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Abstract—Virtual Reality (VR) has gained popularity in nu-
merous fields, including gaming, social interactions, shopping,
and education. In this paper, we conduct a comprehensive study
to assess the trustworthiness of the embedded sensors on VR,
which embed various forms of sensitive data that may put users’
privacy at risk. We find that accessing most on-board sensors
(e.g., motion, position, and button sensors) on VR SDKs/APIs,
such as OpenVR, Oculus Platform, and WebXR, requires no
security permission, exposing a huge attack surface for an ad-
versary to steal the user’s privacy. We validate this vulnerability
through developing malware programs and malicious websites
and specifically explore to what extent it exposes the user’s
information in the context of keystroke snooping. To examine
its actual threat in practice, the adversary in the considered
attack model doesn’t possess any labeled data from the user nor
knowledge about the user’s VR settings. Extensive experiments,
involving two mainstream VR systems and four keyboards with
different typing mechanisms, demonstrate that our proof-of-
concept attack can recognize the user’s virtual typing with over
89.7% accuracy. The attack can recover the user’s passwords with
up to 84.9% recognition accuracy if three attempts are allowed
and achieve an average of 87.1% word recognition rate for
paragraph inference. We hope this study will help the community
gain awareness of the vulnerability in the sensor management
of current VR systems and provide insights to facilitate the
future design of more comprehensive and restricted sensor access
control mechanisms.

I. INTRODUCTION

Virtual Reality (VR) technologies have been rapidly gaining

popularity throughout the last decade, owing to their capability

of creating an immersive environment for all users, regardless

of physical constraints. A recent report reveals that the global

market size of VR has grown to $21.83 billion in 2021 and

will be increasing to $69.60 billion by 2028 [41]. In addition

to gaming, which has been currently considered the primary

usage for VR, it also brings upon innovations in a broad range

of areas such as military & medical training [24], financial

services [6], tourism [49], and online collaboration [37].

However, despite the great convenience VR has brought to us,

its security and privacy issues have not received due attention.

Typically, a VR system consists of two types of devices:

a headset that depicts the virtual world and a pair of con-

trollers that facilitate the interaction between the user and

the virtual world. Various sensors, which enable immersive

human-computer interactions, are embedded in the headset

& controllers to track the user’s position, body movements,

surroundings, and inputs. Additionally, the data recorded by

these sensors unavoidably encode various types of user’s

private information, which introduces a severe privacy breach

if they are abused by an adversary. For instance, the adversary

may reconstruct the user’s upper body movements; the user’s

gesture-based inputs to the virtual world could be potentially

snooped on; and even the user’s surroundings could be exposed

to the adversary. While privacy leakage of different types is

possible, in this work, we specifically center our focus on

the following research question: Is it possible to stealthily
eavesdrop on VR sensor data, and to what extent will this
information leakage expose the user’s privacy?

In this paper, we explore this question by investigating

the sensor management policies in VR and provide proof-

of-concept validations to demonstrate that an adversary is

capable of stealthily collecting these sensor data. To further

validate the severity of this privacy breach, we choose to

explore this leakage risk in the context of keystroke snooping

in VR, which is an important way of entering sensitive

information into the virtual world and has been used in various

VR domains, such as text chat, authentication password, and

private healthcare/bank transaction information, etc.

Prior Research in VR Security. Existing research on VR

security & privacy mainly focuses on user authentication [20],

[12], [30], [33], yet the security of sensor data and the potential

consequences caused by this information leakage have barely

been explored. Casey et al. [10] proposed a set of immersive

VR attacks, but their main focus is to compromise the users’

safety (e.g., disorient users and modify VR environmental

factors that force them into hitting physical objects) instead of

compromising the users’ privacy. Ling et al. [26] proposed the

keystroke inference attack on a smartphone-based VR system,

Samsung Gear VR, which was built on top of the Android

operating system and discontinued in 2019 [19]. However, this
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study only focused on a single typing mechanism for password

inference and made a strong assumption that the rotation angle

of the VR controller from one key to another is fixed, which

would significantly reduce its attack feasibility in practice. We

discuss its practicality in detail in Section IV-B. To the best

of our knowledge, there has yet to be research focused on

examining the security level of sensor data of more popular

PC VR systems (e.g., HTC Vive Pro and Oculus).

Unrestricted Sensors in VR. We thoroughly explore the

security level of various on-board sensors in the three main-

stream VR Software Development Kits (SDKs) and Ap-

plication Programming Interface (API), including OpenVR

SDK [15], Oculus Platform SDK [45], and WebXR Device

API [51]. Particularly, OpenVR and Oculus Platform SDKs

have been widely employed to develop numerous VR appli-

cations, while WebXR Device API is a JavaScript application

programming interface to enable applications to interact with

VR devices in a web browser. For all of them, we find access to

most of the sensor data does not require any user permission,

creating a broad opportunity for the adversary to steal the

users’ private information. Leveraging the built-in functions in

these SDKs/APIs, we validate that the adversary can simply

deploy malware programs or fool the user into visiting ma-

licious webpages to surreptitiously and continuously log VR

sensor data in the background. These unrestricted sensor data,

including the motion, position, and orientation of the headset

& controller, and the button states of the controller, could

expose users to serious privacy threats while using immersive

VR systems.

Snooping Typed Keys on Virtual Keyboards. As an

important text entry interface to enter sensitive information

in VR, typing on virtual keyboards is mainly determined by

the physical dynamics (i.e., position and orientation) of the

controller and its button states. To show the possibility of using

these unrestricted on-board sensors to snoop on keystrokes in

practical attack scenarios, the adversary in our attack model

is not assumed to possess any knowledge about the victim’s

VR setting (e.g., the placement of the stationary base stations),

which determines the sensor’s coordinate systems, or be able

to collect any a-priori labeled training data from the victim.

Specifically, our approach detects and extracts each keystroke

through the unrestricted sensor data and estimates their coordi-

nates in the 3D VR space. According to the type of the victim’s

inputs, we develop two sets of methods to recover passwords

(random characters) and paragraphs (natural language text),

respectively. Prior to the attack, the adversary reconstructs the

virtual keyboard built on each key’s 2D coordinate through

typing with their own VR systems. Regarding the password

inputs, as the victim always needs to input the Enter key at

the end, we propose a backward inference algorithm to find

potential password candidates on the reconstructed keyboard,

which have the most similar trajectories compared with the

user’s input. As for the paragraph inputs, the adversary will

first align the victim’s keystrokes with the reconstructed key-

board and then employ unsupervised learning and labeling

algorithms to recognize each keystroke. Although we for the

first time demonstrate that the typed input in VR can be

snooped via unrestricted sensors, similar keystroke inference

attacks targeting mobile devices leveraging zero-permission

sensors (e.g., accelerometers) have been known for years with

unchanged concepts [38], [35], [9], yet the vulnerability still

exists. Our main contributions are summarized as follows:

• We develop malware programs and malicious webpages to

access unrestricted sensor data on the two most popular VR

systems1, and validate the severity of this privacy leakage

in the context of keystroke snooping, for two interactive

methods of typing (i.e., drum-based and laser-based typing),

and show its possibility to recognize the user’s typing with

an accuracy sufficient to snoop on both passwords and

natural language text.

• We develop a series of algorithms to estimate the position

of the keystrokes input by the victim in a 3D space from the

collected motion-position sensor data and further reveal the

geometric relationship between keys to infer the victim’s

keystrokes. We launch the attack under a realistic but

challenging scenario in which the adversary neither possess

any prior knowledge about the victim’s VR settings nor a-

priori labeled data.

• Extensive experiments involving 14 participants and the

two most popular VR systems, show that an adversary can

recover the victim’s password inputs with an average 84.9%
recognition accuracy within three attempts, and can achieve

89.7% keystroke recognition accuracy with 87.1% WRR for

natural language text.

• We discuss and analyze several potential countermeasures

against this privacy breach. We hope our findings bring

upon insights to the design of sensor management policies

in VR and could help formulate more trustworthy immersive

virtual experiences in the future.

II. PRIVACY LEAKAGE THROUGH SENSORY DATA IN VR

A. Sensors in VR
Various sensors are embedded in the headset & controllers

of a VR system to enable immersive human-computer in-

teraction in virtual environments. For instance, the headset

of HTC Vive Pro, as illustrated in Figure 1 (a), contains

photodetectors (i.e., position sensors) for position tracking

(detailed in Section III-B), front-facing cameras that are used

to capture user surroundings, a microphone that picks up

user’s voice input, and motion sensors (i.e., accelerometer

and gyroscope) which are utilized to estimate the headset’s

orientation. The controller, as shown in Figure 1 (b), has

multiple buttons with different functions (i.e., menu, trackpad,

grip, system, and trigger), with embedded photodetectors for

position tracking and built-in accelerometer and gyroscope

sensors for posture estimation. Note that other VR systems,

such as Oculus Quest, are equipped with a similar set of

sensors to assist the user to interact with these devices in VR

environments. Inevitably, the data from these sensors carry a

vast amount of sensitive information that could potentially put

the user’s privacy at risk.

1Demo videos can be found at the project website [2].
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TABLE I
SUMMARY OF PERMISSION REQUIRED FROM USERS TO ACCESS VARIOUS SENSORS ON THE MAINSTREAM VR SDKS/API.

Motion Sensor
(Headset & Controller)

Position Sensor
(Headset & Controller)

Button
(Controller)

Front Camera
(Headset)

Microphone
(Headset)

OpenVR SDK [15] � � � �∗ �
Oculus Platform SDK [45] � � � N/A �
WebXR Device API [51] � � � N/A �

�: requires permission; �: no permission required; and �*: requires global permission (no control over which app can use it)

(a) Sensors on the headset (b) Sensors on the controller

Fig. 1. Sensors in a VR system (i.e., HTC Vive Pro).

B. Sensor Management in VR
To understand the security level of these privacy-sensitive

sensors, we thoroughly examine their access control man-

agement on the two mainstream VR SDKs, i.e., OpenVR

SDK [15] and Oculus Platform SDK [45], and a general

API for developing and hosting VR/AR on the web, i.e.,

WebXR Device API [51]. Unlike existing permission-based

access control that helps decide if an app can access par-

ticular sensors, we find that most sensor data in VR can

be easily exported without requiring explicit user permission,

as illustrated in Table I. Specifically, the low-grade motion

sensor data, position sensor data, and button state data can be

easily accessed without requiring any permission for all the

SDKs/API. Additionally, the video recorded by front-facing

cameras can be accessed on OpenVR as long as the user grants

global permission to its usage [10]. We find that accessing

microphone data always requires user permission. However,

in most cases, it remains unclear to the users whether their

voice data is legally collected and used, even the user grants

permission to a specific app.

C. Proof-of-Concept Validation of Stealthy Sensor Collection
from Controllers

We further validate the viability of stealthily collecting

sensor data (i.e., position, orientation, and button states) of

VR controllers through implementing malware, which could

be either running in the background of the VR environment or

embedded in a VR webpage, on the two mainstream VR SDKs

and the WebXR Device API. Demo videos of this validation

can be found at [2]. Such a proof-of-concept validation also

serves as the foundation of the attack model (Section IV-A)

in snooping typing on virtual keyboards.

OpenVR SDK. We write a malware script via OpenVR [15]

that continuously logs the victim’s controller sensor

data in the background and sends them to a remote

adversarial server. As illustrated in Figure 2 (a), we use

the built-in getDeviceToAbsoluteTrackingPose
function to get the position & orientation of the

controller, while the button states can be obtained via

the getControllerState function. Both functions

do not require user permission and could run stealthily

in the background without being noticed by the

victim. The getDeviceToAbsoluteTrackingPose
function will return a pose object with the

mDeviceAbsoluteTracking attribute, which

contains the raw position data of the controller

and the quaternion representation of its orientation.

The getControllerState function will return a

VRControllerState_t object with three critical

attributes: rAxis0, rAxis1, and ulButtonPressed,

which reflect the interaction point of the victim to the

touchpad, the dynamics of the user pressing the trigger

button, and whether other buttons (e.g., menu and grip) are

pressed, respectively.

Oculus Platform SDK. We also build a VR program

on the Oculus Platform SDK [45] (v32) based on C++

and successfully extract the aforementioned sensor data

without any permission in the background. According to

the Oculus Data Policy [46], we find that it’s legitimate

for a developer to collect the user’s movement data

(e.g., hand movement data) and the input button states.

As illustrated in Figure 2 (b), we obtain the sensor

data through the ovr_GetTrackingState function,

which returns an object (ovrTrackingState) with the

HandPoses data member containing the sensor data of

the controller. Specifically, HandPoses includes five data

attributes including ThePose, AngularAcceleration,

AngularVelocity, LinearAcceleration, and

LinearVelocity. ThePose records the 3D positions

of the controller, and the position data is stored in a vector

with three elements (i.e., positions on the x-, y-, and z-

axes). AngularAcceleration and AngularVelocity
contain the controller’s angular acceleration and velocity,

while LinearAcceleration and LinearVelocity
include the controller’s moving acceleration and velocity on

the x-, y-, and z-axes. Moreover, the app can collect the input

button states (e.g., trigger, grip, and touchpad) by calling the

API function ovr_GetInputState, which returns states

for all the controller buttons. Additionally, we also explore

the potential of side-loading an Android app on Oculus to

extract the sensor data, which is detailed in Appendix A.

WebXR Device API. Instead of running a script/app on

the victim’s desktop, we also validate that the sensor data

can be eavesdropped via a malicious VR webpage leveraging

the WebXR Device API [51]. WebXR enables virtual world

rendering purely on a webpage and is compatible with most

33339



(a) Obtain sensor data from OpenVR SDK (b) Obtain sensor data from Oculus SDK (c) Obtain sensor data from WebXR Device API

Fig. 2. Code snippets of obtaining sensor data in VR on the three mainstream VR SDKs/API.

(a) Drum-based typing (b) Laser-based typing

Fig. 3. Illustration of typing in VR.

(a) Outside-in tracking (HTC Vive
Pro)

(b) Inside-out tracking (Oculus
Quest)

Fig. 4. Position tracking & coordinate systems in VR.

browsers & VR systems. To enter the virtual world through the

webpage, WebXR requires the victim’s permission to create

a session and further render the virtual world. However,

after the victim enters the virtual world, there’s no permission

required to get the sensor data, as illustrated in Figure 2 (c).

Specifically, we use the getPose.transform function to

return a gripPose object of the controller. The 3D position

can be obtained via the position attribute, and the orien-

tation can be obtained via the orientation attribute. Ad-

ditionally, the inputSources.gamepad.buttons object

will reflect the controller’s state, with the pressed attribute

indicating which button is pressed by the victim.

III. PRELIMINARIES OF TYPING IN VR

A. Text Entry Interfaces in VR
As shown in Figure 3, users can interact with virtual key-

boards via two typing mechanisms, i.e., drum-based typing and

laser-based typing. Drum-based typing has been implemented

for various types of applications including shopping (e.g., Vive

Port [13]), designing tools (e.g., Tvori [47], Google Daydream

Labs [22]), and text editors in VR (e.g., Notepad++). As

illustrated in Figure 3 (a), generally the controller will be

represented as a drumstick, and the user must swing the

controller to hit the keys on a virtual keyboard - just like hitting

drums. Differently, in laser-based typing, the controller acts

like a laser pointer which allows the user to point to the key

they want to enter, as shown in Figure 3 (b). A cursor reflects

the intersection between the laser and the keyboard determines

the key to be entered. The user then needs to press a button

on the controller (usually the trigger button) to input a specific

key. This way of typing has been widely deployed in various

VR browsers (e.g., Firefox Reality [36]) and online meeting

apps (e.g., Vive Sync [14], VRChat [23]). We further examine

the typing mechanisms and keyboard layouts of 13 apps

selected from top sellers in Vive Port [4], Oculus Store [3],

and top VR apps in 2022 [1]. As listed in Table II, we find that

all of these apps either apply drum-based typing or laser-based

typing. Given the popularity of these two typing mechanisms,

we target both of them in our attack scenarios. In addition, we

also examine their virtual keyboard layouts and find that they

all use the standard QWERTY keyboard for alphabets, and

most keyboards have numeric keys appearing on the top with

Enter on the right. As these keyboards share a similar layout,

the keystroke inference attacks relying on the relative positions

among keys are transferable across different virtual keyboards

in VR. This also validates the generality and severity of the

proposed privacy leakage attack.

B. Position Tracking & Coordinate Systems

To show our attack’s generality, we consider the following

two major types of visual position tracking systems:

Outside-in Tracking. Outside-in tracking uses visual sen-

sors (e.g., cameras or laser-sensors) placed in a stationary

location and oriented towards the VR headset and controllers

to track their positions. Various VR systems, such as HTC Vive

Pro, Oculus Rift, and PlayStation VR, use this type of tracking.

Figure 4 (a) illustrates the setting of the outside-in tracking

used by HTC Vive Pro. Specifically, two base stations, which

are fixed within the environment, continuously emit infrared

(IR) laser beams across the space, while the position sensors

embedded in the headset & controllers measure the timing of

laser sweeps and further estimate the relative position. The

estimated positions of the headset and controllers are in the

same global VR coordinate system G, which is determined by

the placement of the two base stations. In addition, the headset

& controllers also have their local coordinate systems used for
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Fig. 5. Orientation of the Controller while Typing.

deriving rotation angles. For instance, the embedded motion

sensors can return the orientation (i.e., pitch, roll, and yaw) of

the controller with respect to its local coordinate C, as shown

in Figure 4 (a).

Inside-out Tracking. Unlike outside-in tracking, inside-out

tracking uses multiple cameras on the headset to observe visual

features (e.g., visual patterns of furniture and devices) in the

environment and triangulate the headset’s and the controllers’

3D positions. In addition, inside-out tracking determines the

relative position of the controllers to the headset with infrared

(IR) LEDs on the controllers (e.g., IR rings on the 2nd

generation of Oculus Touch). Real-time motion sensor data

from the headset and the controllers (e.g., accelerometer and

gyroscope readings) are leveraged to continuously refine the

estimated 3D positions. As such a tracking scheme does not

require to install base stations in the environment, it has been

widely used in many latest headsets, including Oculus Quest

1&2, Vive Cosmos, and Samsung HMD Odyssey. Similar to

the outside-in systems, the headset and the controllers are in

the same global VR coordinate system G for the position

tracking, which is initialized when the VR devices are turned

on, as illustrated in Figure 4 (b). The rotational motion vectors

of the headset & controllers are with respect to their local

coordinate systems.

IV. THREAT MODEL & ATTACK OVERVIEW

A. Threat Model

We consider an attack scenario in which an adversary seeks

to infer a victim’s keystrokes on the virtual keyboard through

the VR controllers. We assume the adversary can fool the

victim into either installing a malware program developed

on the mainstream VR SDKs (e.g., OpenVR SDK or Oculus

SDK), or visiting a malicious VR webpage created by WebXR

Device API. In either case, the adversary can obtain the sensor

data of the victim’s controller remotely by leveraging the built-

in functions described in Section II, including the controller’s

position, orientation (i.e., pitch, yaw, and roll), and the button

states (i.e., which button is pressed). The malware program

can be either disguised as a legitimate VR app/plugin, or

embedded into a third-party VR development library, which

might be used by many developers to build their VR apps. For

instance, the adversary can embed the malicious code snippet

in a seemingly benign software, such as a PC cleaning software

or a system monitoring tool. The adversary can also post the

malware online and lure the victims to install it by themselves.

As these types of software tend to work in the background

and can run along with other processes, it can stealthy log the

sensor data while the victim is typing in VR, which is hard

to be noticed. Compared to the malware program, attacks by

hosting a malicious VR webpage would be more accessible

to the adversary and more devastating as it does not require

installing a third-party app on the victim’s device.

Note that, in this paper, we do not consider the scenario

in which the keystrokes can be directly accessed by the

malware. We thoroughly examined the functions in the four

SDKs; however, there are no functions that can directly access

the victim’s keystroke inputs from the VR app. Since the

keystrokes are stored in the app’s local variables, directly

accessing them is impossible without modifying the app.

Adding malicious functions to the SDKs or directly modifying

the app would make the assumption too strong. Instead, the

adversary chose to leverage the zero-permission sensor data

as the side-channel to launch the attack.

In our considered attack model, the adversary doesn’t pos-

sess any knowledge about the victim’s VR system setting,

such as the placement of the stationary base stations, which

determines the devices’ position tracking coordinates. The

adversary doesn’t need to collect any a-priori labeled training

data from the victim either. We only assume the adversary has

prior knowledge about the virtual keyboard that the victim

uses, including the information about the virtual keyboard

layout and typing mechanism (i.e., drum-based or laser-based

typing). The adversary can then leverage his/her own VR

device in any settings to build a reference pattern for the attack.

We further discuss the scenario in which the adversary does

not possess this knowledge and uses a completely different

keyboard to launch the attack in Appendix G. Although this

knowledge is not directly known to the adversary in practice,

the adversary can attempt to use various typing interfaces

based on their popularity and estimate this knowledge by

checking the intelligibility of the identified text inputs. As

concluded in Table II, all keyboards in these mainstream

applications employ the same QWERTY layout for alphabets,

with most of them having 10 numeric keys on the top of the

keyboard and Enter on the right side, making this knowledge

can be easily estimated by the adversary even if the layout of

the keyboard is unknown. Additionally, only laser-based typing

needs to press the button on the controller for each keystroke,

thus the adversary can use the button status to identify whether

it is drum-based typing or laser-based typing. We believe that

the proposed attack is under a very practical threat model and

can be surreptitiously and easily launched in practice.

B. Challenges & Assumption Validation

Challenges. Unlike physical keyboards, virtual keyboards

usually have unfixed positions, postures, and scale sizes in

the virtual environment, which are dominated by the virtual

scenes in which the user is located and the user’s orientation

when typing function is called. In addition, the position sensor

readings from the VR devices are all with respect to their

global VR coordinate system (G in Figure 4), which is depen-

dent on the device settings, such as the placement positions
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of the two stationary base stations and the position where

the devices are initialized/turned-on. With different virtual

keyboard positions & orientations and coordinate systems, the

motion-position data of the adversary and victim will exhibit

completely different patterns, making the adversary unable to

directly predict the victim’s keystrokes from the sensor data.

The adversary needs to accurately estimate the position of

the keystrokes typed by the victim and further align the vic-

tim’s coordinate system with his/hers to reveal the geometric

relationship between keys, which poses a great challenge if

the adversary neither possesses any prior knowledge about the

victim’s VR settings nor a-priori labeled training data.

Assumption Validation. A recent study [26] has shown the

possibility of using motion sensors to snoop on keystrokes

on a smartphone-based VR system, Samsung Gear VR. How-

ever, it only targets laser-based typing and assumes that the

controller’s rotation angles while typing the same key are

highly consistent and the angles remain distinguishable while

typing different keys. However, in practical typing scenarios,

users tend to move around the controller frequently, which

makes it hard for the user to remain the controller at the

same position while typing on virtual keyboards, even on the

same key. As the controller’s orientation to a specific key is

highly dependent on the controller’s position, it is impractical

to assume each key has distinguishable rotation angles of the

controller. To validate this, we ask one participant to repeatedly

type six adjacent keys (i.e., T, Y, U, G, H, J) and the “Enter”

key on a laser-based keyboard using HTC Vive Pro. Figure 5

illustrates the rotation angles of each keystroke relative to the

“Enter” key along the x-axis and y-axis in Figure 4 (i.e., roll

and pitch). It is clear to observe that the rotation angles for

each key are highly inconsistent, which demonstrates that the

assumption made in the prior work cannot be generalized in

practical typing scenarios.

C. Attack Overview

The goal of our attack is to snoop on keystrokes on virtual

keyboards leveraging the unrestricted sensors of current VR

systems. We consider an attack scenario, where the victim

uses either drum-based typing or laser-based typing to enter

inputs, which could be natural language or passwords com-

posed of random characters. As illustrated in Figure 6, to

launch attacks, the adversary can stealthily collect the sensor

data associated with the victim’s typing from the VR device

(i.e., position, orientation, and button states of the VR con-

troller) through the deployed malware programs or malicious

webpages (Section II-C). The adversary then recognizes its

typing mechanisms (i.e., drum-based or laser-based typing)

and detects each keystroke segment. According to the typing

mode, we design two approaches to estimate each typed key’s

3D position in the virtual environment, namely, 3D Keystroke
Position Estimation and 3D Cursor Position Estimation. The

adversary then employs Keyboard Plane Estimation & 2D
Keystroke Position Projection to identify the 2D plane of the

virtual keyboard and project all of the 3D keystrokes to the

plane to get their corresponding 2D coordinates.

As the adversary doesn’t possess any knowledge about

the virtual keyboard used in the victim’s VR environment,

the adversary will need to type each key of the keyboard

using their own VR devices to reconstruct a 2D keyboard.

Although the reconstructed virtual keyboard might be different

from the one victim uses in terms of their positions and

postures within their own coordinate systems, their key-to-key

geometric relationship should be highly consistent. Thus, the

2D keyboard reconstructed by the adversary’s typed data will

serve as a reference to help recognize the victim’s typing.

According to input length and the last entered key (the last

key entered in the password input should be the “Enter” key),

the adversary can determine whether the victim has entered a

password or natural language text. If the victim has entered

a password, the adversary will perform Password Inference
via Tree-based Backward Typing Trajectory to inversely infer

the password sequence from the “Enter” key and generate

a set of password candidates. The adversary can then rank

these candidates through analyzing the angles and distances of

typing trajectory in Ranking Password Candidates via Typing
Path Analysis. As for the natural language input, the adversary

will first cluster all the detected keystrokes in an unsupervised

manner via Keystroke Clustering via DBSCAN [16]. The cen-

troids of the key clusters formulate the keyboard used by the

victim. The adversary then performs Keyboard Alignment via
LSE [25] to align the victim’s keyboard with the 2D keyboard

reconstructed by the adversary and further recognizes each

keystroke leveraging Keystroke Labelling via KNN. To further

improve the typing reconstruction, the adversary will adopt

language models to fix the grammatical & spelling errors in

the reconstructed sentences.

V. ATTACK DESIGN

A. Typing Mechanism Recognition & Keystroke Detection

In our attack, we consider an input session in which the

victim continuously types on the virtual keyboard in VR.

Drum-based typing requires the user to swing the controller

to hit keys, while laser-based keystroke is triggered by the

controller’s button. Thus, the adversary can use the button state

and its pressing frequency to detect laser-based input sessions.

Specifically, the adversary can detect the input session through

solving the following equation:

argmax
ts,te

te − ts,

s.t., fmin < freq(ts, te) < fmax , tmin < te − ts,
(1)

where ts, te are the timestamps when the victim starts/ends

the input session, tmin is the minimal duration of typing,

freq(ts, te) is the frequency of the trigger button being

pressed within [ts, te], fmin and fmax are the lower/upper

bounds of freq(ts, te). According to the Word Per Minute

(WPM) for laser-based typing [8], fmin and fmax are set to

1 Hz and 2 Hz, respectively. tmin is set to 5 seconds to make

the input session remain a reasonably long time period. If

Equation 1 can be solved, all keystrokes can be easily detected

within the input session, while other button activities outside
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Fig. 6. Attack Overview.

(a) Laser-based typing (b) Drum-based typing

Fig. 7. Illustration of Keystroke Detection.

the session would be considered as outliers (non-typing-related

button activities), as illustrated in Figure 7 (a).

As for drum-based typing, swinging the controller (like

hitting drums) will cause significant displacement vertically,

which will reflect on the Gy-axis of the position data. Thus, a

valley detection algorithm provided by the Scipy toolkit [48]

can be used to detect valleys along the Gy-axis. As the WPM

for drum-based typing ranges from 13.43 to 29.81 [8], the

adversary regulates the distance between two adjacent valleys

to at least 0.4 seconds. The prominence of the valley, which

is the vertical distance between the valley and its highest

contour line, is empirically set to 3 cm. The adversary then

uses Equation 1 to detect the input session ts and te, but fmax

is set to 2.5 Hz according to the WPM of drum-based typing,

and freq(ts, te) is the frequency of the valleys that appear in

the input session. An example of the detected keystrokes and

input session for drum-based typing is illustrated in Figure 7

(b).

Effectiveness Validation. To validate the effectiveness of

the detection algorithm, we collect 3-hour data from three

participants using HTC Vive Pro, with each participant in-

cluding 30-minutes data for both laser-based typing and drum-

based typing. For each typing mechanism, each participant

is asked to type 10 sentences in Table III with a total

number of 455 characters, then conduct three different types

of activities in the remaining minutes: playing a VR game

(i.e., Beat Saber), browsing immersive websites, or watching

an immersive video. We use True Positive Rate (TPR) and

False Positive Rate (FPR) as evaluation metrics. Specifically,

TPR is the ratio of correctly detected keystrokes among all

keystrokes, and FPR is the ratio of falsely detected keystrokes

among all outliers (e.g., button activities & valleys caused

by non-typing-related activities). For drum-based typing, we

reach 97.9% TPR and 5.7% FPR, while the TPR and FPR are

99.4% and 5.3% for laser-based typing, respectively. These

promising results demonstrate that we can successfully distin-

guish typing activities from other irrelevant button activities

& body movements.

B. Keystroke Position Estimation

Based on the typing mechanism, the adversary can estimate

each keystroke’s position using the following methods:

3D Keystroke Position Estimation. In drum-based typing, the

positions of each entered key can be directly obtained from

the controller’s positions. Particularly, the adversary uses a

window of 0.5 seconds centered at the detected valley along

the Gy-axis to calculate the position mean along each axis in

the frame G. Each keystroke can be then represented as a 3D

vector containing its position in the 3D VR space.

3D Cursor Position Estimation. In laser-based typing, the

key entered by the laser pointer is dependent on both the

position and orientation of the VR controller. As the laser is

in the direction of the Cz-axis of the controller, its direction is

determined by the pitch (α) and roll (β) of the controller and

is irrelevant to the yaw angle (Figure 4). The rotation matrix

R of the laser, with respect to its initialized stage where pitch

& roll are all zero, can thus be derived as:

R =

⎡
⎢⎣

cos (α) 0 sin(α)

0 1 0

− sin(α) 0 cos (α)

⎤
⎥⎦

⎡
⎢⎣
1 0 0

0 cos(β) − sin(β)

0 sin(β) cos(β)

⎤
⎥⎦ . (2)

To derive the position of the cursor after rotation, the adversary

needs to know its position at the initialized stage (i.e., pitch

and roll equal to zero). Although the adversary doesn’t possess

any information about the global coordinate system G of the

victim, we observe that the controller’s pointing direction (i.e.,

Cz-axis) is always initially aligned in the negative direction of

the Gz-axis. Given the position of the controller as [x, y, z]T ,

the position of the cursor Pc on the virtual keyboard can

thus be estimated as Pc = R · [x, y, z − l]T , where l is the

distance between the keyboard and the controller along the z-

axis, which is relatively consistent and can be easily estimated

by the adversary with his/her own typed data.

C. Keyboard Plane Estimation & 2D Keystroke Position Pro-
jection

As all keys are located on the same plane (i.e., the plane of

the virtual keyboard), the adversary’s next step is to identify

this 2D plane and project all the keystrokes to it to get their 2D
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(a) Keyboard plane estimation

Keystroke Sample

Projected 2D Keystroke

(b) 2D keystroke position projection

Fig. 8. Illustration of Keyboard Plane Estimation & 3D-to-2D Projection.

coordinates. Specifically, we consider the virtual keyboard’s

plane as ax+by+c = z, and the ith keystroke’s 3D coordinate

is represented as (xi, yi, zi). Since all keystrokes are on the

same plane, we can get the following equation:⎡
⎢⎢⎣
x0 y0 1
x1 y1 1

. . .
xn yn 1

⎤
⎥⎥⎦
⎡
⎣ab
c

⎤
⎦ =

⎡
⎢⎢⎣
z0
z1
. . .
zn

⎤
⎥⎥⎦ , (3)

where n is the number of detected keystrokes. Equation 3

can be represented as AX = B for simplicity. The unknown

vector X can be derived using Least Square Estimation

(LSE) [25]:

X =
[
a b c

]T
= (ATA)−1ATB. (4)

Figure 8 (a) depicts 100 keystrokes in the 3D VR space with

the identified 2D plane of the virtual keyboard.

To obtain the 2D coordinates of the keystrokes projected

onto the plane, we define O = (0, 0, c) as the origin of the 2D

plane, as shown in Figure 8 (b). Ax = (1, 0, a + c) is in the

plane’s positive x-axis direction. To determine the direction of

the y-axis, we define a point Ay = (xy, 1, zy) on the y-axis

and solve the following equations:{
axy + b+ c = zy

Ax ·Ay = 0
(5)

where Ax and Ay are the vectors from O to Ax and Ay ,

respectively. After we obtain Ay , which is (− ab
a2+1 , 1,

b
a2+1 +

c), the 2D coordinate (x̂i, ŷi) of the keystroke i in the plane

can be obtained using the following equation:

x̂i =
ki ·Ax

||Ax|| , ŷi =
ki ·Ay

||Ay|| , (6)

where ki is the vector from the origin O to the ith keystroke’s

3D coordinate (xi, yi, zi).

D. 2D Keyboard Reconstructed by the Adversary’s Typed Data

Prior to inferring the victim’s keystrokes, the adversary will

first generate a reconstructed keyboard through typing with

his or her own VR system. Specifically, the adversary will

repeatedly type each key multiple times and then process the

sensor data via the aforementioned detection, position estima-

tion, and projection mechanisms without too much effort. To

further reduce the required effort, it is possible to use fewer

keys to reconstruct the keyboard through mapping them to the

Fig. 9. Tree-based Backward Typing Trajectory Estimation for Password
Recovery.

(a) Inferred trajectory on the recon-
structed keyboard

(b) Trajectory of the victim’s typing

Fig. 10. Backward Password Inference Leveraging Accumulated Displace-
ment & Orientation.

standard QWERTY layout. The adversary further implements

the K-means clustering algorithm [31] on the projected 2D

keystrokes, where k is set to the number of keys being

typed. The detected centroids will formulate the reconstructed

keyboard, which will be further used as a reference to help

infer the typed inputs of the victim.

E. Password Recovery
Password Inference via Tree-based Backward Typing Tra-
jectory. As the victim will always input the “Enter” key at the

end, the adversary employs a tree-based backward inference

algorithm leveraging on the reconstructed 2D keyboard. An

example of inferring a 2-character password is illustrated in

Figure 9. Specifically, the “Enter” key in the reconstructed

keyboard serves as the root node of the tree, and the adver-

sary calculates its absolute distance to all other keys in the

reconstructed keyboard. The adversary then compares these

distances with the absolute distance D1 between the last

key (i.e., the Enter) and the second-to-last key (i.e., the last

character of the password) of the victim. The adversary finds

the top 3 keys K1,K2,K3, which are closest to D1. The

adversary then increases the depth of the tree and repeats the

same step for K1,K2,K3 and find another set of three closest

keys (e.g., K11,K21) in the next layer of the tree for each of

them. The same step is repeated for the newly added keys until

the depth of the tree increases to the length of the password

n, at which point the adversary can finally obtain 3n possible

password candidates.

Ranking Password Candidates via Typing Path Analysis.
The tree-based inference algorithm only considers the distance

between adjacent keys, which will yield many false predic-

tions. For instance, Figure 10 shows an example of inferring

the “O-4-E-F-Enter” sequence using the reconstructed key-

board. We observe that the L2 distance between “E” and

“F” in the victim’s trajectory is 0.134 in Figure 10 (b).

In the process of backward inferring the next character of

83344



“Enter-F”, the adversary may mistakenly predict it as “N”

rather than “E”, because in the reconstructed keyboard the

distance between “N” and “F” (i.e., 0.135) is closer to 0.134

compared with the distance between “E” and “F” (i.e., 0.136).

To quantify the errors between the inferred password path on

the reconstructed keyboard and the victim’s actual typing path,

the designed method takes into account both accumulative

distance and orientation similarity of the typing path to sort all

the password candidates derived from the tree-based backward

password inference. Specifically, for the nth candidate, and

for every possible keystroke pair {ki, kj} (i.e., ith and jth
keystrokes), the adversary calculates the relative difference

of their L2 distances between the reconstructed keyboard

D(ki, kj) and the victim’s trajectory D̂(ki, kj) and further

adds them together to get the accumulated distance �n:

�n =
n−1∑
i=1

n∑
j=i+1

|D(ki, kj)− D̂(ki, kj)|
D̂(ki, kj)

. (7)

Additionally, the adversary also calculates the orientation

similarity between a candidate and the trajectory of the victim

leveraging the intersection angles formulated by three different

keystrokes, as illustrated in Figure 10. Given a combination of

three keystrokes {ki, kj , kk}, the intersection angle θijk can

be calculated as:

θijk = arccos(

−−→
kikj · −−→kjkk

|−−→kikj ||−−→kjkk|
). (8)

Similar to the accumulated L2 distances, the adversary ac-

cumulates the relative difference of these angles between the

reconstructed keyboard and the victim’s trajectory to get the

orientation difference �n (Note θijk = θkji):

�n =

n∑
i=1

n∑
j=1

n∑
k=i+1

θijk − θ̂ijk

θ̂ijk
(i �= j �= k). (9)

The relative error for the nth candidate �n is thus defined as

�n+�n. The adversary then sorts all the password candidates

based on it in ascending order.

No-Enter Key Scenario. If the “Enter” key is not pressed

at last, given the password length as n, the adversary treats

each possible combination that contains n keys as a password

candidate. The adversary then performs the same typing path

analysis algorithm to analyze the relative error between the

candidate and the keystrokes input by the victim, then sort all

the candidates based on the error in ascending order.

F. Paragraph Inference

Keystroke Clustering via DBSCAN. For natural language

inputs, as the positions of keystrokes for the same key are very

close to each other, the adversary employs DBSCAN [16], a

density-based spatial clustering algorithm, on the projected 2D

keystrokes. The minimum number of instances in each cluster

is set to 2, and the maximum distance between two instances

that can be considered as neighbors in the same cluster is

empirically set to 0.03, which is approximately the average

distance between adjacent keys on the virtual keyboard.

Keyboard Alignment via LSE. Since the victim’s keyboard

and the adversary’s reconstructed keyboard are usually gener-

ated under different coordinate systems, their position, orien-

tation, and scale may differ a lot. Nonetheless, the keyboard

layout should be relatively consistent. Thus, in this step,

the adversary can align the keyboard of the victim to the

adversary’s reconstructed keyboard using LSE. Specifically,

the adversary randomly selects n keys from the reconstructed

keyboard, where n is the number of detected DBSCAN

clusters. Given the coordinates of the ith detected centroids as

[xi, yi] and the ith selected key in the reconstructed keyboard

as [x̂i, ŷi], the following equation can be obtained:
⎡
⎢⎢⎢⎢⎣

x0 y0 1

x1 y1 1

. . .

xn yn 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣
a1

b1

c1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x̂0

x̂1

. . .

x̂n

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

x0 y0 1

x1 y1 1

. . .

xn yn 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣
a2

b2

c2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ŷ0

ŷ1

. . .

ŷn

⎤
⎥⎥⎥⎥⎦
, (10)

where a1, b1, c1, a2, b2, c2 can be solved using Equation 4. The

ith key on the aligned keyboard [x̂′
i, ŷ

′
i] can thus be calculated

as [a1xi + b1yi + c1, a2xi + b2yi + c2]. To find the most

appropriate alignment, the adversary uses the average distance

between [x̂′
i, ŷ

′
i] and [x̂i, ŷi] as the metric.

Keystroke Labelling via KNN & Error Correction via
Language Models. After aligning the victim’s keyboard to

the adversary’s reconstructed keyboard, the adversary can

simply use the KNN classification algorithm to recognize each

keystroke typed by the victim. The reconstructed keyboard

serves as the training data, and K is set to 1. To further improve

the reconstructed natural language text, the adversary will use

a language tool to fix the grammatical & spelling errors for a

more precise prediction. We choose to use the “spelling and

grammar” function in Google Docs, yet many other online

language tools can be used as well.

VI. ATTACK EVALUATION

A. Experimental Methodology

Devices & Virtual Keyboards. We evaluate the proposed

attack using two mainstream VR systems: HTC Vive Pro and

Oculus Quest, which belong to outside-in and inside-out track-

ing, respectively. HTC Vive Pro is connected to an Alienware

desktop running on Windows 10 with a GeForce GTX 1660Ti

GPU, while Oculus Quest is connected to a Lenovo Legion 5

laptop equipped with a GeForce RTX 2060 GPU running on

Windows 10. The developed malware programs (Section II-C)

have been installed in these computers so that the adversary

could remotely access the unrestricted sensor data. We use

both drum-based and laser-based keyboards. Specifically, for

HTC Vive Pro, we chose the built-in keyboards of Tvori

(drum-based) and Vive Sync (laser-based), while for Oculus

Quest, we use the virtual keyboard of Notepad++ for both

drum-based and laser-based typing styles. By default, the

sensor data is sampled at 250 Hz for HTC Vive Pro and 60

Hz for Oculus Quest.

Typing Data Collection. Our data collection involves 7

participants for each VR system (14 participants in total).

The participants include 11 males and 3 females, aging from
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Fig. 11. Performance of Single Keystroke Recognition.

(a) HTC Vive Pro (b) Oculus Quest
Fig. 12. Performance of Keystroke Recognition for Drum-based & Laser-
based Typing on HTC Vive Pro & Oculus Quest.

22 to 34. The participants are asked to type on the virtual

keyboards in VR for some time to get familiar with VR

typing before the official data collection. For each VR system,

one of the participants pretends to be the adversary and

the remaining six participants are treated as victims. We set

different VR systems’ settings (e.g., positions of the stationary

base stations used for HTC Vive Pro) between the adversary

and victims to create a more realistic attack scenario. For

each virtual keyboard, all participants (both the adversary and

the victims) are asked to type 38 keys (i.e., 26 alphabets,

10 numeric, space, and enter) repeatedly, 20 times each. The

typed data of the adversary will be utilized to generate the

reconstructed keyboard (Section V-D), and the performance

for single keystroke recognition is evaluated in Section VI-B.

We randomly generate three different passwords with lengths

of 4, 6, and 8 for each victim. For each key in a password, we

randomly select one keystroke that stands for the specific key

from the victim’s typed data, with a randomly chosen“Enter”

key at last. These randomly selected keystrokes formulate a

password input, and we formulate 42 different passwords for a

more comprehensive evaluation. We evaluate the performance

of the password recovery attack in Section VI-C. Additionally,

all victims are asked to type 10 randomly selected phoneme

balanced sentences from the Harvard sentences dataset [42]

in Table III. The results of inferring these sentences using the

attacker’s typed data are presented in Section VI-D. We also

conduct the same experiments on an Android app, and the

performance evaluation is detailed in Appendix E. We also

extend the password recovery attack through involving no-

enter key scenario and upper cases & symbols and , which

is detailed in Section VI-E and Appendix F, respectively.

Furthermore, we discuss the worst-case scenario, in which the

adversary and the victim use completely different keyboards,

in Appendix G. During data collection, we let the participants

equip the headset on their own and do not control their

standing position, facing orientation, or typing speed for any

of the experiments. Each participant is asked to conduct

experiments in different sessions, and their WPM varies from

15.2 to 21.7 for drum-based typing, and 11.3 to 17.8 for laser-

based typing. Additionally, we do not collect any labeled data

from the victims prior to the attack. In total, we collect 3,480

keystrokes from the two adversaries and 36,880 keystrokes

from the 12 victims in a one-year time period. The data

collection procedures were approved by our university’s IRB

through an expedited review procedure.
Evaluation Metrics. Accuracy, Precision and Recall are used

to evaluate single keystroke recognition. The accuracy for the

key k is defined as the percentage of the keystrokes that

are correctly classified as k among all keystrokes of k. The

precision of the key k is defined as TPk

TPk+FPk
and the recall

of the key k is defined as TPk

TPk+FNk
, where TPk, FPk, FNk

are the true positive rate, false positive rate, and false negative

rate for the key k, respectively.
Top-k Recognition Accuracy is used to evaluate the pass-

word recovery attack. Since our algorithm will return a number

of potential candidates in a descending order based on the

accumulated distance & orientation similarity, Top-k Success
Rate is defined as the probability of the first k candidates

containing the password input of the victim.
Word Recognition Rate (WRR) is used to evaluate paragraph

inference attack. WRR is the ratio of correctly recognized

words to the total number of words typed by the victims.

B. Performance of Single Keystroke Recognition
The single keystroke recognition performance for each key

is illustrated in Figure 11. We find that HTC Vive Pro

has prominent performance under both drum-based typing

and laser-based typing, most of which can reach over 90%

recognition accuracy with an average of 95.2% and 90.8%

accuracies, respectively. Although the overall performance is

slightly lower for Oculus Quest, we can still reach more

than 60% accuracy for most keys, with an average accuracy

of 91.7% for drum-based typing and 81.1% for laser-based

typing. Additionally, the precision/recall scores for each victim

are shown in Figure 12. For HTC Vive Pro, most precision

and recall scores of both drum-based and laser-based typing

are over 90.0%. For Oculus Quest, the total performance is a

bit lower but the precision/recall scores among most users are

still over 75.0%. The results demonstrate the effectiveness of

the proposed method on single keystroke recognition.
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(a) HTC Vive Pro (b) Oculus Quest

Fig. 13. Performance of Recovering Passwords on Drum-based Typing.

(a) HTC Vive Pro (b) Oculus Quest

Fig. 14. Performance of Recovering Passwords on Laser-based Typing.

We find that the “Enter” key can always achieve very

high accuracy, which is highly likely due to its ‘isolated’

characteristics. We have also noticed that for some keys,

especially for laser-based typing on both HTC Vive Pro and

Oculus Quest, the accuracy is less than 60% (e.g. ‘s’ for HTC

Vive Pro and ‘x’ for Oculus Quest). We further look into the

misclassification results, and find that in most cases the false

prediction tends to be the neighboring keys of the ground truth.

However, we find this type of error is relatively insignificant

and can be easily corrected, detailed in Section VI-D.

C. Performance of Password Recovery

We further evaluate the designed attack under more practical

attack scenarios of deriving passwords. Figure 13 (a) and (b)

show the accuracy of inferring passwords with three different

lengths on HTC Vive Pro and Oculus Quest for drum-based

typing, respectively. We find that for HTC Vive, our attack

can achieve (60.0%, 58.3%, 61.7%) top-1, (81.7%, 71.7%,

76.8%) top-3, and (83.3%, 75.0%, 78.3%) top-5 recognition

accuracies on inferring passwords with 4, 6, and 8 keys,

respectively. For Oculus Quest, we find that the attack has

much better performance, with (66.7%, 60.0%, 83.3%) top-

1, (90.0%, 80.0%, 86.7%) top-3, and (91.7%, 96.7%, 88.3%)

top-5 recognition accuracies. An encouraging finding is that

Oculus Quest can achieve close to 85.0% top-1 success rate for

the key length of 8, indicating that longer key length may lead

to more severe password leakage. In addition, both headsets

have over 71.7% top-3 recognition accuracies for passwords

of all three lengths.

We also evaluate the password inference performance for

laser-based typing on both VR systems. The results are shown

in Figure 14 (a) and (b). We find that the attack achieves

high performance on Oculus Quest, with (76.7%, 68.3%,

73.3%) top-1, (88.3%, 95.0%, 88.3%) top-3, and (96.7%,

95.0%, 90.0%) top-5 recognition accuracies. We have similar

(a) Drum-based typing

(b) Laser-based typing

Fig. 15. Performance of Paragraph Inference Attack.

observations on inferring passwords with 4, 6 and 8 keys

on HTC Vive, and the attack can achieve (65.0%, 58.3%,

61.7%) top-1, (86.7%, 90.0%, 83.3%) top-3, and (86.7%,

93.3%, 86.7%) top-5 recognition accuracies. Both headsets

have over 86.7% top-5 success rate under laser-based typing.

We observe that the length of the password only has a subtle

influence on the success rate, which indicates the robustness

of our proposed attack.

D. Performance of Paragraph Inference
Figure 15 illustrates the WRR of recovering the sentences

listed in Table III that are typed by the victims. We observe that

our attack can accurately recover the language text typed by

the victims. Specifically, the average WRRs of HTC Vive Pro

are 80.8% and 85.1% for drum-based typing and laser-based

typing, respectively. The WRRs of Oculus Quest for drum-

based typing and laser-based typing are 89.3% and 93.3%,

respectively, which are even higher than HTC Vive Pro. Some

examples of the recovered paragraphs are shown in Figure 16.

Before error correction, we observe that there are only 1-2

false character predictions in a single word in most cases, and

almost all of them are caused by false predictions of the correct

key as one of its adjacent keys (e.g., recognize ‘o’ as ‘i’ or ‘i’

as ‘u’). However, this type of error is commonly considered

as typos or spelling & grammatical errors by online language

tools and thus can be easily corrected. Specifically, the lan-

guage tool can increase the WRR by 25.9% and 22.4% for

drum-based typing and laser-based typing, respectively. The

average WRR among all victims and both typing mechanisms

is 87.1%, which demonstrates the effectiveness of our attack

on recognizing natural language text inputs of the victim.

E. Impact of the Enter Key

We further evaluate the password recovery attack in the

“No-enter Key” scenario. Same with the aforementioned

methodology, we randomly generate passwords with lengths

of 4, 6, and 8 for each victim, but the “Enter” key is not

involved at last. We then use the brute force attack described

in Section V-E to infer the generated passwords. The results
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Paragraph Typed by the Victim
there is a strong chance it will happen once more
the goose was brought straight from the old market
the marsh will freeze when cold enough

Prediction Before Error Correction
there is a strong chance ut will happen ince mire
the giise was brought straighr from the old market  
the marsg qukk frezw when cikd eniygh

Prediction After Error Correction
there is a strong chance it will happen once more
the goose was brought straight from the old market
the marsh quick freeze when cold enough

Fig. 16. Examples of Recovered Paragraph.

(a) HTC Vive Pro (b) Oculus Quest

Fig. 17. Performance of Recovering Passwords on Drum-based Typing
Without the Enter Key.

of drum-based typing and laser-based typing for the two VR

devices are shown in Figure 17 and Figure 18, respectively.

We find that the performance of inferring longer passwords

is significantly better than shorter passwords. We believe the

reason is that shorter passwords contain less distinguishable

positional information, making them more likely to be mixed

with false candidates. For instance, the trajectory of the

input password “Q-W-E-R” is nearly the same as “W-E-R-

T” or “E-R-T-Y”, making it hard to distinguish without the

“Enter” key, which has a fixed position. However, as longer

passwords cover a broader range of areas across the keyboard,

their trajectories can obtain a unique pattern more easily.

Specifically, under drum-based typing, both headsets achieve

over 46% top-3 and over 58% top-5 recognition accuracies

for passwords of length 4, and over 76% top-3 and over 82%

top-5 recognition accuracies for passwords of length 8. As

for laser-based typing, both headsets achieve over 44% top-3

and over 52% top-5 recognition accuracies for passwords of

length 4, and over 75% top-3 and over 88% top-5 recognition

accuracies for passwords of length 8. The promising results

indicate that our attack can be easily generalized to a more

challenging scenario in which the “Enter” key is not pressed.

VII. DISCUSSIONS

In this section, we will discuss the reasons why so many

sensors lack permission on VR, the underlying causes of

this vulnerability, as well as the limitations of the attack.

Additionally, we will also discuss potential approaches to

improve the management policies for VR sensors.

A. Why No Permission?

We believe one primary reason that so many sensors on VR

are zero-permission is that the community generally believes

they are “safe” and is not aware of to what extent they can

(a) HTC Vive Pro (b) Oculus Quest

Fig. 18. Performance of Recovering Passwords on Laser-based Typing
Without the Enter Key.

leak the user’s privacy, as the security and privacy vulnerability

issues on VR systems have not received significant attention

and we are one of the early studies in this research line.

Additionally, asking for too many permissions from the user

for different sensors lowers the usability and may raise too

much of a burden when having a great number of sensors

for the VR system. Another critical factor is that most users

do not pay enough attention to the permission systems and

will tend to grant permissions upon request. A usability

study on Android demonstrates that only 17% of the users

will pay attention to permission warnings during application

installation [18], indicating that even if permission exists, a

malware can simply ask for permission to sensor data under

some pretended reason, and then launch the attack without

being noticed.

B. Limitation
One limitation of our attack is that it requires the ad-

versary to possess knowledge of the keyboard layout (e.g.,

QWERTY), which means it cannot be effective on a keyboard

with a randomized layout. To mitigate this vulnerability,

developers could randomly change the position of the keys

on the keyboard, making them different from the standard

QWERTY layout [57], [56], [7], change the location of the

keyboard in the VR space after each character is entered

(keyboard jitter) [40], alter the shape of the keyboard, making

it not a rectangle (keyboard wrapping) [40], or circularly shift

keys in each row/column by a random number (row/column

shift) [32]. It should be noted that implementing these defense

mechanisms may lead to reduced usability and inconvenience

for users, as it may take more time and effort to type [43].

Specifically, row/column shift may increase the typing time

by 1.5 times [32], and most users may be less willing to use

a wrapped keyboard due to unfamiliarity with the layout [40].

C. Refine Sensor Management Policy in VR

Permission-based Sensor Management. One potential ap-

proach to improving VR sensor management is to implement a

permission-based scheme similar to the one used in Android.

Under this approach, users would be required to grant per-

mission for VR apps or webpages to access specific sensors

during both installation and runtime.

Privacy-aware Sensor Management. While adding per-

missions can enhance user privacy to some extent, it is

important to note that once permissions are granted, users may
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not have full knowledge or control over how their sensor data

is used. To increase the transparency and control over data

usage, a privacy-aware framework upon the sensor manage-

ment scheme [55], [39] could be developed. Particularly, the

framework can provide information to help users understand

the context of sensor data usages, such as sensor types, starting

time, sensor usage duration, and the running status of the app

that is collecting sensor data (i.e., foreground or background).

Based on the contextual information, the framework can allow

users to create and update customized access control policies

for all the sensors. For instance, this would enable users to

restrict sensor data access for background apps when entering

sensitive information (e.g., passwords, contact information).

Furthermore, the framework can quantify the quality of sensor

data supplied to VR apps and allow the user to adjust the data

qualities (e.g., sampling rate, resolution) for a specific VR app.

Hardware Refinement. Another potential solution is to

integrate indicator lights into VR controllers, which would

alert users to any malicious sensor usage in the background.

This is especially important for on-board microphones and

front-facing cameras, which can record highly sensitive infor-

mation. As for motion and position sensors, these lights can

indicate whether they are being recorded in the background

(i.e., additional VR sessions to the primary VR app). By

incorporating indicator lights, users can be more aware of the

status of their sensors and whether they are being used without

their knowledge or consent.

VIII. RELATED WORK

Attacks on VR & Virtual Keyboards. Most of the initial

research on exploring the security and privacy implications of

VR systems focused on user authentication [28], [21], [20],

[33], [30], [12]. A recent work [10] has even introduced a

variety of new VR-based attacks that target the user’s expe-

rience. They demonstrate attacks that can disorient the user,

control hardware used for the VR experience, inject images in

the user’s field of vision, and encourage the user to move to

particular locations that may cause them to hit nearby objects.

Shi et al. [44] proposed Face-Mic, an eavesdropping attack that

leverages motion sensors on VR headsets to infer the user’s

live speech and identity. As for keystroke detection attacks

in VR, a study by Chen et al. [11] showed that VR headsets

could be configured with cameras in order to spy on the phone

keystrokes of nearby persons. Ling et al. [26] developed side-

channel attacks on the Samsung Gear VR system that can be

used to infer the passwords entered on the laser-based VR

keyboard using the positions and angles of the headset and

pointer controller. While this study has shown the feasibility of

such attacks, the proposed attacks only targeted a smartphone-

based VR system, and the required strong assumption greatly

reduces the attack feasibility in practice. Meteriz et al. [34]

present a keylogging inference attack to infer user inputs

typed with in-air tapping keyboards in Augmented Reality

(AR), and Luo et al. [29] propose a similar attack on in-

air tapping keyboards in Mixed Reality (MR). However, the

typing mechanisms considered in these two studies are hand-

gestured-based typing captured by the AR/MR device’s front

cameras, therefore these two approaches are not applicable to

drum- and laser-based typing mechanisms in VR that leverage

controllers. Different from AR and MR, controllers have been

considered as the major interaction interface in VR compared

with hands, as many popular VR headsets (e.g., HTC Vive

Pro) and apps (e.g., VRChat, Bigscreen) don’t support hand

tracking without additional software or hardware accessories.

Different from these studies, our work validates the attack’s

feasibility on the two mainstream VR systems (i.e., HTC Vive

Pro and Oculus Quest), for two interactive methods of typing,

under more practical attack models. Additionally, VR-Spy [5]

detects keystrokes in the VR space via channel state informa-

tion (CSI) from WiFi signals, which could be another attack

vector in this domain. However, VR-Spy requires labeled data

from victim for training and the victim’s position is fixed,

which largely limits its practicality.

Other Keystroke Attacks. There has been active research

on snooping keystrokes on physical keyboards/PIN pads lever-

aging various side-channels, including audio-based [58], [27],

EM-based [50], motion sensor-based [54], [52], and CSI-

based [17]. Additionally, many other research have focused

on attacking soft keyboards on touch screen for modern

smartphones leveraging the built-in motion sensors of the

smartphone [38], [35], [9] or the motion sensors on the

user’s smartwatch [53]. While certain principle concepts of

these keystroke attacks remain valid in the developing era

of VR devices, we again find ourselves in a new attack

space introduced by further technological advancements and

more comprehensive proof-of-concept validation. And as VR

devices are showing signs of popularity gains like that of

smartphones, the underlying threat of the unrestricted VR

sensors deserves to have greater attention.

IX. CONCLUSION

In this paper, we thoroughly examined the trustworthiness

of embedded sensors in VR systems and found that their

data can be easily accessed by an adversary. We further

explore the severity of this privacy leakage in the context

of keystroke snooping in VR. The adversary doesn’t possess

any knowledge about the victim’s VR system setting in our

considered attack model. Extensive experiments involving two

mainstream VR systems and different typing mechanisms

demonstrated the effectiveness of our attack on recognizing the

victim’s keystroke inputs, including both random passwords

and natural language text. We hope this study can provide

insights into the future design of sensor management policies

in VR and help increase the trustworthiness of VR systems.
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APPENDIX A

EXTRACTING SENSOR DATA USING ANDROID SDK

To demonstrate that the sensor data of victim’s controllers

can be logged in the back-end on Android systems, we also

implement a VR application leveraging Android SDK APIs to

evaluate our proposed eavesdropping attack. For most VR sys-

tems, they are built grounded on Android systems, which pro-

vide open interfaces for VR application developers to achieve

their proposed functions. Specifically, for motion and position

sensors, which are denoted to be TYPE_(SENSORS_NAME)
in Android development APIs, can be monitored via the

creation of SensorEvent created by Android systems.

For each SensorEvent, they continuously track the multi-

dimensional arrays (e.g., acceleration and position of the x,

y, z coordinates) of sensor values. Meanwhile, the clicking

event will be detected through MotionEvent. Once the

user clicks the button on the VR controllers, the attribute

onTouchEvent() of MotionEvent will be activated. To

sum up, the comprehensive support of Android SDK APIs

makes it possible to track user’s motion and clicking events

through an Android application, which can be leveraged by

our attack in VR systems.

APPENDIX B

TYPING MECHANISMS & KEYBOARD LAYOUTS IN

POPULAR VR APPLICATIONS

We summarize the typing mechanism & keyboard layouts

in popular VR applications in Table II.

APPENDIX C

SELECTED HARVARD SENTENCES

The randomly selected Harvard sentences are listed in

Table III.

APPENDIX D

PERFORMANCE EVALUATION OF MACHINE LEARNING

ALGORITHMS

We further examine the possibility of using state-of-the-art

machine learning algorithms on the sensor data for keystroke

inference. Specifically, the adversary slices a window of 0.5

seconds of sensor data centered at each detected keystroke.

The adversary then extracts 13 time-domain features from the

window for each dimension, including minimum, maximum,

median, variance, std, abs-mean, cv, skewness, kurtosis, first

quartiles, second quartiles, third quartiles, inter quartile-range.

Given the 3D position and orientation sensor data, each

keystroke forms a 78-dim feature vector. We then utilize

four types of machine learning classifiers: Random Forest

(RF), Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), and a two-dense-layer Deep Neural Network (DNN)

with 50 neurons in each layer. In addition to time-domain

features, we also apply Recurrent Neural Network (RNN)

on the raw time-series sensor data to measure the temporal

dependencies and extract high-level features. Specifically, We

utilize a 2-layer RNN architecture, and the extracted features

are fed into a dense layer for classification. We use the

adversary’s data as the training data and other participants’

data as testing data, therefore the training/testing ratio is 1 :

6 for each typing mechanism. We find that the average single

keystroke recognition accuracies of the five machine-learning-

based approaches for four typing mechanisms are only 5.96%,

12.33%, 8.59%, and 12.99%. As the position and orientation of

the virtual keyboard differ a lot between the adversary and the

victim, their sensor data exhibits completely different patterns,

making it hard to use machine-learning-based approaches to

recognize the victim’s typed inputs.

APPENDIX E

PERFORMANCE EVALUATION ON ANDROID APP

The developed malicious Android app is installed on the

Oculus Quest. We use the default virtual keyboard of the

Android Notes app for both drum-based and laser-based typ-

ing. We find that keyboard layouts in Android apps are very

similar to the Oculus default keyboard, therefore we directly

use the previously reconstructed keyboard using Oculus as

the adversary’s reference pattern. We recruit one participant

to act as victim and perform the same data collection pro-

cedure as aforementioned in Section VI-A. Figure 19 (a)

and (b) illustrate the performance of the password inference
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TABLE II
TYPING MECHANISMS & KEYBOARD LAYOUTS IN POPULAR VR APPLICATIONS.

Application Usage Typing Mechnism Keyboard Layout
Text Editors in Oculus Quest Typing Drum/Laser QWERTY, numeric on the top, Enter on the right

Steam VR Social Platform & Shopping Laser QWERTY, numeric on the top, Enter on the right
Vive Port Shopping Drum QWERTY, numeric on the top, Enter on the right

Vive Video Video Player Drum QWERTY, numeric on the top, Enter on the right
Youtube VR Video Player Laser QWERTY, numeric on the left, Enter on the right
Vive Sync Online Meeting & Collaboration Laser QWERTY, numeric on the top, Enter on the right

Tvori Design/Creation Drum QWERTY, numeric on the top, Enter on the right
Google Daydream Lab Design/Creation Drum QWERTY, no numeric & Enter

Gravity Sketch VR Design/Creation Drum QWERTY, numeric on the top, no Enter
VRChat Social Platform Laser QWERTY, numeric on the top, Enter on the bottom

Alterspace VR Social Platform Laser QWERTY, numeric on the top, Enter on the bottom
Bigscreen Social Platform Laser QWERTY, numeric on the top, Enter on the bottom
Rec Room Social Platform Laser QWERTY, numeric on the top, Enter on the right

TABLE III
SELECTED HARVARD SENTENCES

Index Sentence
1 The fruit of a fig tree is apple shaped
2 Hold the hammer near the end to drive the nail
3 There is a strong chance it will happen once more
4 The goose was brought straight from the old market
5 The case was puzzling to the old and wise
6 The pup jerked the leash as he saw a feline shape
7 The weight of the package was seen on the high scale
8 A good book informs of what we ought to know
9 The marsh will freeze when cold enough

10 The steady drip is worse than a drenching rain

(a) Laser-based Typing (b) Drum-based Typing

Fig. 19. Performance of Recovering Passwords on Android.

attack on the Android app for laser-based and drum-based

typing, respectively. We achieve (85%, 43%, and 52%) top-

1, (89%, 78%, 87%) top-3, and (91%, 88%, and 92%) top-

5 accuracies on inferring passwords with length 4, 6, and

8 for laser based typing, and (62%, 55%, and 40%) top-1,

(87%, 85%, 75%) top-3, and (98%, 95%, and 95%) top-5

accuracies for drum-based typing. Additionally, we achieve

94.8% and 91.6% WRR for the paragraph inference attack for

laser- and drum-based typing, respectively. These promising

results demonstrate that our attack can be easily generalized

to Android VR systems.

(a) HTC Vive Pro (b) Oculus Quest

Fig. 20. Impact of Upper Cases and Symbols on Drum-based Typing.

APPENDIX F

IMPACT OF UPPER CASES AND SYMBOLS

We further extend the password recovery attack by involving

upper cases and symbols. For each typing scenario, one

participant acts as the adversary, and the other participant is

treated as the victim. In addition to the aforementioned 38

keys, we also include 10 different symbols (i.e., - = [ ] \ ;

’ , . /) and the CapsLock key in the data collection session.

For each victim, we generate 10 different passwords following

the aforementioned methods with lengths of 4, 6, and 8. We

ensure there is at least one upper case and one symbol in each

password. The results of drum-based typing and laser-based

typing for the two VR devices are shown in Figure 20 and

Figure 21, respectively. We find that the impact of using upper

cases and symbols in the password on the attack performance

is very subtle: under drum-based typing, both headsets achieve

over 69% top-3 and over 79% top-5 recognition accuracies for

passwords of all three lengths. Laser-based typing performs

even better: both headsets have over 75% top-3 and over 81%

top-5 recognition accuracies. The promising results indicate

that our attack can be easily generalized to more complex

passwords.
APPENDIX G

IMPACT OF DIFFERENT KEYBOARD LAYOUTS

We further investigate the worst-case scenario, in which the

adversary does not possess any prior knowledge of the victim’s

keyboard layout and uses a completely different keyboard to

infer the victim’s typed paragraph. Since all virtual keyboards

in Table II follow the standard QWERTY layout for alphabets,
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(a) HTC Vive Pro (b) Oculus Quest

Fig. 21. Impact of Upper Cases and Symbols on Laser-based Typing.

Fig. 22. Impact of different keyboard layouts

we believe our paragraph inference attack would still be

effective even if the adversary’s VR keyboard is different

from the one used by the victim. To validate this, for each

typing scenario (i.e., drum- and laser-based typing on Vive

and Oculus, in total four different scenarios), we let the

adversary use the three different keyboards utilized in other

typing scenarios to infer the paragraph typed by the victims.

The average WRR for each scenario is shown in Figure 22.

Although the attack performance decreases due to different

structures and distances between keys, we can still achieve

an average WRR of 68.7% and 72.6% for drum-/laser-based

typing on Vive, and 76.3% and 86.4% WRR for drum-/laser-

based typing on Oculus. These promising results show the

potential generality of our attack across different keyboard

layouts.
APPENDIX H

OTHER KEYBOARD SCHEMES

We mainly focus on the QWERTY keyboards in this paper

as this layout is utilized in almost every mainstream VR

application. The adversary can include the keyboards of other

layouts (e.g., QWERTZ, AZERTY, and Dvorak) during the

keyboard reconstruction phase to improve the generalizability

of the attack.
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