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Abstract —Different from traditional gestures, sign language gestures involve a lot of finger-level gestures without wrist or arm movements.
They are hard to detect using existing motion sensors-based approaches. We introduce the first low-cost sign language gesture recognition
system that can differentiate fine-grained finger movements using the Photoplethysmography (PPG) and motion sensors in commodity
wearables. By leveraging the motion artifacts in PPG, our system can accurately recognize sign language gestures when there are large body
movements, which cannot be handled by the traditional motion sensor-based approaches. We further explore the feasibility of using both PPG
and motion sensors in wearables to improve the sign language gesture recognition accuracy when there are limited body movements. We
develop a gradient boost tree (GBT) model and deep neural network-based model (i.e., ResNet) for classification. The transfer learning
technique is applied to ResNet-based model to reduce the training effort. We develop a prototype using low-cost PPG and motions sensors
and conduct extensive experiments and collect over 7000gestures from 10 adults in the static and body-motion scenarios. Results
demonstrate that our system can differentiate nine finger-level gestures from the American Sign Language with an average recognition
accuracy over 98%

Index Terms —Sign Language Translation, Photoplethysmography (PPG), Wearables, Human-Computer Interaction (HCI)
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1 INTRODUCTION

T HE popularity of wrist-worn wearable devices has a sharp

Such increasing popularity of wrist-worn wearables creates a
unique opportunity of using various sensing modalities in wear-
ables for pervasive hand or finger gesture recognition. Hand
and finger gestures usually have diverse combinations, which
present rich information that can facilitate many complicated
human computer interaction (HCI) applications. For example,
wearable controls, virtual reality (VR)/augmented reality (AR), HL 1AM
and automatic sign language translation. Taking the automatic “? MARY
sign language translation as an example illustrated in Figure 1,
a wrist-worn wearable device (e.g., a smartwatch or a wristband)
could leverage its sensors to realize and convert sign language ¥
into audio and text and back again, which will greatly help people
who are deaf or have difficulty hearing to communicate with those
who do not know the sign language. Recently, Er-Ratgl. [2]
provide a review of the existing immature automatic sign language
translation methods, which motivates us to develop a robust fingdg: 1. lllustration of the automatic sign language translation using wear-

" ables in daily communications.
level gesture recognition system to help solve the problem.

Existing solutions of gesture recognition mainly rely orgreat potential in hand and finger gesture recognition on the
cameras [3], [4], [5] microphones [6], [7], radio frequencyvrist [14], [15], but motion sensors are sensitive to body motions,
(RF) [8], [9], [10] or special body sensors (e.g., Electromyavhich makes them difficult to identify fine-grained finger-level
graphy (SEMG) [11], Electrical Impedance Tomography (EITyestures, such as sign language gestures. Recently, a few PPG-
sensor [12], and electrocardiogram (ECG) sensor [13]). The &gsed gesture recognition work [16], [17] have been proposed, but
proaches using cameras face occlusion and privacy issues. Migey mainly focus on recognizing whole-body human activities
phones are vulnerable to ambient acoustic noises. The RF-basiéeh as standing, walking, jogging, jumping, and sitting. However,
approaches are usually known to be device-free, but they are véRether the PPG sensor can be used for recognizing the finger-
sensitive to indoor multipath effects or RF interference. Usirlgvel gestures is still unknown.
special body sensors for gesture recognition is more robust to In this work, we are the first to demonstrate that low-cost
environmental noises but requires extra cost and manpowerRHG with the appropriately auxiliary help of the motion sensors
installation. Recently, motion sensors in wearables present thieirwearable devices could be exploited to accurately recognize

increase since 2015, an estimation of HOmillion wrist- (\?
worn wearable devices will be shipped worldwide in 2019 [1]. “f;

(L
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sign language gestures, which are much more challenging thathe average accuracy of our system could achieve 98% by
traditional gesture recognition due to involving subtle finger-level integrating both PPG and motion sensor data. This suggests
gestures. We study the unique PPG and motion sensor featurdhat our PPG-based finger-level gesture recognition system is
resulted from finger-level gestures, and carefully devise a systenpromising to be one of the most critical components in sign
that can effectively detect, segment, extract, and classify thdanguage translation using wearables.

sign language gestures based on the PPG measurements together

with motion sensor measurements. The basic idea of our system
is examining the blood flow changes resulted from finger-levél
gestures based on the PPG measurements, which are collectebh bgeneral, current techniques for gesture recognition can be
low-cost PPG sensors available in wrist-worn wearable devicbgadly categorized into four categories (i.e., vision-based, RF-
As a comparison, we also investigate the limitation of onlpased, acoustic-based and body sensor based) as follows:

using motion sensors attached to the wrist area for finger-level Vision Based.There are quite a few vision-based approaches
gesture recognition. We show that the performance of the fingeave been developed to recognize hand/body gestures with the
level gesture recognition can have a significant improvement (ifee|p of cameras. For example, Microsoft Kinect [3], [18] adopts
around 10%) by combining the PPG and motion sensors. the depth-sensor to measure the movements of the hand while

The advantages of our approach are two-fold. First, our syst@@fforming hand gestures. LiSense [5] uses photodiodes on the
could be easily applied to billions of existing wrist-worn wearabl£00r to capture visible light changes and construct the user's
devices without extra cost, enabling every wrist-worn wearabfy Skeleton for gesture recognition. However, these approaches
device to recognize fine-grained gestures on users’ fingers (€3¢, Sensitive to ambient light, and their accuracies are affected
sign language). Second, our system only relies on wrist-worn PPY the distance between the camera and the user's body. Leap
and motion sensors, which directly obtain gesture related featuf8gtion [4], [19] utilizes the infrared LED cameras to capture the
without the impact of environmental changes (e.g., ambient lightde0 of the hand, which can be translated into 3D points for
sound, RF) and moderate body movements (e.g., walking, turnfgSture recognition without visible light. However, it still requires
body, slow arm movements). Thus, it is more robust in practicgle user to use an additional device and line of sight to the user’s

scenarios. The main contributions of our work are summarized $&Stures. _ _
follows: RF Based.RF-based approaches have become increasingly

important due to the prevalent wireless environments and their
« We demonstrate that PPG sensors in commodity wrist-wodevice-free nature. Received signal strength indicator (RSSI)
wearable devices can be utilized to recognize fine-grained fingef-WiFi has been utilized for gesture recognition since 2013.
level gestures. We develop the machine-learning approachéisee [9] builds the wireless prototype utilizing the Universal
(i.e., GBT and ResNet) by leveraging the unique gesture-relat8dftware Radio Peripheral (USRP) and adopts the Doppler shifts
PPG patterns captured by wearables on the wrist. Especiadfythe wireless signals to achieve fine-grained gesture recognition.
transfer learning has been explored to significantly reduce tégest [20] uses WiFi RSSI's to detect human hand motions
training efforts. We further show that motion sensors coulground a user device. Recently, channel state information (CSI) of
be used as a complementary sensing modality to improve WéFi has been widely studied for gesture recognition. WiDraw [8]
gesture recognition accuracy. To our best knowledge, this is tharnesses the arriving angles of the WiFi signals received by the
first work recognizing finger-level gestures using commodityiobile device to track the user’s hand trajectory. WiFinger [21]
PPG sensors that are readily available in wrist-worn wearalsletects and identifies subtle movements of finger gestures by
devices. examining the unique patterns exhibited in CSI. However, these
« We explore the physical meaning and characteristics of PR@proaches either require dedicated and costly devices such as
measurements collected from the PPG sensor on the wrist &fiversal Software Radio Peripheral (USRP) or can be easily
develop a novel data extraction method that can precisely segifected by environmental changes such as people walking by.
rate the PPG measurements caused by subtle finger movementg\coustic Based.Because most mobile devices have a strong
from the continuous background noise caused by human pulsegability of processing acoustic signals in nowadays, acoustic
We show that it is possible to accurately identify complicatesignals have been considered as an emerging sensing modality
finger-level gestures with minute differences (e.g., sign languafge gesture recognition. CAT [6] adopts a distributed Frequency
gestures) by exploiting various types of features extracted frdviodulated Continuous Waveform (FMCW) that can accurately
the unique gesture-related PPG patterns in different sigresitimate the absolute distance between a transmitter and a receiver
spaces (e.g., dynamic time warping, wavelet transform, Fourtercontinuously track gestures. Waagal. [22] use the speakers
transform). and microphones of the mobile devices to perform the device-
« We reveal the limitation of using motion sensors for fingefree tracking of a hand/finger based on the phase changes of
level gesture recognition. We further develop a system that cte received acoustic signals. FingerlO [7] tracks the finger's
adaptively integrate PPG and motion sensor data for fingdynamics by transforming the device into an active sonar sys-
level gesture recognition based on different levels of bodgm, which transmits inaudible Orthogonal Frequency Division
movements. Multiplexing (OFDM) signals and tracks the echoes of the finger
« We conduct experiments with 10 participants wearing our prasing microphones. However, these approaches need to occupy
totype consisting of two off-the-shelf PPG sensors, a motidhe device’s speaker/microphone or external audio hardware (e.g.,
sensor, and an Arduino board. We show that our system cagarby speakers), which is not always available in many real-world
achieve over 88% average accuracy of identifying 9 fingeseenarios.
level gestures from American Sign Language using only PPG Body Sensor Basedln addition, several customized wrist-
sensor. In ideal scenarios without involving body movementsorn sensing platforms are designed to capture the hand gesture.

REeLATED WORK
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For example, Zhanegt al. [13] proposes a framework utilizing the Radial Artery Flexor Hallucis
EMG sensor and accelerometer worn on the forearm to recognize
Chinese sign language (CSL) gesturesetaal.[11] design a pro-
totype utilizing the Surface Electromyography (SEMG) signals to
control a mobile phone using predefined gestures. Zbaah[12]
specially design a prototype that uses the Electrical Impedance®
Tomography (EIT) sensor equipped on either the wrist area or o
forearm area to recognize hand-level and finger-level gest Flexor Digitorim
g - ger-level gestures Superficialis Ulnar Artery

However, these solutions need extra hardware support, and they
are not compatible with existing mObII_elwear"flble dewces_. . Fig. 2. lllustration of the finger movement related muscles in the anatomy of

Another body of related work is using motion sensors in wris§-human forearm.

worn wearables to achieve hand and finger gesture recognition. E%cifically, atypical PPG sensor consists of a couple of LEDs and

example, Xwet al. [14] leverage the accelerometer and gyroscopo{ephotodiode/photodetector (PD), which detects the light reflected

data from a wrist-worn device for recognizing arm-level, hang, ., the wrist tissue. The principle of PPG is the detection of

Ieve_l, and finger-level gestures. Waeg al. [15] examine the_ blood volume changes in the microvascular bed of tissue. When
mot!on sensor data from a smar.twatch to track the wrist MIChthnt travels through biological tissue, different substances (e.g.,
motions and infer what the user is typing on a regular keyboa in, blood and blood vessel, tendon, and bone) have the different
Wen et al. [23] design Serendipity that can distinguish five fing;sivities of light. Usually, blood absorbs more light than

motor gestures (e.g., pinching, tapping and rubbing fingers g&ss o\, rrounding tissue. Therefore, by utilizing a PD to capture

tures) using the motion sensors in Smartwatches.. Gelpaa [24] the intensity changes of the light reflected from the tissue, the
develop a method that can continuously recognize hand gestyfgs -ahie device can derive the blood flow changes in the wrist-

using the motion sensors in a smart device despite the mingL, tissye and calculate the pulse rate or even blood pressure [25].
vibration from the user’s hand. All these solutions only use motion

sensors for gesture recognition. Therefore, they are sensitive to 1 N€ Current use of PPG in wearables is limited to heart rate,
large body movements including forearm or body motions ayIse oximetry, and k?lqod pressure monitoring. Such applications
cannot identify the fine-grained finger-level gestures, such as §fdy focus on examining regular blood flow changing patterns
sign language gestures with the existence of unexpected motidrie radial artery and the ulnar artery and consider mechanical
noises (e.g., body or arm movements). movement artifacts as noise [26]. In this work, we put forward
PPG-baéed Some works use the PPG signal to recognizd’ innovative idea of using readily available PPG in wearables
human activities. For example, ActiPPG [16] can predict five typd@" finger-level gesture recognition. We show that hand gestures,
of human activities (i.e., standing, walking, jogging, jumping, anaspemglly finger gestures _(|_.e., erxmp, extension, abduction, and
sitting) using raw PPG measurements. Biagettial. [17] also adduction), result in significant motion artifacts to PPG. The

propose a real-time system for human activity recognition by usifgaSon behind this is that the two major muscles controlling hand

accelerometer and photoplethysmography (PPG) data. While thE€§tures [27], namely flexor digitorum superficialis and flexor
works show that PPG could be used for recognizing large boggllums longus, are right beside the radial artery and the ulnar

movements, whether it could be used to differentiate fine-grain@f€y as illustrated in Figure 2. Any hand or finger gestures would
finger-level gesture is unknown. involve a series of complicated muscle and tendon movements

Different from previous work, we propose to innovativel);h,at may compress the arterial geometry with different degrees.

use the photoplethysmogram (PPG) sensor, which is originafiy '€ the blood absorbs most green lights, the_changes of the
used for heart rate detection in most of the commodity Wearaﬂ'lght reflected from the wrist area present varying degrees. of
devices (e.g., smartwatch and wristband), to perform fine-graingtjturbances of the blood flow regarding the shapes and durations
finger-level gesture recognition and detection. To the best of djyPPC waveforms. Different from the existing work, we use the
knowledge, it is the first wrist-worn PPG sensor based gestLPr_gG data including not only motion artifacts, but also cardiac

recognition system. With the proposed scheme, we envision tﬁégnals for the finger-level gesture recognition. We _f|nd that the
figger-level gestures that we focus on have a similar spectrum

most wearable device manufacturers would open the interface ) ol -

PPG raw readings to developers soon. as human cardiac movements. There_fore, fllterlr_lg out c_ardl_ac
signals would also remove subtle motion-related information in
PPG measurements, which contain the distinct characteristics for

3 PRELIMINARIES & FEASIBILITY STUDY differentiating finger-level gestures. In particular, the frequency-

In this section, we discuss the preliminaries, design intuitions aRgsed filtering method in [16] removes the cardiac portio® (0

feasibility studies of using PPG sensors in the wearable device fof* H2), respiratory activity (@ ~ 0.35 Hz) from the PPG mea-
sign language gesture recognition. surements for recognizing the human activities such as walking
(around 01 Hz). In our work, the finger-level gestures have the

spectrum (b ~ 2 Hz). Therefore, we cannot use the traditional

3.1 Intuition of Finger-level Gesture Recognition Using frequency-based filtering methods to isolate the motion artifacts
PPG and Motion Sensors from the cardiac signals. We note that the respiratory-related
3.1.1 Using PPG for Finger-level Gesture Recognition pattern has been removed using the band pass filter as mentioned

During the past few years, more and more commodity wrist-wolR section 7 since its frequency is different from the cardiac signals
wearables (e.g., smartwatches and activity trackers) are equippd finger-level gesture.

with PPG sensors on their back. These wrist-worn PPG sensorslt is important to note that most PPG sensors embedded in
are mainly designed to measure and record the user’s heart @enmodity wearable devices use green LEDs as the light source
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3.2 Feasibility Study

PPG Sensor.In order to explore the feasibility of using PPG
« =« Sensors in commodity wearables for finger-level gesture recogni-
samplelne tion, we conduct five sets of experiments on a sensing platform
prototyped with two off-the-shelf PPG sensors (i.e., a photodiode
Fig. 3. Example of PPG, accelerometer magnitude and gyroscope magni- sensor and a g_reen LE_D) connecting to an Ardum_o UNO (Rev3)
tude associated with five finger-bending gestures in the feasibility study. board [29], which continuously collects PPG readings at 100Hz
- d save them to a PC. During the experiments, a user wears a
because they have much greater absorptivity for oxyhemogloBii
y g pavity y g ristband to fix two off-the-shelf PPG sensors on the inner side of

and deoxyhemoglobin, compared to other light sources (e.g.,
or infrared light) [26]. Current PPG sensors in off-the-shelf weal 1 Wrist, and respectively bends each of his fingers as illustrated
igure 3(a) to emulate the simplest elements of typical sign

ables are usually equipped with photodiodes to ensure accud%tné;uage gestures (e.g., number 1 to number 9). Specifically, in

Ise estimation by increasing the diversity (i.e., monitoring bloo
bu imat y! 9 versity (i toring ch set of the experiments, the user bends one of his finger 10

flow changes at different locations on the wrist). Therefore, we 8
W 9 ! I wrist). W ugl' es with 8s between each bending. We record the process of
two green-LED PPG sensors in our prototype of wearable P

sensing platform [28] to study and evaluate PPG based gestm experlments using a video camera synchronized with the PPG
recognition. measurements to determine the starting and ending time of each
finger bending gesture.
] ] . ) ) We extract the PPG sensor readings within the time window

3.1.2 Improving Finger-level Gesture Recognition Using Wrist-  payveen the starting and ending points identified in the video
worn Motion Sensors footage of each gesture and examine their changing patterns. As
Wrist-worn wearable devices such as fitness trackers and smad-expected, bending different fingers result in different unique
watches are usually equipped with motion sensors (i.e., accelerpaiterns in PPG readings. Figure 3(a) presents an example of
eter and gyroscope) that are designed to capture the daily activities unique patterns in PPG that correspond to bending and
for extending user interfaces or infer users’ motion states, incldraightening different fingers, which is from one out of the two
ing walking, running, driving, etc. In particular, the accelerometaensors. During our experiments, there’s no intentional short pause
measures accelerations of the wearable user's wrist and badyween bending and straightening (i.e., theyre performed in a
movements, while the gyroscope provides angular velocities @dnsecutive way), which aligns with the normal performing style
the wrist rotations. Therefore, it is possible to distinguish a great the sign language. Moreover, as shown in Figure 4, we notice
number of wrist gestures by leveraging the accelerations attise same finger movements generate similar patterns, which
rotations obtained from wrist-worn motion sensors in wearabtiemonstrates that it is possible to utilize readily available PPG
devices. sensors in wearables for fine-grained gesture recognition. We note

Hand gesture recognition using motion sensors in wearablbst short pauses between bending and straightening may affect
have been extensively studied in recent years [14], [15], [28he gesture recognition performance if the pauses are not a part of
[24]. It is natural to extend these technologies to facilitate fingahe normal gesture. Since sign language users do not change their
level gesture recognition. However, all the existing motion-sensperforming style often, our system is effective in general cases.
based approaches are designed to distinguish wrist movementsMotion Sensor. We next study the feasibility of using mo-
with significant displacements, which are not necessarily existitign sensors for finger-level gesture recognition. Specifically, we
in finger-level gestures. Moreover, motion sensors in wrist-woexamine the motion sensor (i.e., accelerometer and gyroscope)
wearables are sensitive to motion noises (i.e., unintended badgasurements by conducting the same experiments as those in
movements or forearm movements) while performing the fingéine PPG sensor feasibility study. The motion sensors are installed
level gestures. Therefore, simply using motion sensors is raot our prototype wrist-worn sensing platform, which collects data
sufficient to distinguish the finger-level gestures. Considerirad 40Hz and saves them to a PC for further processing. We find
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language gestures have a much shorter duration and do not have
repetitive patterns compared to those caused by pulses. Our system
thus needs to detect and discriminate the unique PPG patterns of
different finger movements by re-using the low-cost PPG sensors

M D B in commodity wearable devices.

Gesture-related PPG Readings Interfered by Pulsedn this

—)— « Finger gesture
N period H

230 = T work, PPG readings corresponding to the sign language gestures
= Accelerometer . . .
s : : are treated as target signals that our system wants to identify
= and examine. Therefore, the PPG readings resulted from pulses
< 10 are considered to be the noise. Such noise always exists and

sometimes has intensity comparable to that of the signals caused
by the sign language gestures. Our approach should be intelligent
enough to separate relevant useful signals from the complicated
noise caused by pulses.

Robust Sign Language Gesture Recognition Using Limited
Sensing Modality on the Wrist. It is also challenging to achieve
high accuracy in sign language gesture recognition by using the
Fig. 5. Example of PPG reading associated with bending one specific finger readily a,vallable but Coarse_gral,ned sensing modalltles (ie., PPG
(i.e., index finger) with moving forearm continuously. and motion sensors). Commodity wearable devices usually have

. S S limited number of PPG sensors that are placed very close to
that different bending-finger gestures can generate distinguisha A%h other. Such layout limits the coverage of the PPG sensors

magnitudes of the accelerometer and gyroscope readings as Shgerhe wrist and the diversity of sensor readings, which could

in Figure 3(b) and (c). W.e also. qotlce that the same flngglrgnificantly impact the performance of gesture recognition. In
movement generates relatively similar patterns. Intuitively, tha? dition, motion sensors in wearables can only benefit the gesture
accelerometer can directly capture the three-dimensional ac :

&Cognition performance when there is no significant body move-
eration resulted from the finger-level gestures which cannot g P 9 y

directl tured by the PPG Similarl nt. Thus, we need to explore the critical features in PPG and
rectly captured Dy the P75 Sensor. simiiarly, gyroscope Coyhiinn sensor readings in various domains to achieve reliable sign
also provide three more-dimensional rotation information relat

. . uage gesture recognition.
to the finger-level gestures. In Section 8, we demonstrate thatg 99 9

- L . . Reducing Training Effort for Practical Usage. Training
motion sensors can capture additional acceleration and rotatj .
. . ) : . effort can reflect the ease of use of the system. Long-time
information of the finger-level gestures which can improve the : L N X
and tedious training procedure can significantly impact the user
overall performance.

. experience. Our system takes this into consideration and adopts
Impact of Arm Movements. We further explore the feasi- b y P

. . . . dvanced machine-learning approach to provide robust and accu-
bility of using PPG and motion sensor together for fmger-levgl . g approach 1o pi .
rtate sign language gesture recognition with the requirement of

gesture recognition with the existence of the body movements, - L
) e . . ust a few training data from users, which is critical to real-use

In particular, we conduct preliminary studies by asking the usasr%enarios

to bend each finger successively while keep moving the forearm '

to emulate natural gestures, such as arm swinging when walking

and arm lifting when checking time. We find that the forearm.2 System Overview

[N
o
o
o
o

sooof i i

o

100 200 300 400 500 600 700
Sample Index

Magnitude (°/sec)

area, therefore there is Ilttlt_e impact on the blood vessel and P%nts captured by motion sensors as the opportunistic measure to
readings, whereas the motion sensors always capture the motighs. e the accuracy of gesture recognition when there is no body
irrelevant to finger-level gestures. The observation implies thaty e ment interfering the motion sensor readings. As illustrated in
PPG sensors are more robust to body movements in finger-leyel, re g our system first takes as inputs the PPG, acceleration, and
gesture recognition and the motion sensor can only be useful {,iion measurements from wrist-worn PPG and motion sensors,
finger-level gestqrg recognition in the ideal scenarios where l'tqsspectively. Next, our system conducts Bensor Selectioto
body movement is incurred. allow the system to integrate the motion sensor readings dynam-
ically, depending on whether there are body movements detected
4 CHALLENGES & SYSTEM DESIGN based on the magnitude of the gyroscope measurements. When
body movements are detected, our system only selects the PPG
sensor for gesture recognition to avoid large errors; otherwise our
In order to build a system that can recognize the sign languagjesstem selects both motion and PPG sensors to achieve better
gestures using PPG and motion sensors in wearable devicepeHormance. After determining the right sensor to useCtharse-
number of challenges need to be addressed. grained Gesture Detection and Reference Sensor Determination
Re-using the PPG Sensors in Wearables for Sign Languagemodule is performed to determine whether there is any gesture
Gesture Recognition.The PPG sensors in commodity wearabléeing performed based on the PPG signal energy. Meanwhile, the
devices are specifically designed for monitoring pulse rate system automatically determines tReference Sensowhich is
blood pressure. The blood flow changes associated with the siga PPG sensor presenting the most significant (i.e. containing

4.1 Challenges
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~  Phase Meanwhile, in thePPG and Motion Feature Extraction
i and Selectionthe system performs the PPG and motion sensor
— i feature extraction and selection to derive a variety of features
Reference Sensor Determination I in different signal spaces (e.g., discrete wavelet transform, fast
E
1
1
A

Fourier transform). After that, the system selects the critical
features that can effectively capture the unique gesture-related
PPG and motion patterns for each gesture. Because the selected
critical feature sets are optimized for each gesture, the system
further derives a superset of the selected critical features (i.e.,
general features) to ensure the system performance. Next, we
perform theBinary Gradient Boosting Classifier Constructitm

train a binary classifier of each user for each target gesture using
(Traiming Phase | N (Classification Phase | ™ gradient boosting. In addition, we develop a multivariate deep

! (with single gesture) CNN (ResNet) classifier for each user for sign language gesture
recognition. Specifically, our system combines the segmented mea-
surements directly as the multivariate input and performibep
Convolutional Neural Network Classifier Constructi@ntrain the
ResNet classifier for each people. To explore the possibility of
using the participant-independent model, we adopt the transfer
learning technique by integrating thre-trained Classifierf a

user while training, which significantly reduces the training efforts
for other users.

_ ~
Fine-grained Gesture-related Data Segmentation 1

{

1

] I Fine-grained PPG Data Segmentation Using Energy and DTW I |
1 1
!

Fine-grained Motion Data Segmentation Using Slope Distribution I 1

2D-DTW Profile
Selection

Gesture Profiles|
for DTW.

PPG and Motion Feature
Extraction and Selection

Feature Extraction based on
Selected General Features
1

| Finger-level Gesture Classification
| based on GBT classifier

Binary
Classifier Construction

\4
| Finger-level Gesture Classification
based on ResNet classifier

v
Deep Convolutional Neural Networkl
Classifier Construction |

i et Lt R AaE R R PP ! Classification Phaseln the Classification Phaseour system
(Recognized Finger-level Gestures) collects the sensor measurements in real time and determines
which target sign language gesture has been performed based on
Fig. 6. Overview of our sign language gesture recognition system. the classification results. Specifically, when our system adopts the

) GBT classifier, it extracts the selected general features from the
more energy) gesture-related signal patterns compared {0 thosg ted sensor data segments of the current user and performs the
related to pulses. classification usinginger-level Gesture Classification Using GBT

For each coarse-grained gesture segment, the system Usesising the binary gradient boosting classifiers of the current
Fine-grained Gesture-related Data Segmentationextract the yser generated in the training phase for all the gestures in parallel.
gesture-related signal patterns from both PPG and motion senseggh binary classifier generates a confidence score, and the system
respectively. Specifically, we perform the fine-grained PPG datgkes the target gesture having the highest confidence score as the
segmentation based on the short-time energy and Dynamic Tifa@ognized gesture. When our system adopts the ResNet classifier,
Warping (DTW) distance to accurately extract the PPG dafigperforms theFinger-level Gesture Classification Using ResNet,
segments of gesture-related patternsmine-grained PPG Data which directly uses the segmented sensor measurements of the
Segmentation Using Energy and DTwbdule. If motion sensor cyrrent user as the multivariate inputs for his/her classifier to

readings are involved, the system further performs the fine-graingstermine which target gesture has been performed.
motion sensor data segmentation based on Kullback-Leibler diver-

gence of the signal slope distributions to accurately extract the
motion sensor data segments containing gesture-related patt&nsFINE-GRAINED DATA SEGMENTATION

in this module. After the fine-grained data segmentation, we haxgcurate sign language gesture recognition requires to pinpoint
developed two classifiers (i.e., GBT and ReSNet) to deal with tlﬂ% Starting and ending points of the gesture from the related
hardware computational capability limitation. In Section 8, Wgensor measurements. In this section, we discuss how to achieve
show that both classifiers have a similar performance. Comparedit@-grained data segmentation based on the raw PPG and motion
the GBT ClaSSiﬁel’, the ResNet classifier is an alternative SOlUtig@nsor data Segments that have been verified to contain Significant

for the devices having the limited computational capability tgesture-related patterns through fhata Preprocessliscussed in
extracting features in real-time since ResNet does not requggction 7.

the process of feature extraction. Then, the data processing of
our system is separated into two phasémining Phaseand
Classification Phase
Training Phase. In this phase, we collect labeled PPG an@-1.1 Starting Point Detection Using Energy

motion sensor measurements for each gesture of a user Wealfirst determine the starting time of the gesture. Due to the
build the binary gradient boosting tree (GBT) classifier for eaatonsistent existence of pulse signals in PPG measurements, it
user. Specifically, after segmentation, our system calculates thedifficult to remove the pulse signals without jeopardizing
2D-DTW distances between every two PPG segments for evéing details of the gesture-related readings, which are critical
gesture in theD-DTW Profile Selectioand selects three profile to characterizing the starting and ending points of a specific
PPG segments that are most representative for each gesture gesture. In order to accurately determine the starting point, we
having the minimum average 2D-DTW distance to other segmeseek an effective detection approach to mitigate the impact of
of the same gesture). The selected profile PPG segments willse signals. We find that the gesture-related PPG signals are
be used to calculate the DTW features in tBéassification usually stronger than those caused by pulses as illustrated in

5.1 Fine-grained PPG Sensor Data Segmentation

6
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) Fig. 8. Preliminary study: CDF of the duration of 1080gestures from 3 users.
(a) PPG raw data with gesture ground truth

%108 problem can be easily solved through simple 1-D searching within

4 = Siing Vindow Ereray the period derived fro_m_coarse-grained gestgre segmentation.
R Evegy v 9 . Through our preliminary study on the time length of 1080 .
5, Starting Points(groundrth) sign language gestures performed by three users as shown in
LTCj Figure 8, we find that the length of gesture-related signals has the

range between.®s and 14s with an average of.2s. Therefore,
we empirically determine the length of the sliding window as

0 200 400 600 800 1000 1200 1.2s to ensure the accuracy of our energy-based starting point
Sample Index detection. Note that the threshofdis user-specific and needs to
(b) Short-time energy of PPG be dynamically determined by the maximum short-time energy of
x10% the PPG signals when there is no gesture detected i€ daese-
4 T T T . . . . .
i Siing Window DTW i grained Gesture DetectiorFigure 7(b) illustrates the short-time
835 ! e e ! 1 energy corresponding to the PPG signals in Figure 7(a). We
g ol | | 222 encing pamsigroundtty i i can clearly see that the energy peaks in Figure 7(b) are very
E : : close to the ground truth observed from the synchronized video
olr ? 9 ] footage, suggesting that our algorithm could promisingly capture
0 the starting point of gestures in the PPG measurements.
0 200 400 600 800 1000 1200
Sample Index 5.1.2 Ending Point Detection Using DTW
(c) Short-time DTW distance to pulse profile It is more challenging to detect the ending point of a gesture in

the PPG signal than the starting point because the muscles are
more relaxed at the end of the gesture and the corresponding
) ) ) PPG signals are usually weaker than those at the beginning of
Figure 7(a), because gestures usually involve dynamics of Mgt gesture. As illustrated in Figure 7(a), the PPG measurements
forearm muscles/tend_ons close tq the sensor on the wrist. _'nSp'é‘?gund the ending point do not have significant patterns that can
by the above observation, we design an energy-based starting PRipjiitate the ending point detection. However, we find that gesture-
detection scheme to effectively estimate the starting of gesturgzieq PPG signals are usually immediately followed by pulse
related PPG signals without removing the interference of pU|Se§ignals, which are very clear and easy to identify. Hence, instead

The basic idea of our energy-based starting point detectigf girectly locating the ending point based on PPG readings, we
method is to determine the time corresponding to the local magksign a DTW-based ending point detection scheme, which aims
mum of the short-time energy of PPG signals. The reason behigdigentify the starting time of the first pulse signal following
this is that when using a sliding window with the same lengifhe gesture-related signal. We employ the dynamic time warping
of a signal to calculate the short-time energy of the signal, th®T\w) to measure the similarity between the user’s pulse profile
energy reaches its maximum value when the signal entirely faﬂ:gulse and the PPG measurements collected after the already-
into the window. Therefore, by carefully choosing the size of thgetected starting point of the gesture. Intuitively, the time when the
sliding window (e.g., the average length of target gesture-relatge\y value reaches the minimum is the starting time of the pulse
signals), the starting point of the gesture-related signals would §gnals and also the ending point of the gesture-related signals.
the same time when the short-time energy of the signals reachgs adopt DTW because it can stretch and compress parts of
its maximum. In particular, given the data segment containingpG measurements to accommodate the small variations in the
gesture-related PPG sign&lgt) from theCoarse-grained Gesture py|se signals. To summarize, this ending point detection problem
SegmentatioSection 7), the starting point detection problem cag defined as follows:

be formulated as the following objective function: arg min DTW(P(t), Pouse), St T <t < T+W, @
t

Fig. 7. Example of detecting starting and ending point of a gesture-related
PPG measurements using energy and DTW.

arg max (P(t) — 16)P(1)", @)

. where DTW(-,-) is the function to calculate the DTW distance,

P(t) has the same definition &@(1) in Equation 1,W, is the
where P(1) = [p(1),p(T+9)---,p(T+W)], p(t) denotes the time duration for the gesture, arrdis the detected starting point.
amplitude of the PPG signal at time 0 represents the PPG After searching the DTW distances for #8(t), we find the time
sensor sampling intervaly is the length of the sliding windov index of the first local minimum in the DTW distances (i.e., the
is the threshold used to avoid finding the local maximum energyarting time of the first pulse after the gesture) as the ending
resulted from pulse signalg, is an all-one vector of the samepoint of the gesture-related signals. Figure 7(c) presents the DTW
length asP(1), andT indicates the transpose operation. The aboveetween a selected pulse profile and the raw PPG measurements in
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Figure 7(a) withW, = 0.88s. From the figure, we can observe thasensor readings sharply increases at the starting point of a gesture,
the time indices of the detected first local minimum DTW valuethen keeps fluctuating during the gesture, and finally decreases
are very close to the ground truth of the ending time of the twsharply to a low and stable level at the ending point of the
gestures, which demonstrates the effectiveness of the DTW-bagedture. Both starting point and ending point are obtained through
ending point detection scheme. Coarse-grained Gesture Detection and Segmentatidection 7.
Extracting Pulse Profiles. The pulse profilePyyse can be ex- These observations indicate that in one coarse-grained segment,
tracted from the PPG measurements that are collected when thaee distributions of motion sensor readings before and after
is no gesture performed (e.g., at the beginning of the trainitige starting/ending point of a gesture have the most significant
phase). In particular, we first detect the pulse signal peaks in ttiference, respectively. Therefore, we design a Kullback-Leibler
PPG measurements. Given the fact that a typical PPG pulse sidifal) divergence technique-based detection scheme to effectively
always has a peak, if the pulse signal peak is locateg, ab the estimate the starting and ending point of a gesture from motion
PPG measurements betwelgn—tqy,t, +1ts] are identified as the sensor signals in the coarse-grained segments. The basic idea is
user’s pulse profile. In this work, we respectively chogse 0.2s that given two sliding windows with the same length traversing
andts = 0.6s based on the duration of diastole (i.e13%- 0.26s) the coarse-grained segment, the starting and ending points of a
and systole (i.e., @4s- 0.74) phases of the vascular systengesture are determined as the time points when the difference
reflected in a typical PPG pulse signal [30], which can effectivelyf the distributions derived from these two windows present two

extract all users’ pulse profile. significant peaks in tandem, respectively.

In particular, we respectively calculate the distributions of
5.2 Segmentation on Inconspicuous Gesture-related Pat- quantized motion sensor reading slopes in the sliding windows
terns before and after each time poitit which can be denoted as

Our DTW-based ending point detection can accurately determigeli-1) andA(K;), j =L,...,J], whereJ is number of time points
in {\fllve coarse-grained segment. Then, we calculate the difference

the e_ndlng point if the gesture-related PPG pattern has S|gn|f|c%ré een the slope distributidB(K;_1) and A(K;) of each time

amplitudes compared to those of the pulse-related patterns. HOW- . . .
. oint t; using K-L divergence. The K-L divergence between

ever, in rare cases, the gesture-related PPG patterns may not fiave RO . .

. . . . these two distributions are derived &8k (B(Kj—1)|A(Kj)) =

significant amplitudes when the sensor is at the locations far away B(K; 1=q) ] ]

from the arteries. Note that such inconspicuous patterns are RatQB(Kj-1=0)In Allg—q) where Q is the set of all possible

easy to be extracted as their boundaries with pulse-related pattesaiges for quantized motion sensor reading slopes. The insight

are very vague, but they still contain rich information that coul that the motion sensor readings have a sharp change around

greatly facilitate gesture recognition. In this work, we find thahe starting and ending points. So, the local maximum slope

when using two PPG sensors close to each other on the wristdistribution difference determined by K-L divergence corresponds

least one of the sensors can generate gesture-related PPG patterifge starting and ending points. It's important to note thydt6l

with significant amplitudes. Inspired by this observation, we adopindow overlapped is used in our algorithm for optimizing the

a reference-based approach to accurately determine the endiagormance.

point for the inconspicuous gesture-related PPG patterns.

In particular, assuming our system identifies the ending poigt
tr on the sensoR with significant gesture-related PPG patterns
(i.e., Reference Sensdaliscussed in Section 7) using our DTWIn this section, we introduce how to extract the PPG and motion
based method, the system further derives the ending point at gg&sor features that can facilitate sign language gesture recognition
other sensoD astp = tg+ AT, where AT is the time delay using our Gradient Boosting classifier. In addition, we explore the
between the ending points on senfband sensob. According advantage of using the Deep Residual Network for sign language
to our empirical studyAT is nonzero and stable between twdesture recognition, which could leverage the transfer learmning
sensors across different gestures. The insight is since musdgghnique to reduce users’ training effort significantly.
and tendons at different locations of the forearm compress the
arteries with different pressures and durations when performinga ppG and Motion Feature Extraction
gesture, the gesture-related patterns captured by the PPG sens
at different locations will last different time periods. Because the ) .

. . S ePture-reIated PPG patterns, we explore the efficacy of different
system can always find multiple gestures that generate S|gn|f|c§n . . : .
. . : Inds of features including typical temporal statistics (e.g., mean,
PPG patterns on both sensafg; can be easily estimated in the _ . L -
variance, standard deviation (STD)), cross-correlation, autoregres-

Training Phaseby calculating the average time difference of th%iv (AR), dynamic time warping (DTW), fast Fourier transform

teonggg‘ffggtsgéognetnh;?:stures where both sensors are determ ), discrete wavelet transform (DWT), and Wigner Ville dis-
tribution as listed in Table 1. The features can be categorized
into three types:Time Domain Frequency Domainand Time-
5.3 Fine-grained Motion Sensor Data Segmentation Frequency Domainwhich are designed to capture the detailed
Next, we perform the data segmentation on motion sensor datakaracteristics of the gesture-related PPG patterns across different
identify fine-grained starting and ending points of a sign languaffequency and time resolutions. While th&k CoefficientsFFT,
gesture. Intuitively, the gestures involving the movements of tEBNVT, WVD, and most of the&Classic Statisticare all focusing on
major forearm muscles/tendons on the wrist induce strong flasalyzing an individual sensor's measurements,Gress Corre-
tuations in motion sensor readings, which usually have relativdtion and 2D-DTW are promising for characterizing the unique
low and stable amplitudes when there is no gesture performgesture-based PPG patterns in terms of the relationship between
In our experiments, we observe that the amplitude of motian pair of sensors. Moreover, odime-Frequency (TF) Domain

SIGN LANGUAGE GESTURE CLASSIFICATION

BE Feature Extraction. To capture the characteristics of unique
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TABLE 1
List of Extracted PPG Features.

Category Features (# of features) Description
Classic  Stafistics (4): mean, peak-to-peak, Descriptive statistics of each segment, reflecting the statistical characteristics of
RMS, variance the unique gesture-related patterns.
A vector of cross correlation coefficients between the segments from two PPG
Time Domain Cross Correlation between Sensor§9) sensors based on a sequence of the lag values, characterizing the relationship

between two PPG sensors in a gesture.
Similarity between PPG measurements from two sensors (i.e., 2D) and the cor-

2D-DTW to Gesture Profiles (9) responding gesture profiles, directly capturing the temporal shape characteristics
of the unique gesture-related patterns.
Frequency Fast Fourier Transform (< 5Hz) (6): skewness, Statistics of frequency components in the specific low frequency band, analyzing
Domain kurtosis, mean, median, var, peak-to-peak the unique PPG patterns in frequency domain.

Statistics of the third level decomposition of the wavelet transform using the
Harr wavelet, revealing the details of gesture-related patterns at interested time
and frequency scale.

Discrete Wavelet Transform (4) mean, peak-
to-peak, RMS, variance

Wigner Ville Distribution [31] (13) : first-order

Time-frequency derivative, frequency and time when the signa

Fine-grained time-frequency features with high resolutions, capturing details of

Domain reaches the maximum, maximum energ,) gesture-related patterns having short time duration.

/ minimum energy E,;,), differential energy

(Etnax— Er'niﬁ), STD and AV' of the energy

within theit" sliding window

. - Time variant coefficients that can capture the characteristics of gesture-related

Autoregressive Coefficients [32] (9) patterns independent of the patterns’ time scales.
features include three major TF types (i.e., non-paramkgitréar | x10° ,x10°
TF analysis (DWT), non-parametric quadratic TF analysis (WVD) o [0 Gesturet O Gesture2
and parametric time-varying based metric (AR)), which can wel , %® m 015 R E
capture the dynamics of gestures in PPG measurements. In to 2 os iq: % é\@i

. (]

we extract 54 different features from each PPG sensor. Note that , o :‘S:? D; = oa ,gﬁ Pty
order to calculate the 2D-DTW feature, our system first perform = 0s x ° o sl A% @g& Sw o
2D-DTW Profile Selectioim the Training Phasewhich calculates ' EE ¢ 00 o
the 2D-DTW distance between every two segments for ever % 500 1000 1500 ° o 200 a0 a00
gesture in the training data and selects three segments that hi... 2D-DTW Feature Time Domain Feature
the minimum average 2D-DTW distance to other segments of the (a) Gesture 1 & gesture 3 (b) Gesture 2 & gesture 6

same gesture as the profile for later use inGhessification Phase
. . . . Fig. 9. Example of different sign language gestures and corresponding
Motion Feature Extraction. The time domain features suchtfeatures.
as the Mean, Max, Min value, Variance of each segment {8,y re selection and integration, we havel&ermined General
the motion sensor readings have been demonstrated to be ures(i.e., 54 PPG features and 12 motion sensor featurés) in
to effectively capture the distinguishable signal pattemns frofyich will be used in thelassification PhaseFigure 9 illustrates
different people, who perform the same hand gestures as shQyly oy features can effectively capture different characteristics

in the research [33]. To further characterize the unique 9estYeppg and motion sensor patterns for distinguishing different
related acceleration and rotation patterns, we also explore E@stures

efficacy of other features including typical temporal statistics (e.qg.,

peak2peak, root mean square (rms)) in the time domain, which

could reveal the detailed characteristics of the gesture-relate@ Finger-level Gesture Classifier Using Gradient Boost-
acceleration and rotation measurements. Since those featuresitairee

effectively capture the geometrical characteristics of the 9estRsxt we build a binary classifier for each target gesture by using
related signal segments from the motion sensor, therefore we a%QtGradient Boosting Tree (GBT) for each user. We choose GBT
those features as the motion features for the gesture cIassificat}Hg-,my because 1) GBT is famous for its robustness to various

Feature Selection.Our system further employs the elastidypes of features with different scales, which is the exact case in
net feature selection method [34] in tAeaining Phaseto auto- our project (e.g., the mean value of the PPG signal reading of the
matically choose the most discriminative ones from our extractgésture period is around 500, and the autoregressive coefficients
features. In particular, the system respectively performs the elastie the numbers fluctuated around O with value less than 1). 2)
net feature selection on the PPG and motion sensor features cds®BT classifier is robust to the collinearity of feature data. Because
sponding to every target gesture. Based on the one-stand-deviation features are heterogeneous across different domains, it may
rule [35], our system keeps the most significant highly correlateesult in unexpected correlation or unbalance ranges that possess
features and eliminates noisy and redundant features to shrink tine collinearity. Therefore, GBT would eliminate the efforts to
feature set and avoid overfitting. Next, in order to generalize thermalize or whiten the feature data before classification [36].
features set for classifying all target gestures, our system integratesGivenN training sampleq(x;,yi) }, wherex; andy; represent
the features selected for each target gesture and generates a gethergkesture-related feature set and corresponding label with respect
feature seff as follows:F = F(g1) U... UF(gy), where F(g,) to one specific gesture (i.e4 = 1 or -1 represents whethgr is
is the selected feature set of thg target gesturey,. After the from this gesture), GBT seeks a functigx;) = zm;l omhm(%)
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to iteratively select weak learnelg(-) and their weightsw; to  After each epoch of the training phase, we track the accuracy with
minimize a loss function as followd: = ziN:]_L(Yi,(PXi)- Specif- the currently trained model applied on the testing data, and the
ically, we adopt the GBT implementation from the library ofmodel with the highest accuracy will be chosen as the final model
SQBIib [37] for gesture-related feature training. Specifically, thafter all the epochs. In our implementation, we adopt 16 as the
loss functionL(-) is chosen as the exponential ldss= e Y%  batch size and 1500 as epoch.
that applies enough shrinkage (i.e., 0.1) and number of iterations Reducing Training Effort Using Transfer Learning. Our
(i.e., M = 2000), and the sub-sampling of the training datasetork also explores transfer learning across different users to
is a fraction of 0.5. The above parameters adopted in GBT arduce the training effort in terms of the size of the training dataset.
optimized in terms of the speed and accuracy based on duiparticular, we fix the architecture of the ResNet with the invari-
empirical study. Once the loss function is determined, we nextit number of neurons in each layer (except the softmax layer)
will build a binary gradient classifieby(---) for each profiled and retain the weights of the higher layer neurons since the lower
gesturegy,k=1,---,K to complete th&raining Phaseand each layers in the ResNet refer to general features, while higher layers
binary gradient classifier will output a score for the testing featumaptures more dataset-specific (i.e., the specific people) features.
set. The reason of using binary classifier is that binary classifiglith this fixed architecture, the pre-trained model on one user’s
has high accuracy with distinguishing one gesture from othdataset (i.e., source dataset) could achieve the similar performance
gestures, whereas a multi-classifier has relative lower accuratyanother user’s dataset (i.e., target dataset) with much smaller
when performs the same classification task [38]. training dataset size, and the retraining process only needs to
In Classification Phaseour system uses the binary classifierfine-tune on the values of the parameter without modifying the
of the current user for all the gestures in parallel to classitructure of the hidden layers in ResNet. In particular, we retrain
previously unseen gesture-related featurexsedpecifically, we the classifier for the new people from the third residual block
will obtain different scores returned from each binary classifidg GAP layer to softmax layer in the ResNet. In testing phase, we
and choose the labglof binary classifieby(x) with highest score apply the retrained model of the new user on his/her testing dataset
as the final classification. to get the classification results.

6.3 Finger-level Gesture Classifier Using Deep Residual 7 DATA PREPROCESSING

Network (ResNet) In this section, we presertiiree components that are critical to

Recent years have witnessed the success of Deep Neural Netwsekssor selectiorand fine-grained data segmentation.
(DNNs) on Time Series Classification (TSC). In this work, we Sensor SelectionBody movements (e.g., forearm swing and
especially adopt the deep Residual Network (ResNet) architectisegdy rotation) may induce irrelevant motion artifacts in the mo-
proposed in [39], which provides excellent performance in botion sensor measurements, which significantly impacts the perfor-
univariate and multivariate TSC [40]. In particular, ResNet is mance of sign language gesture recognition. However, such body
variant of convolution neural network (CNN) with a linear shortcuinovements have little impact on the PPG measurement as afore-
to link each residual block to its input, which reduces the vanishimgentionedreasibility StudyHence, it is critical to determine the
gradient effect and thereby eases the DNN training procedure [4ight moment to integrate PPG measurements with motion sensor

Particularly, we design a ResNet consists of 3 residual blockeasurements for sign language gesture recognition in our system.
followed by a Global Average Pooling (GAP) layer and a softma®ur extensive experimental study finds that body movements
layer to classify the output of GAP layer (11 layers in total). Eachisually introduce significant fluctuation on both accelerometer
residual block has 3 convolution layers, and the output of eaahd gyroscope measurements simultaneously, whereas finger-level
convolution layer then undergoes batch normalization and Reldgstures alone do not. Therefore, we employ a threshold-based
activation before feeding into the next layer. The three convoluti@pproach to determine the presence of body motion. In particular,
layers are set to include 64 filters with the lengths of 8, 5 andw8e calculate the magnitude of the gyroscope measurements. If
respectively. Moreover, the output of each residual block is addi#d below an amplitude threshold,, before the starting point of
to its input as the updated input to next residual block, and tlaesign language gesture, our system takes both PPG and motion
last residual block of each convolution layer connects to GAs&nsor measurements for data segmentation and gesture recogni-
layer that averages the time series over whole time dimensitgon. Otherwise, only PPG measurements are used. Note that the
and helps minimize overfitting. The adaptation of GAP instead dfreshold is mainly determined by the sensitivity of the motion
the traditional fully connected (FC) layer not only significantlysensor. In this paper, we empirically determiiye= 38.4 radians
reduces the total number of parameters in the network model lpatr second based on our experimental study with 10 participants.
also enables the class activation map (CAM) to identify the moSur evaluation results (Section 8.3) demonstrate that this threshold
significant part of the time series input for classification. can help to render good gesture recognition accuracy.

In the Training Phasewe train the ResNet for each user and Coarse-grained Gesture Detection and Segmentatiorfo
feed the ResNet with a user’s input dataNosamples{(T S,yi)}, facilitate the fine-grained data extraction, our system pre-processes
whereTS andy; represent the time series input data (i.e., botthe raw PPG measurements to 1) determine whether there is a ges-
raw PPG and motion sensor segments) and the corresponding lalned performed or not based on the short-time energy of the PPG
with respect to one specific gesture (iyg.+ k represents thaj is measurements; 2) and extract the PPG and motion measurements
from the gestur&, k= 1,---,K). Particularly, we use the shuffle that surely include the whole gesture-related patterns. Specifically,
split cross-validation method to randomly select the specifighe system first applies a high-pass filter to the raw PPG mea-
number of the training data from the input dataset of the curresuirements to mitigate the interference of pulses. The reason to
user and use the rest of the user’'s data as the testing data. Inube the high-pass filter is that the finger-level gestures have more
meantime, the classifier is run by the testing data simultaneoukigh-frequency components compared to the pulses, which are
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PPG Sensor inside Motion Sensor outside
wrist band wrist band

o

S1  S2 S3 S4

Fig. 11. American Sign Language of number one to nine.

which has been defined in Equation 1.

8 EXPERIMENT AND EVALUATION

a) The wristband of our prototype with PPG sensor and mot&msar. .
@ protolyp 8.1 Experimental Methodology

Bluetooth Module POM.. B XL Tl 3%011:42PM

Monitor 8.1.1 Wearable Prototype

= He-06 We notice that existing manufacturers do not provide direct access
to raw PPG readings; instead, they only provide the computed

o LA LA NI AN heart rate. Therefore, we design a wearable prototype to mimic

600

o the layout of PPG sensors in commodity wearables to demonstrate
’ that our system can be applied to the existing wearable products
ggéw\‘jm without extra efforts. Our prototype has two commodity PPG
b sensors (with single green LED) and a motion sensor (i.e., MPU-
i N 6050 with a three-axis gyroscope and a three-axis accelerometer)
Arduino UNO (REV3 Android Phone APP connected to an Arduino UNO (REV3) board, which exchanges
(b) Arduino board with the Bluetooth and our Android smartphd\PP data with our android app through Bluetooth as shown in Figure 10.

The two PPG sensors are placed closely to each other and fixed
to the inner side of a wristband, while the motion sensor is placed
usually under 2Hz [42]. In this work, we build a Butterworth higheutside of the wristband. The training phase is done offline using
pass filter with the cut-off frequency at 2Hz. Note that we onIMIATLAB. The trained GBT and ResNet classifiers are deployed
use the filtering technique in the coarse-grained gesture detectam,our app to perform the testing phase of our sign language
because the filter removes the low-frequency components of bgtsture recognition. In the experiments, we adopt various sampling
pulse and gesture-related signals, which negatively impact ttates (i.e., 30Hz, 40Hz, 60Hz, 80Hz, and HX) to evaluate the
gesture recognition accuracy. Then the system decides whethgstem. Unless mentioned otherwise, the default sampling rate is
there is a gesture performed or not depending on if the short-timet to 100Hz.

energy of the filtered PPG measurements crosses a threshold .
or not. We set the threshold to= p + 35, whereu and d are 6.1.2 Data Collection

the mean and standard deviation of the short-time energy of ¥ recruit 10 participants (7 males and 3 females with the age
filtered PPG measurements collected during the time when ti#ge from 20 to 40) to perform the sign language gestures for
user is asked to be static (i.e., at the beginning of the trainifyaluation. To better demonstrate the effectiveness of recognizing
phase). When the system detects a gesturig, ave employ a finger-level gesture, we focus on the elementary gestures from
fixed time windowW to extract the raw PPG and motion sensofmerican Sign Language only involving the movements of fingers
measurements withiity, ty + W] for the fine-grained segmentationfrom a single hand as shown in Figure 11. Note that our system
We setW, = 4.5s to ensure the window can cover all possibléan be applied to other more complicated finger-level gestures
duration of gestures that we have observed in our preliming®p Whichever wrist. We first conduct experiments in the static
study as shown in Figure &eference Sensor Determination. Scenario (i.e., performing gestures without body movements),
Intuitively, significant gesture-related PPG patterns could resultffere each participant is asked to wear the prototype on the
accurate data segmentation. However, we notice that the inten¥ff{gt of his/her dominant hand and perform the nine sign language
of gesture-related PPG patterns is sensitive to the locationsg§stures for 40 times respectively without any body movements.
sensors on the Wrist, which may not be Significant enough fB} add|t|0n, we conduct eXperImentS in the bOdy-mOtlon scenario
segmentation. The insight is that the PPG sensors can capf@rétudy the impact of body movements on our system. To mimic
more significant changes of reflected light when they are closerth$ real-life scenarios where the participant may inevitably have
the arteries that are directly compressed by muscles and tendBtgion when performing sign language gestures, we ask each
Through our extensive tests, we find that two PPG sensors ae@ticipant to perform the same American sign language gesture
close distance on the wrist can already provide good diversfiyg-» number 1) while performing body movements (i.e., swinging
and at least one of them can provide gesture-related PPG sigiasforearm, rotating the forearm, swinging the body, and rotating
that have the stronger intensity than that of pulse-related sign§. body). Each gesture is performed 10 times in one session.
Therefore, in this work, we employ a two-sensor approach aHd Particular, we have found that the sign gestures performed at
determine which sensor could be tReference Senstiaving the different times have stable and similar waveform patterns, thus
significant gesture-related PPG patterns, which will be taken & thresholds we adopt are not affected over multiple sessions. In
the input for the fine-grained data segmentation. Specifically, @fal, we collect over 7000 PPG segments and over 2500 motion

examine the short-time energy of the extracted PPG measurem&Rf2S0r segments in the static and body-motion scenarios. Unless
and determine whether a sensor iRaeference Sensarr not mentioned OtherW|56, our results are derived from 20 rounds

depending on if its short-time energy exceeds the thresBpld Monte Carlo cross-validation using 50% of our data set for training
the participant-dependent models and the rest for validation.

Fig. 10. Prototype wrist-worn PPG sensing platform.

11

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on April 16,2020 at 19:36:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2962760, IEEE
Transactions on Mobile Computing

538 0.91 0.01 0.00 0.01 0.01 0.01 0.001 1 1
< S2:-0.03 0.01 0.00 -0.02.0.01_ 0.01 _0.03-
2 S310.01 0.01 -002_ 0.01 0.01 0.01 0.01- 08 08
= S4-0.01 1 KEWM 003 0.01 0.01 0.01 -0.02+
T $50.00 1 -0.02 NeX¥M 0.01_ 0.01 -0.02- 0.01 06 0.6
5 S6 -0.01 .01 0.01 0.02 He¥l: 0.02 0.01
© S70.01 .01 0.01 0.00 0.05 ! .01 04 04
Ggg 808 ] 0.01 801 80? 808 1-0.86 .| 02 - 02 -
.0 . .0 . .0 0.0 8 B Precision - Precision
A N B 0 0
Prediction 30 40 60 80 100 5 10 15 20 25
Sampling Rate (Hz) # of Training Segments
Fig. 12. Confusion matrix of recognizing nine sign language gestures among (a) Impact of sampling rate (b) Impact of number of trainingreents

seven participants using PPG sensor.
Fig. 14. Impact factor study: average precision and recall of recognizing nine
gestures with different sampling rates and # of training segments using PPG
sensor.
each sign language gesture across different participants. We ob-
serve that all participants have high accuracy in recognizing these
sign language gestures. Specifically, the average precision and
recall of all the 10 participants are 88% and 89%, respectively, and
. the lowest average value of the precision and recall among all the
P1 P2 P3 P4 P5 P6 P7 P8 P9P10 P1 P2 P3 P4 P5 P6 P7 P8 P9P10 participants is still above 80%. The results show the robustness
Participant Participant . .

and scalability of our proposed system across different users,
and demonstrate the system is promising to act as an integrated
Fig. 13. Impact factor study: comparison of gesture recognition performance ~ function in commodity wearables once the interface of PPG raw
among ten participants using PPG sensor. signals to developers is open.

= Average of Participants :0.88321 = Average of Participants :0.88549

Precision

(a) Average precision (b) Average recall

8.1.3 Evaluation Metrics ] ) ]
Impact of Sampling Rate. The sampling rate of sensing

hardware is one of the critical impact factors on affecting the
g E h T is th b ; ower consumption on wearables. We study the performance of
Ng /(Ng +Mg), whereNg is the number of gesture segmenty,q hosed system with different sampling rates on PPG sensors.
correctly recognized as the gestgreMg is the number of gesture \oct of the commodity wearables have around HA®PG sam-
segments corresponding to other gestures which are m'StakedHMg rate. For instance, Samsung Simband [43] configures its PPG

recognized as the gesture tyge sensor to 128z to perform time-centric tasks like Pulse Arrival
Recall.Recall of the gesture typpis defined as the percentagerjme cajculations. In this study, we collect the PPG readings

of the segments that are correctly recognized as the gesture i@, the implemented wearable prototype with several sampling
g among all segments of the gesture typevhich is defined as 4ie5 (1., 381z to 10(Hz with step size 20Hz) to evaluate the

Recalp = NJ/NG' _ _ _ system. Figure 14(a) shows the average precision and recall of
Confusion Matrix. In confusion matrix, each entrij de- he gesture recognition under different sampling rates. We find
notes the percentage of the number of gesture segmem# at the precision/recall increases with the increased sampling rate,
predicted as gesture tygen the total number of. The diagonal powever, the precision/recall still maintain as high as 87% under
entries .show the average accuracy of recognizing each gest{g.owest sampling rate (i.e., B@). As the results implied, our
respectively. system is compatible with the off-the-shelf wearables with high
recognition accuracy, and it can operate normally on the hardware
8.2 Performance in Static Scenarios with lower PPG sampling rate in terms of the power consumption.

Precision. Given Ny segments of a gesture typg precision
of recognizing the gesture typg is defined asPrecisiony =

8.2.1 GBT Performance Using PPG Impact of Training Data Size. We change the amount of
First, we show the effectiveness of using the PPG sensor f#ata used for training in the Monte Carlo cross-validation to study
sign language gesture recognition by evaluating the system pke performance of our system under different training data size
formance when using the GBT classifier. It's important to notas shown in Figure 14(b). In particular, we choos&®15, 20,
that we adopt the participant-dependent models, which means thatl 25 PPG segments with respect to each gesture for training
our system trains the classifier for each user using his/her ogie., 125%, 25%, 37.5%, 50% and 625% of our dataset) and use
data, respectively. Figure 12 depicts the confusion matrix for tiiee rest of our data for validation, respectively. We observe that
recognition of the nine American Sign Language gestures witlur system can achieve the average precision and recall of 89%
only using the PPG sensor. Specifically, the average accuracwigl 90% respectively when 25 segments of training data for each
88.32% with standard deviation.2% among all the 9 gesturesgesture are collected in the training phase. As the size of the
We find that the recognition results of the gest82eS5, S7, S8 are  training data decreases, the system retains decent performance.
relatively low (i.e., around 86%). This is because those gestui@srthermore, the average precision and recall can achieve 75%
have more subtle differences in the tendon/muscle dynamics theaml 77% respectively for recognizing nine sign langauage gestures
other gestures. Overall, the results confirm that it is promising tsing only 5 PPG segments of each gesture for training. The
use commodity wrist-worn PPG sensors to perform sign languagisove results indicate our system can achieve good recognition
gesture recognition. performance with a limited size of training data (e.g., 5 sets per
Impact of Different Users. Figure 13(a) and (b) present thegesture), which ensures great convenience for practical usage on
average precision and recall of using PPG sensors to recogrienmodity wearables.
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Fig. 15. Impact factor study: average precision and recall of recognizing nine gestures using GBT after integrating both PPG and motion sensor.

1 1 for data collection, therefore we first study the performance of our
system with different training data size as shown in Figure 16(a).
In particular, we apply a shuffle split cross validation approach to
randomly choose ,3,5,10,20, and 25 segments of each gesture
for training respectively, and use the rest data for testing. We
o H observe that our system achieves the similar performance as GBT
Rccal atter Transter Learing with an average precision and recall of over 90% using 5 or more
S raning e o Traniny Seqments segments of each gesture in training. Moreover, our system retains
decent performance with the decreasing training data size. The
average precision and recall can still achieve to 78% when using
only 3 segments for training each gesture.
Fig. 16. Performance of ResNet and transfer learning. In addition, since the specific architecture of the adopted
ResNet can be taken advantage of by the transfer learning ap-
proach, we further explore the performance of our system after
Next, we evaluate the performance of our system when motiggplying transfer learning. In particular, we first train a classifier
sensors are available. Due to the human power limitation, W§ gne person with using 25 segments of each gesture in order
can't recruit the exact same 10 participants at the end of the generate the pretrained model that has excellent performance.
project and only 7 out of 10 original participants are involvegtnen we retrain the classifier with 8, and 5 segments of each
to conduct expe”ments with both PPG and motion sensors fobésture for the new people based on the pretrained model. As
fair comparison. Figure 15 shows the comparison of the precisigRown in Figure 16(b), we can see that after applying the transfer
and recall of our system when 7 of 10 participants performing th€arming, the performance of our system is improved by 10% to
nine sign language gestures wearing both PPG and motion sengafy, with only using 3 segments of each gesture for training.
combinations of sensors, including 1) only PPG sensor; 2) onfye transfer learning can improve the precision and recall of
gyroscope; 3) only accelerometer; and 4) PPG, gyroscope gjift system to above 90%. Those results prove that the ResNet
accelerometer, respectively. From Figure 15 (a), (b), and (C) W8 the fundamental multivariate TSC is also suitable for our
can observe that our system can achieve decent performance wtftem, which not only provides the good performance without the
the lowest precision and recall of over 83% and 84% respectivelypcedure of extracting the features but also can take advantage of

by using only one type of the sensors. In addition, we find thg{e transfer learning to significantly reduce the training effort to
the performance of using the only accelerometer is not as gogghieve decent performance.

as that of using only the gyroscope. In particular, the precision of
only using the accelerometer is 83%, which is lower than using tge; Impact of Different Types of Body Movements

) 0 . i
gyroscope sensor (i.e., 90%). The reason is that the sign Iangu?Hg wrist-worn PPG sensors basically monitor the blood flow in

gestures do not involve a lot of displacements of the wrist aanI od vessels on the wrist. which could possibly be impacted b
introduce more distinguishable rotations than accelerations in ?18 ’ P y pact y
e body movements that change the blood flow depending on

wrist area. Moreover, as shown in Figure 15(d), when integrati
. o how far the source of the body movements are away from the
PPG with both gyroscope and accelerometer, it is very encour- . " . . . o
. ' . . onitoring point. Therefore, we conduct the experiments with dif-
aging to find that all those gestures can be recognized with the

I Precision before Transfer Learning
[Recall before Transfer Learning
[ Precision after Transfer Learning

(a) Performance of ResNet (b) Performance after applying
with different training size transfer learning

8.2.2 GBT Performance Using PPG and Motion Sensors

; L o rent types of body movements such as swing the forearm, rotate
high average precision and recall of over 98%, which is over 10% X . .

. the forearm, swing the body, and rotate the body while performing
more than the other three cases using only one type of the sensprs

These results show that integrating the measurements from P, gsan the language ggsture as shown.m Figure 17.(‘3)’ (b), (). (d)
. LS ) in.order to explore their impacts respectively. In particular, we ask
and motion sensors can significantly improve the performance

our sign language gesture recognition. tHe participants to perform the gesture of American sign language
number 1 (i.e., S1) while involving certain body movements. As

shown in Figure 18 (a), the PPG gesture patterns of all the tested

body movements have similar waveform shape as that of no body

We also study the performance of our system with using tmeovement.

ResNet to build the underlying classifier. Since the training data Additionally, we compare the DTW distances between the

size reflects the ease of use of the system in terms of the tiPBG segments collected during the time with and without body

8.2.3 Performance of DNN (ResNet) and Transfer Learning
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Fig. 17. lllustration of different types of body movements involved in the 0 20 30 40 50 60 N ML M2 M3 Ma
experiments. Sample Index Different Body Movements

movements to quantitively understand the similarity between the (a) Raw PPG measurements (b) DTW distances
gesture-related patterns showed in Figure 18 (a). From F_lgure I=1'98 18. lllustration of the impacts from different types of body movements

(b) we can see that all the ge_Sture'related patterns with bag@ine PPG measurements when performing the same finger-level gesture
movements have small DTW distances of less than 900 to ffhe, Sl): (a) comparison of raw PPG measurements and (b) comparison of
gesture-related patterns without body movements, which indica@é’v distances that are collected when there are no body movements and

that the shapes of the PPG segments are well sustained as the Uifergnt types of body movements.

without any body movement. The small DTW distances suggdstpact of Intense Body Movements.PPG sensor is sensitive
that our sign language gesture recognition system would wdrk the extremely intense body movements. We find that some

well by examining the PPG data that is insensitive to the bo@xtremely intense body movements, such as intense wrist wringing

movements. and coughing, could induce large signal deformation than normal
body movements (e.g., swing the forearm), and thereby affect
9 DiSCUSSION the accuracy of wrist-worn PPG sensor readings. Therefore, it

. . ... s recommended to not involve intense body movements when
Processing Delay.The processing delay of gesture recognition is

critical to user experience in practical use. We develop an Androqgrfqrmlng gesture recognition with our system. .

. . Limitation and Future Work. Our work focuses on single-
APP running on a Samsung Galaxy Note 5 (i.e5Ghz octa- hand finger-level gesture recognition. We are aware that there
core Exynos processor and 4GB of RAM) to track the elapseg 9 g 9 )

. . . . . are two-hand sign language gestures. In our future work, we
time of major processing components (i.e., segmentation, featur.cﬁ ] o : .

. . . will conduct new experiments with sign language involving two
extraction processes, and classification). We find that the proc

SS-
ing delays are within a reasonable range which is abcBB TS Fahds and explore the new features and methods (e.g., nature

and 0601s for the GBT-based and ResNet-based approacr%%gguage processing techniques) for recognizing such two-hand

. y . 'sigh language gestures. We are aware that using binary classifiers
[ﬁzpegggginThgegB-[ht;thdeaé)gaaei_hb::s dagcmfcﬁgoéiégu fgro?ach gesture is not the best solution. We find that transfer

P g delay -d app SI‘earning technology could use much less training effort to train
the feature extraction process. We also notice that the processing . " del for a new user based on an old model of exist-
delays Of. both approaches are dominate.d by t.he segm.entgllrﬁ)g users. We will explore new approaches using the transfer
process (i.e., about@s), espemally the ending point .d.etectlon Ir]earning technology to reduce the training effort for all the sign
DTW-based approach, which takes aboutl®. In addition, both

P e language gestures in our future work. And we will also explore
GBT and ResNet have similar time for classification (1.e000s). the possibility of filtering the cardiac component from the motion

Energy Consumption. Our wearable prototype includes an_ . . . : .
Arduino board (i.e., about 50mA), two PPG sensors (i.e, 8m ifacts (|nclud|ng both cardllac (?omponents and motion-related
components) using the adaptive filter.

and one motion sensor (i.e., 4mA), respectively. In total, it IS
about 62mA current consumption of our prototype. Given the

fact that the off-the-shelf smartwatches generally have a battd) CONCLUSION

capacity of 380mAh, our system can run up td Gours on a As an important means for human-computer interactions, gesture
smartwatch alone. If we offload the computation to a smartphorezognition has attracted significant research efforts in recent
via the Bluetooth, the power consumption of the smartwatch [4¥¢ars. This paper serves as the first step towards a comprehensive
only involves the sensors and Bluetooth (i.e5r8A), which is as understanding of the PPG-based gesture recognition with using
low as 155mA. Given such low power consumption, our systermaotion sensors (i.e., accelerometer and gyroscope) as a comple-
can run over 24 hours on a smartwatch. mentary measure. We made a novel proposition to recognize the
Skin Tone Impact. Humans have a diverse range of skin tonesign language gestures using low-cost PPG sensors and motion
and different skin tones have different absorption of green liglsensors in wearables. In particular, we develop a fine-grained data
impacting the gesture recognition accuracy. For example, darlksegmentation method that can successfully separate the unique
skin absorbs more green light, limiting the capability to accuratetjesture-related patterns from the PPG and motion sensor measure-
measure heart rate. Using additional infrared LED PPG coutdents. Additionally, we study the uniqgue PPG and motion features
mitigate the impact of skin tones. resulted from finger-level gestures in different signal domains and
Sensor Location Sensitivity. The location of the PPG sensordevise a GBT-based system that can effectively recognize the sign
on the wrist is important, we carefully design it to be close tanguage gestures by using PPG and motion sensor measurements.
one of the main artery that can have more significant changesMioreover, we explore the deep neural network (ResNet) for clas-
blood flow when performing gestures. More sensors monitorirsifying the multivariate time series signal (i.e., PPG and motion
other arteries on the forearm could help increase the resolutEensor measurements) and apply the transfer learning to signifi-
of this sensing technology and facilitate more complicated fingeantly reduce the training effort. Our experiments with over 7000
level gesture recognition, such as recognizing 26 letters in tR®G segments and 2500 motion sensor segments collected from
American sign language. 10 participants demonstrate that our system can differentiate nine
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elementary American Sign Language gestures with an averdagg G. Biagetti, P. Crippa, L. Falaschetti, S. Orcioni, and C. Turchetti,
precision and recall over 89% with only using PPG sensor. We
also reveal the limitation of using motion sensors alone and show

that the sign language gesture recognition performance could§ c. wang, z. Liu, and S.-C. Chan, “Superpixel-based hand gesture
significantly improved by integrating the PPG and motion sensor

data.
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