 2)

Activation ReLU
Convolution 128 × 3 × 3, strides=(2,2)
Pooling MaxPooling(2 × 2)

Activation ReLU
Dropout 0.2
Flatten

Fully Connected 256
Fully Connected 128
Fully Connected 2

Activation Sigmoid

(d) CelebA

C UTILITY-PRIVACY TRADE-OFF CURVES

The utility-privacy trade-offs evaluated on the Adult Income and
LFW dataset are shown in Appendix Figure 10 and Figure 11, re-
spectively.
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Figure 9: Comparison with four FGSM variants on LFW.

D ANALYSIS OF PRIVACY BUDGETS

The utility of global model when applying different privacy budgets
of RecUP-FL (i.e., 𝜖) at three training stages on LFW dataset are
shown in Appendix Figure 12. We can obviously observe that when
the budget increases, the learning loss increases since a larger
perturbation is added to the model update.

E IMPLEMENTATION OF FGSM VARIANTS

The computation of each FGSM variant is shown as follows:
(1)One Step FGSM.We only randomly select one substitute model
𝑆𝑞 from model zoo S and performs FGSM once to get the perturba-
tion as follows:

∇𝑤 ′𝑡,𝑖 = ∇𝑤𝑡,𝑖 + 𝜖 · 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑡,𝑖 ), 𝑎𝑖,𝑚)). (10)
(2) Average FGSM. We randomly select 𝑄 substitute models from
model zoo S, performs FGSM separately and averages the pertur-
bations as follows:

∇𝑤 ′𝑡,𝑖 = ∇𝑤𝑡,𝑖 +
1
𝑄

𝑄∑︁
𝑞=1

𝜖 · 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑡,𝑖 ), 𝑎𝑖,𝑚)) . (11)

(3) Iterative FGSM.We randomly select 𝑄 substitute models from
model zoo S, performs FGSM iteratively and accumulates the per-
turbations as follows:

∇𝑤𝑞
𝑡,𝑖

= 𝑤
𝑞−1
𝑡,𝑖
+ 𝜖
𝑄
· 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑞−1𝑡,𝑖

), 𝑎𝑖,𝑚)) . (12)

(4) Momentum FGSM.We randomly select 𝑄 substitute models
from model zoo S, performs FGSM iteratively and accumulates the
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Figure 10: Utility-privacy trade-off curves on Adult Income (Some baselines have shorter trade-off curves due to the adjustable

range limits of their parameters).

0.50 0.55 0.60 0.65 0.70
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(a) 1st Round, Stru-NN

0.50 0.55 0.60 0.65 0.70
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(b) 1st Round, Unkwn-NN

0.50 0.55 0.60 0.65 0.70
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

(A
SR

)

(c) 1st Round, SVM

0.50 0.55 0.60 0.65 0.70
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

iv
ac

y 
(A

SR
)

(d) 1st Round, RF

0.400.420.440.460.480.500.520.54
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(e) 10th Round, Stru-NN

0.400.420.440.460.480.500.520.54
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(f) 10th Round, Unkwn-NN

0.400.420.440.460.480.500.520.54
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

(A
SR

)

(g) 10th Round, SVM

0.400.420.440.460.480.500.520.54
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

(A
SR

)

(h) 10th Round, RF

0.40 0.42 0.44 0.46 0.48 0.50 0.52
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(i) 50th Round, Stru-NN

0.40 0.42 0.44 0.46 0.48 0.50 0.52
Utility (Learning Loss)

0.0

0.3

0.6

0.9

Pr
iv

ac
y 

(A
SR

)

(j) 50th Round, Unkwn-NN

0.40 0.42 0.44 0.46 0.48 0.50 0.52
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

(A
SR

)

(k) 50th Round, SVM

0.40 0.42 0.44 0.46 0.48 0.50 0.52
Utility (Learning Loss)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

(A
SR

)

(l) 50th Round, RF

RecUP-FL DP (Gaussian) DP (Laplace) Gradient Sparsification Soteria

Figure 11: Utility-privacy trade-off curves on LFW (Some baselines have shorter trade-off curves due to the adjustable range

limits of their parameters).
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Figure 12: Utilities with varying privacy budgets on LFW.
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Figure 13: Defending against data reconstruction attack on

CelebA.

perturbations with a momentum factor ` = 0.9 to constrain the
direction of the perturbation as follows:

𝑢𝑞 = ` · 𝑢𝑞−1 +
𝑔𝑞 (𝑆𝑞 (∇𝑤𝑞−1𝑡,𝑖

), 𝑎𝑖,𝑚))

∥∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑞−1𝑡,𝑖
), 𝑎𝑖,𝑚))∥1

, (13)

∇𝑤𝑞
𝑡,𝑖

= 𝑤
𝑞−1
𝑡,𝑖
+ 𝜖
𝑄
· 𝑠𝑖𝑔𝑛(𝑢𝑞) . (14)

F COMPARISONWITH OTHER FGSM

VARIANTS

The utility-privacy trade-offs of other FGSM variants and our de-
fense on the LFW dataset are shown in Appendix Figure 9.

G DEFEND AGAINST DATA

RECONSTRUCTION ATTACK

The reconstructed images and measured MSE values on the CelebA
dataset are shown in Appendix Figure 13.

H ALGORITHM

The complete process of generating defensive gradient perturba-
tions can be found in Appendix Algorithm 1.

I THEORETICAL ANALYSIS

To theoretically show the reason why the perturbation’s trans-
ferability can be greatly improved through these meta-train and
meta-test steps, we consider one iteration and single attribute pro-
tection as an example for simplicity. Let 𝑝𝑒𝑏𝑡𝑟𝑎𝑖𝑛 denotes the final

Algorithm 1 RecUP-FL in FL Pipeline
Input: Learning rate 𝛼 , number of communication rounds 𝑇
Output: Trained global model G with weight𝑤𝑇
1: Server:
2: Initialize global model G with weight𝑤1
3: for each communication round t ∈ [1, T] do
4: Randomly select 𝐾 clients from the entire population
5: Send global model with weights𝑤𝑡 to 𝐾 clients
6: ∇𝑤𝑡,𝑖 ′ = 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (𝑤𝑡 ) from the 𝑖-th client, 𝑖 ∈ [1, 𝐾]
7: Wait for model updates from 𝐾 clients
8: Aggregate model updates using FedAvg: 𝑤𝑡+1 ← 𝑤𝑡 −

𝛼 1
𝐾

∑𝐾
𝑖=1 ∇𝑤𝑡,𝑖 ′

9: end for

10: ClientUpdate(𝑤𝑡 ):

11: Initialize 𝑝𝑒𝑏𝑡,𝑖 = 0
12: Train model on client’s local data 𝐷𝑖 and calculate the overall

model update by ∇𝑤𝑡,𝑖 = 𝜕L(𝐷𝑖 ,𝑤𝑡 )
𝜕𝑤𝑡

13: for each configured attribute 𝑎𝑖,𝑚 ∈ A𝑖 do
14: for iteration p=1, ..., P do

15: Randomly select a subset of models {𝑆1, ..., 𝑆𝑄 } from the
pre-loaded model zoo S

16: Meta-train:

17: for q=1,2,...,Q-1 do
17: ∇𝑤𝑞

𝑡,𝑖
= ∇𝑤𝑞−1

𝑡,𝑖
+ 𝜖
𝑄
· 𝑠𝑖𝑔𝑛(∇𝑔𝑞 (𝑆𝑞 (∇𝑤𝑞−1𝑡,𝑖

), 𝑎𝑖,𝑚))
18: end for

19: Meta-test:

20: ∇𝑤𝑄
𝑡,𝑖

= ∇𝑤𝑄−1
𝑡,𝑖
+ 𝜖 · 𝑠𝑖𝑔𝑛(∇LCE (𝑆𝑄 (∇𝑤𝑄−1𝑡,𝑖

), 𝑎𝑖,𝑚))
21: ∇𝑤𝑝 ′

𝑡,𝑖
= ∇𝑤𝑝−1′

𝑡,𝑖
+ (∇𝑤𝑄

𝑡,𝑖
− ∇𝑤𝑄−1

𝑡,𝑖
)

22: end for

23: 𝑝𝑒𝑏𝑡,𝑖 = 𝑝𝑒𝑏𝑡,𝑖 + 𝛾𝑚 · (𝑤𝑃 ′𝑡,𝑖 − ∇𝑤𝑡,𝑖 )
24: end for

25: return ∇𝑤𝑡,𝑖 + 𝑝𝑒𝑏𝑡,𝑖

perturbation generated by the meta-train step, then the objective
function of meta-test can be written as:

argmax
𝑝𝑒𝑏𝑡𝑒𝑠𝑡

LCE (𝑆𝑄 (∇𝑤𝑡,𝑖 + 𝑝𝑒𝑏𝑡𝑟𝑎𝑖𝑛 + 𝑝𝑒𝑏𝑡𝑒𝑠𝑡 ), 𝑎𝑖,𝑚) . (15)

It means that meta-test tries to find a perturbation for ∇𝑤𝑡,𝑖 on
the basis of the meta-train step to maximize the estimated cross-
entropy loss function. According to the Tayler first-order expansion
rule, we can expand the Equation 15 to the following equation:

argmax
𝑝𝑒𝑏𝑡𝑒𝑠𝑡

LCE (𝑆𝑄 (∇𝑤𝑡,𝑖 + 𝑝𝑒𝑏𝑡𝑒𝑠𝑡 ), 𝑎𝑖,𝑚)+

𝑝𝑒𝑏𝑡𝑟𝑎𝑖𝑛 · ∇LCE (𝑆𝑄 (∇𝑤𝑡,𝑖 + 𝑝𝑒𝑏𝑡𝑒𝑠𝑡 ), 𝑎𝑖,𝑚).
(16)

To maximize the above objective function, the first term can be con-
sidered as the objective function of the meta-test step, which is to
mislead the defender model 𝑆𝑄 . The second term can be considered
as constraining the gradient directions of 𝑝𝑒𝑏𝑡𝑟𝑎𝑖𝑛 and 𝑝𝑒𝑏𝑡𝑒𝑠𝑡 to be
as similar as possible. In other words, the objective function forces
meta-test to generate the most similar perturbation as meta-train.
It indirectly requires meta-test to utilize the prior knowledge from
meta-train and adapt the perturbation to the new task, which is
consistent with our design.
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