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Abstract —Different from traditional gestures, sign language gestures involve a lot of finger-level gestures without wrist or arm movements.
They are hard to detect using existing motion sensors-based approaches. We introduce the first low-cost sign language gesture recognition
system that can differentiate fine-grained finger movements using the Photoplethysmography (PPG) and motion sensors in commodity
wearables. By leveraging the motion artifacts in PPG, our system can accurately recognize sign language gestures when there are large body
movements, which cannot be handled by the traditional motion sensor-based approaches. We further explore the feasibility of using both PPG
and motion sensors in wearables to improve the sign language gesture recognition accuracy when there are limited body movements. We
develop a gradient boost tree (GBT) model and deep neural network-based model (i.e., ResNet) for classification. The transfer learning
technique is applied to ResNet-based model to reduce the training effort. We develop a prototype using low-cost PPG and motions sensors
and conduct extensive experiments and collect over 7000gestures from 10 adults in the static and body-motion scenarios. Results
demonstrate that our system can differentiate nine finger-level gestures from the American Sign Language with an average recognition
accuracy over 98%.

Index Terms —Sign Language Translation, Photoplethysmography (PPG), Wearables, Human-Computer Interaction (HCI)

✦

1 Introduction

T HE popularity of wrist-worn wearable devices has a sharp
increase since 2015, an estimation of 101.4 million wrist-

worn wearable devices will be shipped worldwide in 2019 [1].
Such increasing popularity of wrist-worn wearables creates a
unique opportunity of using various sensing modalities in wear-
ables for pervasive hand or finger gesture recognition. Hand
and finger gestures usually have diverse combinations, which
present rich information that can facilitate many complicated
human computer interaction (HCI) applications. For example,
wearable controls, virtual reality (VR)/augmented reality (AR),
and automatic sign language translation. Taking the automatic
sign language translation as an example illustrated in Figure 1,
a wrist-worn wearable device (e.g., a smartwatch or a wristband)
could leverage its sensors to realize and convert sign language
into audio and text and back again, which will greatly help people
who are deaf or have difficulty hearing to communicate with those
who do not know the sign language. Recently, Er-Radyet al. [2]
provide a review of the existing immature automatic sign language
translation methods, which motivates us to develop a robust finger-
level gesture recognition system to help solve the problem.

Existing solutions of gesture recognition mainly rely on
cameras [3], [4], [5] microphones [6], [7], radio frequency
(RF) [8], [9], [10] or special body sensors (e.g., Electromyo-
graphy (SEMG) [11], Electrical Impedance Tomography (EIT)
sensor [12], and electrocardiogram (ECG) sensor [13]). The ap-
proaches using cameras face occlusion and privacy issues. Micro-
phones are vulnerable to ambient acoustic noises. The RF-based
approaches are usually known to be device-free, but they are very
sensitive to indoor multipath effects or RF interference. Using
special body sensors for gesture recognition is more robust to
environmental noises but requires extra cost and manpower of
installation. Recently, motion sensors in wearables present their
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Fig. 1. Illustration of the automatic sign language translation using wear-
ables in daily communications.

great potential in hand and finger gesture recognition on the
wrist [14], [15], but motion sensors are sensitive to body motions,
which makes them difficult to identify fine-grained finger-level
gestures, such as sign language gestures. Recently, a few PPG-
based gesture recognition work [16], [17] have been proposed, but
they mainly focus on recognizing whole-body human activities
such as standing, walking, jogging, jumping, and sitting. However,
whether the PPG sensor can be used for recognizing the finger-
level gestures is still unknown.

In this work, we are the first to demonstrate that low-cost
PPG with the appropriately auxiliary help of the motion sensors
in wearable devices could be exploited to accurately recognize
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sign language gestures, which are much more challenging than
traditional gesture recognition due to involving subtle finger-level
gestures. We study the unique PPG and motion sensor features
resulted from finger-level gestures, and carefully devise a system
that can effectively detect, segment, extract, and classify the
sign language gestures based on the PPG measurements together
with motion sensor measurements. The basic idea of our system
is examining the blood flow changes resulted from finger-level
gestures based on the PPG measurements, which are collected by
low-cost PPG sensors available in wrist-worn wearable devices.
As a comparison, we also investigate the limitation of only
using motion sensors attached to the wrist area for finger-level
gesture recognition. We show that the performance of the finger-
level gesture recognition can have a significant improvement (i.e.,
around 10%) by combining the PPG and motion sensors.

The advantages of our approach are two-fold. First, our system
could be easily applied to billions of existing wrist-worn wearable
devices without extra cost, enabling every wrist-worn wearable
device to recognize fine-grained gestures on users’ fingers (e.g.,
sign language). Second, our system only relies on wrist-worn PPG
and motion sensors, which directly obtain gesture related features
without the impact of environmental changes (e.g., ambient light,
sound, RF) and moderate body movements (e.g., walking, turning
body, slow arm movements). Thus, it is more robust in practical
scenarios. The main contributions of our work are summarized as
follows:

• We demonstrate that PPG sensors in commodity wrist-worn
wearable devices can be utilized to recognize fine-grained finger-
level gestures. We develop the machine-learning approaches
(i.e., GBT and ResNet) by leveraging the unique gesture-related
PPG patterns captured by wearables on the wrist. Especially,
transfer learning has been explored to significantly reduce the
training efforts. We further show that motion sensors could
be used as a complementary sensing modality to improve the
gesture recognition accuracy. To our best knowledge, this is the
first work recognizing finger-level gestures using commodity
PPG sensors that are readily available in wrist-worn wearable
devices.

• We explore the physical meaning and characteristics of PPG
measurements collected from the PPG sensor on the wrist and
develop a novel data extraction method that can precisely sepa-
rate the PPG measurements caused by subtle finger movements
from the continuous background noise caused by human pulses.

• We show that it is possible to accurately identify complicated
finger-level gestures with minute differences (e.g., sign language
gestures) by exploiting various types of features extracted from
the unique gesture-related PPG patterns in different signal
spaces (e.g., dynamic time warping, wavelet transform, Fourier
transform).

• We reveal the limitation of using motion sensors for finger-
level gesture recognition. We further develop a system that can
adaptively integrate PPG and motion sensor data for finger-
level gesture recognition based on different levels of body
movements.

• We conduct experiments with 10 participants wearing our pro-
totype consisting of two off-the-shelf PPG sensors, a motion
sensor, and an Arduino board. We show that our system can
achieve over 88% average accuracy of identifying 9 finger-
level gestures from American Sign Language using only PPG
sensor. In ideal scenarios without involving body movements,

the average accuracy of our system could achieve 98% by
integrating both PPG and motion sensor data. This suggests
that our PPG-based finger-level gesture recognition system is
promising to be one of the most critical components in sign
language translation using wearables.

2 RelatedWork
In general, current techniques for gesture recognition can be
broadly categorized into four categories (i.e., vision-based, RF-
based, acoustic-based and body sensor based) as follows:

Vision Based.There are quite a few vision-based approaches
have been developed to recognize hand/body gestures with the
help of cameras. For example, Microsoft Kinect [3], [18] adopts
the depth-sensor to measure the movements of the hand while
performing hand gestures. LiSense [5] uses photodiodes on the
floor to capture visible light changes and construct the user’s
3D skeleton for gesture recognition. However, these approaches
are sensitive to ambient light, and their accuracies are affected
by the distance between the camera and the user’s body. Leap
motion [4], [19] utilizes the infrared LED cameras to capture the
video of the hand, which can be translated into 3D points for
gesture recognition without visible light. However, it still requires
the user to use an additional device and line of sight to the user’s
gestures.

RF Based.RF-based approaches have become increasingly
important due to the prevalent wireless environments and their
device-free nature. Received signal strength indicator (RSSI)
of WiFi has been utilized for gesture recognition since 2013.
Wisee [9] builds the wireless prototype utilizing the Universal
Software Radio Peripheral (USRP) and adopts the Doppler shifts
of the wireless signals to achieve fine-grained gesture recognition.
Wigest [20] uses WiFi RSSI’s to detect human hand motions
around a user device. Recently, channel state information (CSI) of
WiFi has been widely studied for gesture recognition. WiDraw [8]
harnesses the arriving angles of the WiFi signals received by the
mobile device to track the user’s hand trajectory. WiFinger [21]
detects and identifies subtle movements of finger gestures by
examining the unique patterns exhibited in CSI. However, these
approaches either require dedicated and costly devices such as
Universal Software Radio Peripheral (USRP) or can be easily
affected by environmental changes such as people walking by.

Acoustic Based.Because most mobile devices have a strong
capability of processing acoustic signals in nowadays, acoustic
signals have been considered as an emerging sensing modality
for gesture recognition. CAT [6] adopts a distributed Frequency
Modulated Continuous Waveform (FMCW) that can accurately
estimate the absolute distance between a transmitter and a receiver
to continuously track gestures. Wanget al. [22] use the speakers
and microphones of the mobile devices to perform the device-
free tracking of a hand/finger based on the phase changes of
the received acoustic signals. FingerIO [7] tracks the finger’s
dynamics by transforming the device into an active sonar sys-
tem, which transmits inaudible Orthogonal Frequency Division
Multiplexing (OFDM) signals and tracks the echoes of the finger
using microphones. However, these approaches need to occupy
the device’s speaker/microphone or external audio hardware (e.g.,
nearby speakers), which is not always available in many real-world
scenarios.

Body Sensor Based.In addition, several customized wrist-
worn sensing platforms are designed to capture the hand gesture.
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For example, Zhanget al. [13] proposes a framework utilizing the
EMG sensor and accelerometer worn on the forearm to recognize
Chinese sign language (CSL) gestures. Luet al. [11] design a pro-
totype utilizing the Surface Electromyography (SEMG) signals to
control a mobile phone using predefined gestures. Zhanget al.[12]
specially design a prototype that uses the Electrical Impedance
Tomography (EIT) sensor equipped on either the wrist area or
forearm area to recognize hand-level and finger-level gestures.
However, these solutions need extra hardware support, and they
are not compatible with existing mobile/wearable devices.

Another body of related work is using motion sensors in wrist-
worn wearables to achieve hand and finger gesture recognition. For
example, Xuet al. [14] leverage the accelerometer and gyroscope
data from a wrist-worn device for recognizing arm-level, hand-
level, and finger-level gestures. Wanget al. [15] examine the
motion sensor data from a smartwatch to track the wrist micro-
motions and infer what the user is typing on a regular keyboard.
Wen et al. [23] design Serendipity that can distinguish five fine-
motor gestures (e.g., pinching, tapping and rubbing fingers ges-
tures) using the motion sensors in smartwatches. Guptaet al. [24]
develop a method that can continuously recognize hand gestures
using the motion sensors in a smart device despite the minor
vibration from the user’s hand. All these solutions only use motion
sensors for gesture recognition. Therefore, they are sensitive to
large body movements including forearm or body motions and
cannot identify the fine-grained finger-level gestures, such as the
sign language gestures with the existence of unexpected motion
noises (e.g., body or arm movements).

PPG-based.Some works use the PPG signal to recognize
human activities. For example, ActiPPG [16] can predict five types
of human activities (i.e., standing, walking, jogging, jumping, and
sitting) using raw PPG measurements. Biagettiet al. [17] also
propose a real-time system for human activity recognition by using
accelerometer and photoplethysmography (PPG) data. While these
works show that PPG could be used for recognizing large body
movements, whether it could be used to differentiate fine-grained
finger-level gesture is unknown.

Different from previous work, we propose to innovatively
use the photoplethysmogram (PPG) sensor, which is originally
used for heart rate detection in most of the commodity wearable
devices (e.g., smartwatch and wristband), to perform fine-grained
finger-level gesture recognition and detection. To the best of our
knowledge, it is the first wrist-worn PPG sensor based gesture
recognition system. With the proposed scheme, we envision that
most wearable device manufacturers would open the interface of
PPG raw readings to developers soon.

3 Preliminaries & Feasibility Study

In this section, we discuss the preliminaries, design intuitions and
feasibility studies of using PPG sensors in the wearable device for
sign language gesture recognition.

3.1 Intuition of Finger-level Gesture Recognition Using
PPG and Motion Sensors

3.1.1 Using PPG for Finger-level Gesture Recognition

During the past few years, more and more commodity wrist-worn
wearables (e.g., smartwatches and activity trackers) are equipped
with PPG sensors on their back. These wrist-worn PPG sensors
are mainly designed to measure and record the user’s heart rate.

Flexor Hallucis
Longus

Flexor Digitorum
Superficialis Ulnar Artery

Radial Artery

Fig. 2. Illustration of the finger movement related muscles in the anatomy of
a human forearm.

Specifically, a typical PPG sensor consists of a couple of LEDs and
a photodiode/photodetector (PD), which detects the light reflected
from the wrist tissue. The principle of PPG is the detection of
blood volume changes in the microvascular bed of tissue. When
light travels through biological tissue, different substances (e.g.,
skin, blood and blood vessel, tendon, and bone) have the different
absorptivities of light. Usually, blood absorbs more light than
the surrounding tissue. Therefore, by utilizing a PD to capture
the intensity changes of the light reflected from the tissue, the
wearable device can derive the blood flow changes in the wrist-
area tissue and calculate the pulse rate or even blood pressure [25].

The current use of PPG in wearables is limited to heart rate,
pulse oximetry, and blood pressure monitoring. Such applications
only focus on examining regular blood flow changing patterns
in the radial artery and the ulnar artery and consider mechanical
movement artifacts as noise [26]. In this work, we put forward
an innovative idea of using readily available PPG in wearables
for finger-level gesture recognition. We show that hand gestures,
especially finger gestures (i.e., flexion, extension, abduction, and
adduction), result in significant motion artifacts to PPG. The
reason behind this is that the two major muscles controlling hand
gestures [27], namely flexor digitorum superficialis and flexor
hallucis longus, are right beside the radial artery and the ulnar
artery as illustrated in Figure 2. Any hand or finger gestures would
involve a series of complicated muscle and tendon movements
that may compress the arterial geometry with different degrees.
Since the blood absorbs most green lights, the changes of the
light reflected from the wrist area present varying degrees of
disturbances of the blood flow regarding the shapes and durations
of PPG waveforms. Different from the existing work, we use the
PPG data including not only motion artifacts, but also cardiac
signals for the finger-level gesture recognition. We find that the
finger-level gestures that we focus on have a similar spectrum
as human cardiac movements. Therefore, filtering out cardiac
signals would also remove subtle motion-related information in
PPG measurements, which contain the distinct characteristics for
differentiating finger-level gestures. In particular, the frequency-
based filtering method in [16] removes the cardiac portion (0.5
∼ 4 Hz), respiratory activity (0.2 ∼ 0.35 Hz) from the PPG mea-
surements for recognizing the human activities such as walking
(around 0.1 Hz). In our work, the finger-level gestures have the
spectrum (0.5 ∼ 2 Hz). Therefore, we cannot use the traditional
frequency-based filtering methods to isolate the motion artifacts
from the cardiac signals. We note that the respiratory-related
pattern has been removed using the band pass filter as mentioned
in section 7 since its frequency is different from the cardiac signals
and finger-level gesture.

It is important to note that most PPG sensors embedded in
commodity wearable devices use green LEDs as the light source
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(a) PPG reading

(b) Accelerometer magnitude

(c) Gyroscope magnitude

Fig. 3. Example of PPG, accelerometer magnitude and gyroscope magni-
tude associated with five finger-bending gestures in the feasibility study.

because they have much greater absorptivity for oxyhemoglobin
and deoxyhemoglobin, compared to other light sources (e.g., red
or infrared light) [26]. Current PPG sensors in off-the-shelf wear-
ables are usually equipped with photodiodes to ensure accurate
pulse estimation by increasing the diversity (i.e., monitoring blood
flow changes at different locations on the wrist). Therefore, we use
two green-LED PPG sensors in our prototype of wearable PPG
sensing platform [28] to study and evaluate PPG based gesture
recognition.

3.1.2 Improving Finger-level Gesture Recognition Using Wrist-
worn Motion Sensors

Wrist-worn wearable devices such as fitness trackers and smart-
watches are usually equipped with motion sensors (i.e., accelerom-
eter and gyroscope) that are designed to capture the daily activities
for extending user interfaces or infer users’ motion states, includ-
ing walking, running, driving, etc. In particular, the accelerometer
measures accelerations of the wearable user’s wrist and body
movements, while the gyroscope provides angular velocities of
the wrist rotations. Therefore, it is possible to distinguish a great
number of wrist gestures by leveraging the accelerations and
rotations obtained from wrist-worn motion sensors in wearable
devices.

Hand gesture recognition using motion sensors in wearables
have been extensively studied in recent years [14], [15], [23],
[24]. It is natural to extend these technologies to facilitate finger-
level gesture recognition. However, all the existing motion-sensor-
based approaches are designed to distinguish wrist movements
with significant displacements, which are not necessarily existing
in finger-level gestures. Moreover, motion sensors in wrist-worn
wearables are sensitive to motion noises (i.e., unintended body
movements or forearm movements) while performing the finger-
level gestures. Therefore, simply using motion sensors is not
sufficient to distinguish the finger-level gestures. Considering

Fig. 4. Illustration of binding different fingers five times generates relatively
similar PPG patterns,respectively.

that motion sensors can unveil more information of the finger-
level gestures (such as vibrations from finger movements and
forearm muscle movements), which are concealed from PPG
measurements, we seek a solution leveraging motion sensors as a
complementary measure to improve the performance of our PPG-
based finger-level gesture recognition. In particular, our prototype
system is implemented by adopting the 3-axis accelerometer and
3-axis gyroscope that are commonly found in most commodity
wearable devices.

3.2 Feasibility Study

PPG Sensor.In order to explore the feasibility of using PPG
sensors in commodity wearables for finger-level gesture recogni-
tion, we conduct five sets of experiments on a sensing platform
prototyped with two off-the-shelf PPG sensors (i.e., a photodiode
sensor and a green LED) connecting to an Arduino UNO (Rev3)
board [29], which continuously collects PPG readings at 100Hz
and save them to a PC. During the experiments, a user wears a
wristband to fix two off-the-shelf PPG sensors on the inner side of
the wrist, and respectively bends each of his fingers as illustrated
in Figure 3(a) to emulate the simplest elements of typical sign
language gestures (e.g., number 1 to number 9). Specifically, in
each set of the experiments, the user bends one of his finger 10
times with 8s between each bending. We record the process of
the experiments using a video camera synchronized with the PPG
measurements to determine the starting and ending time of each
finger bending gesture.

We extract the PPG sensor readings within the time window
between the starting and ending points identified in the video
footage of each gesture and examine their changing patterns. As
we expected, bending different fingers result in different unique
patterns in PPG readings. Figure 3(a) presents an example of
the unique patterns in PPG that correspond to bending and
straightening different fingers, which is from one out of the two
sensors. During our experiments, there’s no intentional short pause
between bending and straightening (i.e., they’re performed in a
consecutive way), which aligns with the normal performing style
of the sign language. Moreover, as shown in Figure 4, we notice
those same finger movements generate similar patterns, which
demonstrates that it is possible to utilize readily available PPG
sensors in wearables for fine-grained gesture recognition. We note
that short pauses between bending and straightening may affect
the gesture recognition performance if the pauses are not a part of
the normal gesture. Since sign language users do not change their
performing style often, our system is effective in general cases.

Motion Sensor. We next study the feasibility of using mo-
tion sensors for finger-level gesture recognition. Specifically, we
examine the motion sensor (i.e., accelerometer and gyroscope)
measurements by conducting the same experiments as those in
the PPG sensor feasibility study. The motion sensors are installed
on our prototype wrist-worn sensing platform, which collects data
at 40Hz and saves them to a PC for further processing. We find
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Fig. 5. Example of PPG reading associated with bending one specific finger
(i.e., index finger) with moving forearm continuously.

that different bending-finger gestures can generate distinguishable
magnitudes of the accelerometer and gyroscope readings as shown
in Figure 3(b) and (c). We also notice that the same finger
movement generates relatively similar patterns. Intuitively, the
accelerometer can directly capture the three-dimensional accel-
eration resulted from the finger-level gestures which cannot be
directly captured by the PPG sensor. Similarly, gyroscope could
also provide three more-dimensional rotation information related
to the finger-level gestures. In Section 8, we demonstrate that
motion sensors can capture additional acceleration and rotation
information of the finger-level gestures which can improve the
overall performance.

Impact of Arm Movements. We further explore the feasi-
bility of using PPG and motion sensor together for finger-level
gesture recognition with the existence of the body movements.
In particular, we conduct preliminary studies by asking the users
to bend each finger successively while keep moving the forearm
to emulate natural gestures, such as arm swinging when walking
and arm lifting when checking time. We find that the forearm
movement does not impact PPG readings, but the same forearm
movement significantly affects the motion sensor readings and
cause motion artifacts as shown in Figure 5. The insight is that the
forearm movements involve little muscle movement in the wrist
area, therefore there is little impact on the blood vessel and PPG
readings, whereas the motion sensors always capture the motions
irrelevant to finger-level gestures. The observation implies that
PPG sensors are more robust to body movements in finger-level
gesture recognition and the motion sensor can only be useful to
finger-level gesture recognition in the ideal scenarios where little
body movement is incurred.

4 Challenges & System Design

4.1 Challenges

In order to build a system that can recognize the sign language
gestures using PPG and motion sensors in wearable devices, a
number of challenges need to be addressed.

Re-using the PPG Sensors in Wearables for Sign Language
Gesture Recognition.The PPG sensors in commodity wearable
devices are specifically designed for monitoring pulse rate or
blood pressure. The blood flow changes associated with the sign

language gestures have a much shorter duration and do not have
repetitive patterns compared to those caused by pulses. Our system
thus needs to detect and discriminate the unique PPG patterns of
different finger movements by re-using the low-cost PPG sensors
in commodity wearable devices.

Gesture-related PPG Readings Interfered by Pulses.In this
work, PPG readings corresponding to the sign language gestures
are treated as target signals that our system wants to identify
and examine. Therefore, the PPG readings resulted from pulses
are considered to be the noise. Such noise always exists and
sometimes has intensity comparable to that of the signals caused
by the sign language gestures. Our approach should be intelligent
enough to separate relevant useful signals from the complicated
noise caused by pulses.

Robust Sign Language Gesture Recognition Using Limited
Sensing Modality on the Wrist. It is also challenging to achieve
high accuracy in sign language gesture recognition by using the
readily available but coarse-grained sensing modalities (i.e., PPG
and motion sensors). Commodity wearable devices usually have
a limited number of PPG sensors that are placed very close to
each other. Such layout limits the coverage of the PPG sensors
on the wrist and the diversity of sensor readings, which could
significantly impact the performance of gesture recognition. In
addition, motion sensors in wearables can only benefit the gesture
recognition performance when there is no significant body move-
ment. Thus, we need to explore the critical features in PPG and
motion sensor readings in various domains to achieve reliable sign
language gesture recognition.

Reducing Training Effort for Practical Usage. Training
effort can reflect the ease of use of the system. Long-time
and tedious training procedure can significantly impact the user
experience. Our system takes this into consideration and adopts
advanced machine-learning approach to provide robust and accu-
rate sign language gesture recognition with the requirement of
just a few training data from users, which is critical to real-use
scenarios.

4.2 System Overview

The basic idea of our system is examining the blood flow changes
captured by readily available PPG sensors in commodity wrist-
worn wearable devices to differentiate the sign language gestures.
In addition, our system takes the acceleration and rotation measure-
ments captured by motion sensors as the opportunistic measure to
improve the accuracy of gesture recognition when there is no body
movement interfering the motion sensor readings. As illustrated in
Figure 6, our system first takes as inputs the PPG, acceleration, and
rotation measurements from wrist-worn PPG and motion sensors,
respectively. Next, our system conducts theSensor Selectionto
allow the system to integrate the motion sensor readings dynam-
ically, depending on whether there are body movements detected
based on the magnitude of the gyroscope measurements. When
body movements are detected, our system only selects the PPG
sensor for gesture recognition to avoid large errors; otherwise our
system selects both motion and PPG sensors to achieve better
performance. After determining the right sensor to use, theCoarse-
grained Gesture Detection and Reference Sensor Determination
module is performed to determine whether there is any gesture
being performed based on the PPG signal energy. Meanwhile, the
system automatically determines theReference Sensor, which is
the PPG sensor presenting the most significant (i.e. containing
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Fig. 6. Overview of our sign language gesture recognition system.

more energy) gesture-related signal patterns compared to those
related to pulses.

For each coarse-grained gesture segment, the system uses
Fine-grained Gesture-related Data Segmentationto extract the
gesture-related signal patterns from both PPG and motion sensors,
respectively. Specifically, we perform the fine-grained PPG data
segmentation based on the short-time energy and Dynamic Time
Warping (DTW) distance to accurately extract the PPG data
segments of gesture-related patterns inFine-grained PPG Data
Segmentation Using Energy and DTWmodule. If motion sensor
readings are involved, the system further performs the fine-grained
motion sensor data segmentation based on Kullback-Leibler diver-
gence of the signal slope distributions to accurately extract the
motion sensor data segments containing gesture-related patterns
in this module. After the fine-grained data segmentation, we have
developed two classifiers (i.e., GBT and ResNet) to deal with the
hardware computational capability limitation. In Section 8, we
show that both classifiers have a similar performance. Compared to
the GBT classifier, the ResNet classifier is an alternative solution
for the devices having the limited computational capability to
extracting features in real-time since ResNet does not require
the process of feature extraction. Then, the data processing of
our system is separated into two phases:Training Phaseand
Classification Phase.

Training Phase. In this phase, we collect labeled PPG and
motion sensor measurements for each gesture of a user and
build the binary gradient boosting tree (GBT) classifier for each
user. Specifically, after segmentation, our system calculates the
2D-DTW distances between every two PPG segments for every
gesture in the2D-DTW Profile Selectionand selects three profile
PPG segments that are most representative for each gesture (i.e.,
having the minimum average 2D-DTW distance to other segments
of the same gesture). The selected profile PPG segments will
be used to calculate the DTW features in theClassification

Phase. Meanwhile, in thePPG and Motion Feature Extraction
and Selection, the system performs the PPG and motion sensor
feature extraction and selection to derive a variety of features
in different signal spaces (e.g., discrete wavelet transform, fast
Fourier transform). After that, the system selects the critical
features that can effectively capture the unique gesture-related
PPG and motion patterns for each gesture. Because the selected
critical feature sets are optimized for each gesture, the system
further derives a superset of the selected critical features (i.e.,
general features) to ensure the system performance. Next, we
perform theBinary Gradient Boosting Classifier Constructionto
train a binary classifier of each user for each target gesture using
gradient boosting. In addition, we develop a multivariate deep
CNN (ResNet) classifier for each user for sign language gesture
recognition. Specifically, our system combines the segmented mea-
surements directly as the multivariate input and perform theDeep
Convolutional Neural Network Classifier Constructionto train the
ResNet classifier for each people. To explore the possibility of
using the participant-independent model, we adopt the transfer
learning technique by integrating thePre-trained Classifierof a
user while training, which significantly reduces the training efforts
for other users.

Classification Phase.In theClassification Phase, our system
collects the sensor measurements in real time and determines
which target sign language gesture has been performed based on
the classification results. Specifically, when our system adopts the
GBT classifier, it extracts the selected general features from the
selected sensor data segments of the current user and performs the
classification usingFinger-level Gesture Classification Using GBT
by using the binary gradient boosting classifiers of the current
user generated in the training phase for all the gestures in parallel.
Each binary classifier generates a confidence score, and the system
takes the target gesture having the highest confidence score as the
recognized gesture. When our system adopts the ResNet classifier,
it performs theFinger-level Gesture Classification Using ResNet,
which directly uses the segmented sensor measurements of the
current user as the multivariate inputs for his/her classifier to
determine which target gesture has been performed.

5 Fine-grained Data Segmentation

Accurate sign language gesture recognition requires to pinpoint
the starting and ending points of the gesture from the related
sensor measurements. In this section, we discuss how to achieve
fine-grained data segmentation based on the raw PPG and motion
sensor data segments that have been verified to contain significant
gesture-related patterns through theData Preprocessdiscussed in
Section 7.

5.1 Fine-grained PPG Sensor Data Segmentation

5.1.1 Starting Point Detection Using Energy

We first determine the starting time of the gesture. Due to the
consistent existence of pulse signals in PPG measurements, it
is difficult to remove the pulse signals without jeopardizing
the details of the gesture-related readings, which are critical
to characterizing the starting and ending points of a specific
gesture. In order to accurately determine the starting point, we
seek an effective detection approach to mitigate the impact of
pulse signals. We find that the gesture-related PPG signals are
usually stronger than those caused by pulses as illustrated in
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Fig. 7. Example of detecting starting and ending point of a gesture-related
PPG measurements using energy and DTW.

Figure 7(a), because gestures usually involve dynamics of major
forearm muscles/tendons close to the sensor on the wrist. Inspired
by the above observation, we design an energy-based starting point
detection scheme to effectively estimate the starting of gesture-
related PPG signals without removing the interference of pulses.

The basic idea of our energy-based starting point detection
method is to determine the time corresponding to the local maxi-
mum of the short-time energy of PPG signals. The reason behind
this is that when using a sliding window with the same length
of a signal to calculate the short-time energy of the signal, the
energy reaches its maximum value when the signal entirely falls
into the window. Therefore, by carefully choosing the size of the
sliding window (e.g., the average length of target gesture-related
signals), the starting point of the gesture-related signals would be
the same time when the short-time energy of the signals reaches
its maximum. In particular, given the data segment containing
gesture-related PPG signalsP(t) from theCoarse-grained Gesture
Segmentation(Section 7), the starting point detection problem can
be formulated as the following objective function:

arg max
τ

(P(τ)−1θ)P(τ)T, (1)

where P(τ) = [p(τ), p(τ +δ ) · · · , p(τ +W)], p(τ) denotes the
amplitude of the PPG signal at timeτ , δ represents the PPG
sensor sampling interval,W is the length of the sliding window,θ
is the threshold used to avoid finding the local maximum energy
resulted from pulse signals,1 is an all-one vector of the same
length asP(τ), andT indicates the transpose operation. The above
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Fig. 8. Preliminary study: CDF of the duration of 1080gestures from 3 users.

problem can be easily solved through simple 1-D searching within
the period derived from coarse-grained gesture segmentation.

Through our preliminary study on the time length of 1080
sign language gestures performed by three users as shown in
Figure 8, we find that the length of gesture-related signals has the
range between 0.7s and 1.4s with an average of 1.2s. Therefore,
we empirically determine the length of the sliding window as
1.2s to ensure the accuracy of our energy-based starting point
detection. Note that the thresholdθ is user-specific and needs to
be dynamically determined by the maximum short-time energy of
the PPG signals when there is no gesture detected in theCoarse-
grained Gesture Detection. Figure 7(b) illustrates the short-time
energy corresponding to the PPG signals in Figure 7(a). We
can clearly see that the energy peaks in Figure 7(b) are very
close to the ground truth observed from the synchronized video
footage, suggesting that our algorithm could promisingly capture
the starting point of gestures in the PPG measurements.

5.1.2 Ending Point Detection Using DTW

It is more challenging to detect the ending point of a gesture in
the PPG signal than the starting point because the muscles are
more relaxed at the end of the gesture and the corresponding
PPG signals are usually weaker than those at the beginning of
the gesture. As illustrated in Figure 7(a), the PPG measurements
around the ending point do not have significant patterns that can
facilitate the ending point detection. However, we find that gesture-
related PPG signals are usually immediately followed by pulse
signals, which are very clear and easy to identify. Hence, instead
of directly locating the ending point based on PPG readings, we
design a DTW-based ending point detection scheme, which aims
to identify the starting time of the first pulse signal following
the gesture-related signal. We employ the dynamic time warping
(DTW) to measure the similarity between the user’s pulse profile
Ppulse and the PPG measurements collected after the already-
detected starting point of the gesture. Intuitively, the time when the
DTW value reaches the minimum is the starting time of the pulse
signals and also the ending point of the gesture-related signals.
We adopt DTW because it can stretch and compress parts of
PPG measurements to accommodate the small variations in the
pulse signals. To summarize, this ending point detection problem
is defined as follows:

arg min
t

DTW(P(t),Ppulse), s.t.,τ < t ≤ τ +Wp, (2)

whereDTW(·, ·) is the function to calculate the DTW distance,
P(t) has the same definition asP(τ) in Equation 1,Wp is the
time duration for the gesture, andτ is the detected starting point.
After searching the DTW distances for allP(t), we find the time
index of the first local minimum in the DTW distances (i.e., the
starting time of the first pulse after the gesture) as the ending
point of the gesture-related signals. Figure 7(c) presents the DTW
between a selected pulse profile and the raw PPG measurements in
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Figure 7(a) withWp = 0.88s. From the figure, we can observe that
the time indices of the detected first local minimum DTW values
are very close to the ground truth of the ending time of the two
gestures, which demonstrates the effectiveness of the DTW-based
ending point detection scheme.
Extracting Pulse Profiles. The pulse profilePpulse can be ex-
tracted from the PPG measurements that are collected when there
is no gesture performed (e.g., at the beginning of the training
phase). In particular, we first detect the pulse signal peaks in the
PPG measurements. Given the fact that a typical PPG pulse signal
always has a peak, if the pulse signal peak is located attp, so the
PPG measurements between[tp − td, tp + ts] are identified as the
user’s pulse profile. In this work, we respectively choosetd = 0.2s
andts = 0.6s based on the duration of diastole (i.e., 0.15s∼ 0.26s)
and systole (i.e., 0.44s∼ 0.74) phases of the vascular system
reflected in a typical PPG pulse signal [30], which can effectively
extract all users’ pulse profile.

5.2 Segmentation on Inconspicuous Gesture-related Pat-
terns

Our DTW-based ending point detection can accurately determine
the ending point if the gesture-related PPG pattern has significant
amplitudes compared to those of the pulse-related patterns. How-
ever, in rare cases, the gesture-related PPG patterns may not have
significant amplitudes when the sensor is at the locations far away
from the arteries. Note that such inconspicuous patterns are not
easy to be extracted as their boundaries with pulse-related patterns
are very vague, but they still contain rich information that could
greatly facilitate gesture recognition. In this work, we find that
when using two PPG sensors close to each other on the wrist, at
least one of the sensors can generate gesture-related PPG patterns
with significant amplitudes. Inspired by this observation, we adopt
a reference-based approach to accurately determine the ending
point for the inconspicuous gesture-related PPG patterns.

In particular, assuming our system identifies the ending point
tR on the sensorR with significant gesture-related PPG patterns
(i.e., Reference Sensordiscussed in Section 7) using our DTW-
based method, the system further derives the ending point at the
other sensorD as tD = tR+ ∆T, where ∆T is the time delay
between the ending points on sensorR and sensorD. According
to our empirical study,∆T is nonzero and stable between two
sensors across different gestures. The insight is since muscles
and tendons at different locations of the forearm compress the
arteries with different pressures and durations when performing a
gesture, the gesture-related patterns captured by the PPG sensors
at different locations will last different time periods. Because the
system can always find multiple gestures that generate significant
PPG patterns on both sensors,∆T can be easily estimated in the
Training Phaseby calculating the average time difference of the
ending points from the gestures where both sensors are determined
to beReference Sensors.

5.3 Fine-grained Motion Sensor Data Segmentation

Next, we perform the data segmentation on motion sensor data to
identify fine-grained starting and ending points of a sign language
gesture. Intuitively, the gestures involving the movements of the
major forearm muscles/tendons on the wrist induce strong fluc-
tuations in motion sensor readings, which usually have relatively
low and stable amplitudes when there is no gesture performed.
In our experiments, we observe that the amplitude of motion

sensor readings sharply increases at the starting point of a gesture,
then keeps fluctuating during the gesture, and finally decreases
sharply to a low and stable level at the ending point of the
gesture. Both starting point and ending point are obtained through
Coarse-grained Gesture Detection and Segmentationin Section 7.
These observations indicate that in one coarse-grained segment,
the distributions of motion sensor readings before and after
the starting/ending point of a gesture have the most significant
difference, respectively. Therefore, we design a Kullback-Leibler
(K-L) divergence technique-based detection scheme to effectively
estimate the starting and ending point of a gesture from motion
sensor signals in the coarse-grained segments. The basic idea is
that given two sliding windows with the same length traversing
the coarse-grained segment, the starting and ending points of a
gesture are determined as the time points when the difference
of the distributions derived from these two windows present two
significant peaks in tandem, respectively.

In particular, we respectively calculate the distributions of
quantized motion sensor reading slopes in the sliding windows
before and after each time pointt j , which can be denoted as
B(K j−1) andA(K j), j = [1, ...,J], whereJ is number of time points
in the coarse-grained segment. Then, we calculate the difference
between the slope distributionB(K j−1) and A(K j) of each time
point t j using K-L divergence. The K-L divergence between
these two distributions are derived as:DKL(B(K j−1)|A(K j)) =

∑q∈Q B(K j−1 = q) ln
B(K j−1=q)

A(kj=q)
, where Q is the set of all possible

values for quantized motion sensor reading slopes. The insight
is that the motion sensor readings have a sharp change around
the starting and ending points. So, the local maximum slope
distribution difference determined by K-L divergence corresponds
to the starting and ending points. It’s important to note that 1/16
window overlapped is used in our algorithm for optimizing the
performance.

6 Sign Language Gesture Classification
In this section, we introduce how to extract the PPG and motion
sensor features that can facilitate sign language gesture recognition
using our Gradient Boosting classifier. In addition, we explore the
advantage of using the Deep Residual Network for sign language
gesture recognition, which could leverage the transfer learning
technique to reduce users’ training effort significantly.

6.1 PPG and Motion Feature Extraction

PPG Feature Extraction.To capture the characteristics of unique
gesture-related PPG patterns, we explore the efficacy of different
kinds of features including typical temporal statistics (e.g., mean,
variance, standard deviation (STD)), cross-correlation, autoregres-
sive (AR), dynamic time warping (DTW), fast Fourier transform
(FFT), discrete wavelet transform (DWT), and Wigner Ville dis-
tribution as listed in Table 1. The features can be categorized
into three types:Time Domain, Frequency Domain, and Time-
Frequency Domain, which are designed to capture the detailed
characteristics of the gesture-related PPG patterns across different
frequency and time resolutions. While theAR Coefficients, FFT,
DWT,WVD, and most of theClassic Statisticsare all focusing on
analyzing an individual sensor’s measurements, theCross Corre-
lation and 2D-DTW are promising for characterizing the unique
gesture-based PPG patterns in terms of the relationship between
a pair of sensors. Moreover, ourTime-Frequency (TF) Domain
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TABLE 1
List of Extracted PPG Features.

Category Features (# of features) Description

Time Domain

Classic Statistics (4): mean, peak-to-peak,
RMS, variance

Descriptive statistics of each segment, reflecting the statistical characteristics of
the unique gesture-related patterns.

Cross Correlation between Sensors(9)
A vector of cross correlation coefficients between the segments from two PPG
sensors based on a sequence of the lag values, characterizing the relationship
between two PPG sensors in a gesture.

2D-DTW to Gesture Profiles (9)
Similarity between PPG measurements from two sensors (i.e., 2D) and the cor-
responding gesture profiles, directly capturing the temporal shape characteristics
of the unique gesture-related patterns.

Frequency
Domain

Fast Fourier Transform (< 5Hz) (6): skewness,
kurtosis, mean, median, var, peak-to-peak

Statistics of frequency components in the specific low frequency band, analyzing
the unique PPG patterns in frequency domain.

Time-frequency
Domain

Discrete Wavelet Transform (4): mean, peak-
to-peak, RMS, variance

Statistics of the third level decomposition of the wavelet transform using the
Harr wavelet, revealing the details of gesture-related patterns at interested time
and frequency scale.

Wigner Ville Distribution [31] (13) : first-order
derivative, frequency and time when the signal
reaches the maximum, maximum energy (Ei

max)
/ minimum energy (Ei

min), differential energy
(Ei

max− Ei
min), STDi and AVi of the energy

within the ith sliding window

Fine-grained time-frequency features with high resolutions, capturing details of
gesture-related patterns having short time duration.

Autoregressive Coefficients [32] (9)
Time variant coefficients that can capture the characteristics of gesture-related
patterns independent of the patterns’ time scales.

features include three major TF types (i.e., non-parametriclinear
TF analysis (DWT), non-parametric quadratic TF analysis (WVD),
and parametric time-varying based metric (AR)), which can well
capture the dynamics of gestures in PPG measurements. In total,
we extract 54 different features from each PPG sensor. Note that in
order to calculate the 2D-DTW feature, our system first performs
2D-DTW Profile Selectionin theTraining Phase, which calculates
the 2D-DTW distance between every two segments for every
gesture in the training data and selects three segments that have
the minimum average 2D-DTW distance to other segments of the
same gesture as the profile for later use in theClassification Phase.

Motion Feature Extraction. The time domain features such
as the Mean, Max, Min value, Variance of each segment in
the motion sensor readings have been demonstrated to be able
to effectively capture the distinguishable signal patterns from
different people, who perform the same hand gestures as shown
in the research [33]. To further characterize the unique gesture-
related acceleration and rotation patterns, we also explore the
efficacy of other features including typical temporal statistics (e.g.,
peak2peak, root mean square (rms)) in the time domain, which
could reveal the detailed characteristics of the gesture-related
acceleration and rotation measurements. Since those features can
effectively capture the geometrical characteristics of the gesture-
related signal segments from the motion sensor, therefore we adopt
those features as the motion features for the gesture classification.

Feature Selection.Our system further employs the elastic
net feature selection method [34] in theTraining Phaseto auto-
matically choose the most discriminative ones from our extracted
features. In particular, the system respectively performs the elastic
net feature selection on the PPG and motion sensor features corre-
sponding to every target gesture. Based on the one-stand-deviation
rule [35], our system keeps the most significant highly correlated
features and eliminates noisy and redundant features to shrink the
feature set and avoid overfitting. Next, in order to generalize the
features set for classifying all target gestures, our system integrates
the features selected for each target gesture and generates a general
feature setF as follows: F = F(g1)∪ . . .∪ F(gn), where F(gn)
is the selected feature set of thenth target gesturegn. After the
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Fig. 9. Example of different sign language gestures and corresponding
features.

feature selection and integration, we have 66Determined General
Features(i.e., 54 PPG features and 12 motion sensor features) inF,
which will be used in theClassification Phase. Figure 9 illustrates
that our features can effectively capture different characteristics
of PPG and motion sensor patterns for distinguishing different
gestures.

6.2 Finger-level Gesture Classifier Using Gradient Boost-
ing Tree

Next, we build a binary classifier for each target gesture by using
the Gradient Boosting Tree (GBT) for each user. We choose GBT
mainly because 1) GBT is famous for its robustness to various
types of features with different scales, which is the exact case in
our project (e.g., the mean value of the PPG signal reading of the
gesture period is around 500, and the autoregressive coefficients
are the numbers fluctuated around 0 with value less than 1). 2)
GBT classifier is robust to the collinearity of feature data. Because
our features are heterogeneous across different domains, it may
result in unexpected correlation or unbalance ranges that possess
the collinearity. Therefore, GBT would eliminate the efforts to
normalize or whiten the feature data before classification [36].

Given N training samples{(xi ,yi)}, wherexi andyi represent
the gesture-related feature set and corresponding label with respect
to one specific gesture (i.e.,yi = 1 or -1 represents whetherxi is
from this gesture), GBT seeks a functionφ(xi) = ∑M

m=1 ωmhm(xi)
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to iteratively select weak learnersh j(·) and their weightsω j to
minimize a loss function as follows:L = ∑N

i=1L(yi ,φxi). Specif-
ically, we adopt the GBT implementation from the library of
SQBlib [37] for gesture-related feature training. Specifically, the
loss functionL(·) is chosen as the exponential lossL = e−yiφxi

that applies enough shrinkage (i.e., 0.1) and number of iterations
(i.e., M = 2000), and the sub-sampling of the training dataset
is a fraction of 0.5. The above parameters adopted in GBT are
optimized in terms of the speed and accuracy based on our
empirical study. Once the loss function is determined, we next
will build a binary gradient classifierbk(· · ·) for each profiled
gesturegk,k = 1, · · · ,K to complete theTraining Phase, and each
binary gradient classifier will output a score for the testing feature
set. The reason of using binary classifier is that binary classifier
has high accuracy with distinguishing one gesture from other
gestures, whereas a multi-classifier has relative lower accuracy
when performs the same classification task [38].

In Classification Phase, our system uses the binary classifiers
of the current user for all the gestures in parallel to classify
previously unseen gesture-related feature setx. Specifically, we
will obtain different scores returned from each binary classifier,
and choose the labelk of binary classifierbk(x) with highest score
as the final classification.

6.3 Finger-level Gesture Classifier Using Deep Residual
Network (ResNet)

Recent years have witnessed the success of Deep Neural Networks
(DNNs) on Time Series Classification (TSC). In this work, we
especially adopt the deep Residual Network (ResNet) architecture
proposed in [39], which provides excellent performance in both
univariate and multivariate TSC [40]. In particular, ResNet is a
variant of convolution neural network (CNN) with a linear shortcut
to link each residual block to its input, which reduces the vanishing
gradient effect and thereby eases the DNN training procedure [41].

Particularly, we design a ResNet consists of 3 residual blocks
followed by a Global Average Pooling (GAP) layer and a softmax
layer to classify the output of GAP layer (11 layers in total). Each
residual block has 3 convolution layers, and the output of each
convolution layer then undergoes batch normalization and ReLU
activation before feeding into the next layer. The three convolution
layers are set to include 64 filters with the lengths of 8, 5 and 3,
respectively. Moreover, the output of each residual block is added
to its input as the updated input to next residual block, and the
last residual block of each convolution layer connects to GAP
layer that averages the time series over whole time dimension
and helps minimize overfitting. The adaptation of GAP instead of
the traditional fully connected (FC) layer not only significantly
reduces the total number of parameters in the network model but
also enables the class activation map (CAM) to identify the most
significant part of the time series input for classification.

In the Training Phase, we train the ResNet for each user and
feed the ResNet with a user’s input data ofN samples{(TSi ,yi)},
whereTSi and yi represent the time series input data (i.e., both
raw PPG and motion sensor segments) and the corresponding label
with respect to one specific gesture (i.e.,yi = k represents thatyi is
from the gesturek,k = 1, · · · ,K). Particularly, we use the shuffle
split cross-validation method to randomly select the specified
number of the training data from the input dataset of the current
user and use the rest of the user’s data as the testing data. In the
meantime, the classifier is run by the testing data simultaneously.

After each epoch of the training phase, we track the accuracy with
the currently trained model applied on the testing data, and the
model with the highest accuracy will be chosen as the final model
after all the epochs. In our implementation, we adopt 16 as the
batch size and 1500 as epoch.

Reducing Training Effort Using Transfer Learning. Our
work also explores transfer learning across different users to
reduce the training effort in terms of the size of the training dataset.
In particular, we fix the architecture of the ResNet with the invari-
ant number of neurons in each layer (except the softmax layer)
and retain the weights of the higher layer neurons since the lower
layers in the ResNet refer to general features, while higher layers
captures more dataset-specific (i.e., the specific people) features.
With this fixed architecture, the pre-trained model on one user’s
dataset (i.e., source dataset) could achieve the similar performance
on another user’s dataset (i.e., target dataset) with much smaller
training dataset size, and the retraining process only needs to
fine-tune on the values of the parameter without modifying the
structure of the hidden layers in ResNet. In particular, we retrain
the classifier for the new people from the third residual block
to GAP layer to softmax layer in the ResNet. In testing phase, we
apply the retrained model of the new user on his/her testing dataset
to get the classification results.

7 Data Preprocessing
In this section, we presentthree components that are critical to
sensor selectionand fine-grained data segmentation.

Sensor Selection.Body movements (e.g., forearm swing and
body rotation) may induce irrelevant motion artifacts in the mo-
tion sensor measurements, which significantly impacts the perfor-
mance of sign language gesture recognition. However, such body
movements have little impact on the PPG measurement as afore-
mentionedFeasibility Study. Hence, it is critical to determine the
right moment to integrate PPG measurements with motion sensor
measurements for sign language gesture recognition in our system.
Our extensive experimental study finds that body movements
usually introduce significant fluctuation on both accelerometer
and gyroscope measurements simultaneously, whereas finger-level
gestures alone do not. Therefore, we employ a threshold-based
approach to determine the presence of body motion. In particular,
we calculate the magnitude of the gyroscope measurements. If
it’s below an amplitude threshold,θa, before the starting point of
a sign language gesture, our system takes both PPG and motion
sensor measurements for data segmentation and gesture recogni-
tion. Otherwise, only PPG measurements are used. Note that the
threshold is mainly determined by the sensitivity of the motion
sensor. In this paper, we empirically determineθa = 38.4 radians
per second based on our experimental study with 10 participants.
Our evaluation results (Section 8.3) demonstrate that this threshold
can help to render good gesture recognition accuracy.

Coarse-grained Gesture Detection and Segmentation.To
facilitate the fine-grained data extraction, our system pre-processes
the raw PPG measurements to 1) determine whether there is a ges-
ture performed or not based on the short-time energy of the PPG
measurements; 2) and extract the PPG and motion measurements
that surely include the whole gesture-related patterns. Specifically,
the system first applies a high-pass filter to the raw PPG mea-
surements to mitigate the interference of pulses. The reason to
use the high-pass filter is that the finger-level gestures have more
high-frequency components compared to the pulses, which are
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(a) The wristband of our prototype with PPG sensor and motion sensor.

Bluetooth Module

Arduino UNO (REV3) Android Phone APP

(b) Arduino board with the Bluetooth and our Android smartphone APP

Fig. 10. Prototype wrist-worn PPG sensing platform.

usually under 2Hz [42]. In this work, we build a Butterworth high-
pass filter with the cut-off frequency at 2Hz. Note that we only
use the filtering technique in the coarse-grained gesture detection,
because the filter removes the low-frequency components of both
pulse and gesture-related signals, which negatively impact the
gesture recognition accuracy. Then the system decides whether
there is a gesture performed or not depending on if the short-time
energy of the filtered PPG measurements crosses a thresholdτ
or not. We set the threshold toτ = µ + 3δ , whereµ and δ are
the mean and standard deviation of the short-time energy of the
filtered PPG measurements collected during the time when the
user is asked to be static (i.e., at the beginning of the training
phase). When the system detects a gesture attg, we employ a
fixed time windowWc to extract the raw PPG and motion sensor
measurements within[tg, tg+Wc] for the fine-grained segmentation.
We setWc = 4.5s to ensure the window can cover all possible
duration of gestures that we have observed in our preliminary
study as shown in Figure 8.Reference Sensor Determination.
Intuitively, significant gesture-related PPG patterns could result in
accurate data segmentation. However, we notice that the intensity
of gesture-related PPG patterns is sensitive to the locations of
sensors on the wrist, which may not be significant enough for
segmentation. The insight is that the PPG sensors can capture
more significant changes of reflected light when they are closer to
the arteries that are directly compressed by muscles and tendons.
Through our extensive tests, we find that two PPG sensors at a
close distance on the wrist can already provide good diversity,
and at least one of them can provide gesture-related PPG signals
that have the stronger intensity than that of pulse-related signals.
Therefore, in this work, we employ a two-sensor approach and
determine which sensor could be theReference Sensorhaving the
significant gesture-related PPG patterns, which will be taken as
the input for the fine-grained data segmentation. Specifically, we
examine the short-time energy of the extracted PPG measurements
and determine whether a sensor is aReference Sensoror not
depending on if its short-time energy exceeds the thresholdθ ,

S1 S2 S3 S4 S5 S6 S7 S8 S9

Fig. 11. American Sign Language of number one to nine.

which has been defined in Equation 1.

8 Experiment and Evaluation
8.1 Experimental Methodology

8.1.1 Wearable Prototype

We notice that existing manufacturers do not provide direct access
to raw PPG readings; instead, they only provide the computed
heart rate. Therefore, we design a wearable prototype to mimic
the layout of PPG sensors in commodity wearables to demonstrate
that our system can be applied to the existing wearable products
without extra efforts. Our prototype has two commodity PPG
sensors (with single green LED) and a motion sensor (i.e., MPU-
6050 with a three-axis gyroscope and a three-axis accelerometer)
connected to an Arduino UNO (REV3) board, which exchanges
data with our android app through Bluetooth as shown in Figure 10.
The two PPG sensors are placed closely to each other and fixed
to the inner side of a wristband, while the motion sensor is placed
outside of the wristband. The training phase is done offline using
MATLAB. The trained GBT and ResNet classifiers are deployed
on our app to perform the testing phase of our sign language
gesture recognition. In the experiments, we adopt various sampling
rates (i.e., 30Hz, 40Hz, 60Hz, 80Hz, and 100Hz) to evaluate the
system. Unless mentioned otherwise, the default sampling rate is
set to 100Hz.

8.1.2 Data Collection

We recruit 10 participants (7 males and 3 females with the age
range from 20 to 40) to perform the sign language gestures for
evaluation. To better demonstrate the effectiveness of recognizing
finger-level gesture, we focus on the elementary gestures from
American Sign Language only involving the movements of fingers
from a single hand as shown in Figure 11. Note that our system
can be applied to other more complicated finger-level gestures
on whichever wrist. We first conduct experiments in the static
scenario (i.e., performing gestures without body movements),
where each participant is asked to wear the prototype on the
wrist of his/her dominant hand and perform the nine sign language
gestures for 40 times respectively without any body movements.
In addition, we conduct experiments in the body-motion scenario
to study the impact of body movements on our system. To mimic
the real-life scenarios where the participant may inevitably have
motion when performing sign language gestures, we ask each
participant to perform the same American sign language gesture
(i.e., number 1) while performing body movements (i.e., swinging
the forearm, rotating the forearm, swinging the body, and rotating
the body). Each gesture is performed 10 times in one session.
In particular, we have found that the sign gestures performed at
different times have stable and similar waveform patterns, thus
the thresholds we adopt are not affected over multiple sessions. In
total, we collect over 7000 PPG segments and over 2500 motion
sensor segments in the static and body-motion scenarios. Unless
mentioned otherwise, our results are derived from 20 rounds
Monte Carlo cross-validation using 50% of our data set for training
the participant-dependent models and the rest for validation.
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Fig. 12. Confusion matrix of recognizing nine sign language gestures among
seven participants using PPG sensor.
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Fig. 13. Impact factor study: comparison of gesture recognition performance
among ten participants using PPG sensor.

8.1.3 Evaluation Metrics

Precision. Given Ng segments of a gesture typeg, precision
of recognizing the gesture typeg is defined asPrecisiong =
NT

g /(N
T
g + MF

g ), where NT
g is the number of gesture segments

correctly recognized as the gestureg. MF
g is the number of gesture

segments corresponding to other gestures which are mistakenly
recognized as the gesture typeg.

Recall.Recall of the gesture typeg is defined as the percentage
of the segments that are correctly recognized as the gesture type
g among all segments of the gesture typeg, which is defined as
Recallg = NT

g /Ng.
Confusion Matrix. In confusion matrix, each entryCi j de-

notes the percentage of the number of gesture segmentsi was
predicted as gesture typej in the total number ofi. The diagonal
entries show the average accuracy of recognizing each gesture,
respectively.

8.2 Performance in Static Scenarios

8.2.1 GBT Performance Using PPG

First, we show the effectiveness of using the PPG sensor for
sign language gesture recognition by evaluating the system per-
formance when using the GBT classifier. It’s important to note
that we adopt the participant-dependent models, which means that
our system trains the classifier for each user using his/her own
data, respectively. Figure 12 depicts the confusion matrix for the
recognition of the nine American Sign Language gestures with
only using the PPG sensor. Specifically, the average accuracy is
88.32% with standard deviation 2.3% among all the 9 gestures.
We find that the recognition results of the gestureS2,S6,S7,S8 are
relatively low (i.e., around 86%). This is because those gestures
have more subtle differences in the tendon/muscle dynamics than
other gestures. Overall, the results confirm that it is promising to
use commodity wrist-worn PPG sensors to perform sign language
gesture recognition.

Impact of Different Users. Figure 13(a) and (b) present the
average precision and recall of using PPG sensors to recognize
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(a) Impact of sampling rate (b) Impact of number of training segments

Fig. 14. Impact factor study: average precision and recall of recognizing nine
gestures with different sampling rates and # of training segments using PPG
sensor.

each sign language gesture across different participants. We ob-
serve that all participants have high accuracy in recognizing these
sign language gestures. Specifically, the average precision and
recall of all the 10 participants are 88% and 89%, respectively, and
the lowest average value of the precision and recall among all the
participants is still above 80%. The results show the robustness
and scalability of our proposed system across different users,
and demonstrate the system is promising to act as an integrated
function in commodity wearables once the interface of PPG raw
signals to developers is open.

Impact of Sampling Rate. The sampling rate of sensing
hardware is one of the critical impact factors on affecting the
power consumption on wearables. We study the performance of
the proposed system with different sampling rates on PPG sensors.
Most of the commodity wearables have around 100Hz PPG sam-
pling rate. For instance, Samsung Simband [43] configures its PPG
sensor to 128Hz to perform time-centric tasks like Pulse Arrival
Time calculations. In this study, we collect the PPG readings
from the implemented wearable prototype with several sampling
rates (i.e., 30Hz to 100Hz with step size 20Hz) to evaluate the
system. Figure 14(a) shows the average precision and recall of
the gesture recognition under different sampling rates. We find
that the precision/recall increases with the increased sampling rate,
however, the precision/recall still maintain as high as 87% under
the lowest sampling rate (i.e., 30Hz). As the results implied, our
system is compatible with the off-the-shelf wearables with high
recognition accuracy, and it can operate normally on the hardware
with lower PPG sampling rate in terms of the power consumption.

Impact of Training Data Size. We change the amount of
data used for training in the Monte Carlo cross-validation to study
the performance of our system under different training data size
as shown in Figure 14(b). In particular, we choose 5,10,15,20,
and 25 PPG segments with respect to each gesture for training
(i.e., 12.5%,25%,37.5%,50%, and 62.5% of our dataset) and use
the rest of our data for validation, respectively. We observe that
our system can achieve the average precision and recall of 89%
and 90% respectively when 25 segments of training data for each
gesture are collected in the training phase. As the size of the
training data decreases, the system retains decent performance.
Furthermore, the average precision and recall can achieve 75%
and 77% respectively for recognizing nine sign langauage gestures
using only 5 PPG segments of each gesture for training. The
above results indicate our system can achieve good recognition
performance with a limited size of training data (e.g., 5 sets per
gesture), which ensures great convenience for practical usage on
commodity wearables.
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Fig. 15. Impact factor study: average precision and recall of recognizing nine gestures using GBT after integrating both PPG and motion sensor.
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Fig. 16. Performance of ResNet and transfer learning.

8.2.2 GBT Performance Using PPG and Motion Sensors

Next, we evaluate the performance of our system when motion
sensors are available. Due to the human power limitation, we
can’t recruit the exact same 10 participants at the end of the
project and only 7 out of 10 original participants are involved
to conduct experiments with both PPG and motion sensors for a
fair comparison. Figure 15 shows the comparison of the precision
and recall of our system when 7 of 10 participants performing the
nine sign language gestures wearing both PPG and motion sensors.
In particular, we present the results in four cases that use different
combinations of sensors, including 1) only PPG sensor; 2) only
gyroscope; 3) only accelerometer; and 4) PPG, gyroscope and
accelerometer, respectively. From Figure 15 (a), (b), and (c) we
can observe that our system can achieve decent performance with
the lowest precision and recall of over 83% and 84% respectively
by using only one type of the sensors. In addition, we find that
the performance of using the only accelerometer is not as good
as that of using only the gyroscope. In particular, the precision of
only using the accelerometer is 83%, which is lower than using the
gyroscope sensor (i.e., 90%). The reason is that the sign language
gestures do not involve a lot of displacements of the wrist and
introduce more distinguishable rotations than accelerations in the
wrist area. Moreover, as shown in Figure 15(d), when integrating
PPG with both gyroscope and accelerometer, it is very encour-
aging to find that all those gestures can be recognized with the
high average precision and recall of over 98%, which is over 10%
more than the other three cases using only one type of the sensors.
These results show that integrating the measurements from PPG
and motion sensors can significantly improve the performance of
our sign language gesture recognition.

8.2.3 Performance of DNN (ResNet) and Transfer Learning

We also study the performance of our system with using the
ResNet to build the underlying classifier. Since the training data
size reflects the ease of use of the system in terms of the time

for data collection, therefore we first study the performance of our
system with different training data size as shown in Figure 16(a).
In particular, we apply a shuffle split cross validation approach to
randomly choose 3,4,5,10,20, and 25 segments of each gesture
for training respectively, and use the rest data for testing. We
observe that our system achieves the similar performance as GBT
with an average precision and recall of over 90% using 5 or more
segments of each gesture in training. Moreover, our system retains
decent performance with the decreasing training data size. The
average precision and recall can still achieve to 78% when using
only 3 segments for training each gesture.

In addition, since the specific architecture of the adopted
ResNet can be taken advantage of by the transfer learning ap-
proach, we further explore the performance of our system after
applying transfer learning. In particular, we first train a classifier
for one person with using 25 segments of each gesture in order
to generate the pretrained model that has excellent performance.
Then we retrain the classifier with 3,4, and 5 segments of each
gesture for the new people based on the pretrained model. As
shown in Figure 16(b), we can see that after applying the transfer
learning, the performance of our system is improved by 10% to
87% with only using 3 segments of each gesture for training.
Moreover, with 4 or more segments of each gesture for training,
the transfer learning can improve the precision and recall of
our system to above 90%. Those results prove that the ResNet
as the fundamental multivariate TSC is also suitable for our
system, which not only provides the good performance without the
procedure of extracting the features but also can take advantage of
the transfer learning to significantly reduce the training effort to
achieve decent performance.

8.3 Impact of Different Types of Body Movements

The wrist-worn PPG sensors basically monitor the blood flow in
blood vessels on the wrist, which could possibly be impacted by
the body movements that change the blood flow depending on
how far the source of the body movements are away from the
monitoring point. Therefore, we conduct the experiments with dif-
ferent types of body movements such as swing the forearm, rotate
the forearm, swing the body, and rotate the body while performing
the sign the language gesture as shown in Figure 17(a), (b), (c), (d)
in order to explore their impacts respectively. In particular, we ask
the participants to perform the gesture of American sign language
number 1 (i.e., S1) while involving certain body movements. As
shown in Figure 18 (a), the PPG gesture patterns of all the tested
body movements have similar waveform shape as that of no body
movement.

Additionally, we compare the DTW distances between the
PPG segments collected during the time with and without body
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(a) Swing forearm (b) Rotate forearm (c) Swing body (d) Rotatebody

Fig. 17. Illustration of different types of body movements involved in the
experiments.

movements to quantitively understand the similarity between the
gesture-related patterns showed in Figure 18 (a). From Figure 18
(b) we can see that all the gesture-related patterns with body
movements have small DTW distances of less than 900 to the
gesture-related patterns without body movements, which indicates
that the shapes of the PPG segments are well sustained as the case
without any body movement. The small DTW distances suggest
that our sign language gesture recognition system would work
well by examining the PPG data that is insensitive to the body
movements.

9 Discussion
Processing Delay.The processing delay of gesture recognition is
critical to user experience in practical use. We develop an Android
APP running on a Samsung Galaxy Note 5 (i.e., 1.5Ghz octa-
core Exynos processor and 4GB of RAM) to track the elapsed
time of major processing components (i.e., segmentation, feature
extraction processes, and classification). We find that the process-
ing delays are within a reasonable range which is about 0.651s
and 0.601s for the GBT-based and ResNet-based approaches,
respectively. The GBT-based approach has about 0.05s more in
the processing delay than the ResNet-based approach because of
the feature extraction process. We also notice that the processing
delays of both approaches are dominated by the segmentation
process (i.e., about 0.6s), especially the ending point detection in
DTW-based approach, which takes about 0.41s. In addition, both
GBT and ResNet have similar time for classification (i.e., 0.001s).
Energy Consumption. Our wearable prototype includes an
Arduino board (i.e., about 50mA), two PPG sensors (i.e, 8mA)
and one motion sensor (i.e., 4mA), respectively. In total, it is
about 62mA current consumption of our prototype. Given the
fact that the off-the-shelf smartwatches generally have a battery
capacity of 380mAh, our system can run up to 6.1 hours on a
smartwatch alone. If we offload the computation to a smartphone
via the Bluetooth, the power consumption of the smartwatch [44]
only involves the sensors and Bluetooth (i.e., 3.5mA), which is as
low as 15.5mA. Given such low power consumption, our system
can run over 24 hours on a smartwatch.
Skin Tone Impact. Humans have a diverse range of skin tones
and different skin tones have different absorption of green light,
impacting the gesture recognition accuracy. For example, darker
skin absorbs more green light, limiting the capability to accurately
measure heart rate. Using additional infrared LED PPG could
mitigate the impact of skin tones.
Sensor Location Sensitivity. The location of the PPG sensor
on the wrist is important, we carefully design it to be close to
one of the main artery that can have more significant changes in
blood flow when performing gestures. More sensors monitoring
other arteries on the forearm could help increase the resolution
of this sensing technology and facilitate more complicated finger-
level gesture recognition, such as recognizing 26 letters in the
American sign language.
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Fig. 18. Illustration of the impacts from different types of body movements
on the PPG measurements when performing the same finger-level gesture
(i.e., S1): (a) comparison of raw PPG measurements and (b) comparison of
DTW distances that are collected when there are no body movements and
different types of body movements.

Impact of Intense Body Movements.PPG sensor is sensitive
to the extremely intense body movements. We find that some
extremely intense body movements, such as intense wrist wringing
and coughing, could induce large signal deformation than normal
body movements (e.g., swing the forearm), and thereby affect
the accuracy of wrist-worn PPG sensor readings. Therefore, it
is recommended to not involve intense body movements when
performing gesture recognition with our system.

Limitation and Future Work. Our work focuses on single-
hand finger-level gesture recognition. We are aware that there
are two-hand sign language gestures. In our future work, we
will conduct new experiments with sign language involving two
hands and explore the new features and methods (e.g., nature
language processing techniques) for recognizing such two-hand
sign language gestures. We are aware that using binary classifiers
for each gesture is not the best solution. We find that transfer
learning technology could use much less training effort to train
a new model for a new user based on an old model of exist-
ing users. We will explore new approaches using the transfer
learning technology to reduce the training effort for all the sign
language gestures in our future work. And we will also explore
the possibility of filtering the cardiac component from the motion
artifacts (including both cardiac components and motion-related
components) using the adaptive filter.

10 Conclusion
As an important means for human-computer interactions, gesture
recognition has attracted significant research efforts in recent
years. This paper serves as the first step towards a comprehensive
understanding of the PPG-based gesture recognition with using
motion sensors (i.e., accelerometer and gyroscope) as a comple-
mentary measure. We made a novel proposition to recognize the
sign language gestures using low-cost PPG sensors and motion
sensors in wearables. In particular, we develop a fine-grained data
segmentation method that can successfully separate the unique
gesture-related patterns from the PPG and motion sensor measure-
ments. Additionally, we study the unique PPG and motion features
resulted from finger-level gestures in different signal domains and
devise a GBT-based system that can effectively recognize the sign
language gestures by using PPG and motion sensor measurements.
Moreover, we explore the deep neural network (ResNet) for clas-
sifying the multivariate time series signal (i.e., PPG and motion
sensor measurements) and apply the transfer learning to signifi-
cantly reduce the training effort. Our experiments with over 7000
PPG segments and 2500 motion sensor segments collected from
10 participants demonstrate that our system can differentiate nine
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elementary American Sign Language gestures with an average
precision and recall over 89% with only using PPG sensor. We
also reveal the limitation of using motion sensors alone and show
that the sign language gesture recognition performance could be
significantly improved by integrating the PPG and motion sensor
data.
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