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ABSTRACT
With the increasing prevalence of mobile and IoT devices (e.g.,

smartphones, tablets, smart-home appliances), massive private and

sensitive information are stored on these devices. To prevent unau-

thorized access on these devices, existing user verification solutions

either rely on the complexity of user-defined secrets (e.g., pass-

word) or resort to specialized biometric sensors (e.g., fingerprint

reader), but the users may still suffer from various attacks, such as

password theft, shoulder surfing, smudge, and forged biometrics

attacks. In this paper, we propose, CardioCam, a low-cost, general,

hard-to-forge user verification system leveraging the unique car-

diac biometrics extracted from the readily available built-in cameras

in mobile and IoT devices. We demonstrate that the unique cardiac

features can be extracted from the cardiac motion patterns in finger-

tips, by pressing on the built-in camera. To mitigate the impacts of

various ambient lighting conditions and human movements under

practical scenarios, CardioCam develops a gradient-based technique

to optimize the camera configuration, and dynamically selects the

most sensitive pixels in a camera frame to extract reliable cardiac

motion patterns. Furthermore, the morphological characteristic

analysis is deployed to derive user-specific cardiac features, and a

feature transformation scheme grounded on Principle Component

Analysis (PCA) is developed to enhance the robustness of cardiac

biometrics for effective user verification. With the prototyped sys-

tem, extensive experiments involving 25 subjects are conducted to

demonstrate that CardioCam can achieve effective and reliable user

verification with over 99% average true positive rate (TPR) while

maintaining the false positive rate (FPR) as low as 4%.
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1 INTRODUCTION
The increasingly prevalent usage of mobile and IoT devices (e.g.,

smartphones, tablets and smart-home appliances) inevitably con-

tains private and sensitive information (e.g., contact list, emails,

credit card numbers and merchandise ordering information). Unau-

thorized access to such devices could put huge amounts of sensitive

information at the risks of misuse. Traditional user verification

solutions mainly rely on passwords or graphical patterns [29, 52],

which suffer from various attacks including password theft, shoul-

der surfing [53] and smudge attacks [9]. Biometric-based user verifi-

cation opens up a new pathway to secure mobile devices, especially

fingerprint-based solutions [7, 31], which are widely deployed in

many premium smartphones (e.g., iPhones and Samsung phones)

and offer a more secured way to access mobile and smart devices.

However, there is still a large market for phones with 50 dollars

and less (e.g., BLU A4) in many developing regions around the

world where phones do not come with dedicated fingerprint sen-

sors [46]. Furthermore, some of these low-cost markets heavily rely

on mobile payments due to the large distribution of geographic

areas and the lacking establishment of traditional banking and pay-

ments infrastructure [36]. Moreover, fingerprint-based solutions

are vulnerable to synthetic fingerprints created through victims’

photographs [14, 41, 48]. These lead to a renewed search of a low-

cost, general, hard-to-forge security solution, which could also

facilitate the usage of increasingly convenient mobile payment

systems. Existing studies have demonstrated that using either body-

attached PPG/ECG sensors [8, 12, 25, 42] or Doppler radar [30] is
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Figure 1: Enabling cardiac-pattern based user verification us-
ing device’s built-in camera.

promising to perform user verification by capturing human cardiac

biometrics. These existing investigations usually require special-

ized equipments (e.g., sensors or radar devices), which could add

extra cost and bring inconvenience the mobile users. Towards this

direction, we propose CardioCam that does not involve specialized

equipments to extract unique cardiac biometrics to perform user

verification. CardioCam makes use of the built-in camera which

is readily available in almost all kinds of mobile devices including

both premium and low-end devices (e.g., phones under 50 dollars).

Some researchers have shown that the built-in camera on smart-

phone could be utilized to measure heart rate and pulse volume [32,

51]. Existing work [28] also demonstrated the correctness and suit-

ability of the cardiac signals captured by the smartphone’s camera,

which are very close to those measured by the specialized medical

instrument (i.e., pulse oximetry) [28]. However, whether the camera

is able to extract unique cardiac biometrics for user verification

remains an open issue. CardioCam takes one step further to explore

the limits of the built-in camera and aims to achieve user verifica-

tion leveraging the unique cardiac biometrics extracted from the

camera. The system simply requires the user to press his/her finger-

tip on the camera surface for cardiac feature extraction as shown

in Figure 1. Therefore, it could be directly applied to almost all the

mobile devices to perform user verification including unlocking the

devices and authorizing specific permissions. Furthermore, there

is a growing trend of deploying low-cost cameras on smart appli-

ances to support a broad range of emerging IoT applications. For

instance, FridgeCam [43] allows users to stick a small camera to the

inside of the refrigerator for storage food monitoring. Amazon’s

virtual assistant Echo Look [3] is also equipped with a camera to

support its growing commands sets (e.g., asking for the opinion

on which outfit looks best). In addition, small IoT devices, such as

video doorbell [40], equipped with low-cost cameras are serving

for many home security systems these days, and Amazon Dash

Button [4] can be easily integrated with a low-cost camera to enable

user verification for privacy protection. Therefore, the large-scale

deployment of the cameras on IoT devices provides great opportu-

nities for CardioCam to verify users for various applications, such

as entrance’s access control, ordering food via the refrigerator with

parental control and purchasing clothes via the virtual assistant

without disclosing personal lifestyle.

Traditional Solutions. The built-in cameras on mobile devices

have been used to perform user verification with biometric features

including iris patterns [27], facial features [15] and palm print [47].

These solutions mainly rely on computer-vision based methods and

usually suffer from spoofing attacks with forged biometrics. For

instance, the iris-based user verification system can be deceived

by the synthesized iris images with identical iris texture as the

legitimate user [49]. Face ID on iPhone X can capture the geometry

and depth of the user’s face [19] to verify user’s identity. Although

it has been proved to be more secure than fingerprint-based authen-

tication (e.g., Touch ID) [6], this technique requires high-end and

expensive camera (i.e., TrueDepth front-facing camera). Addition-

ally, these vision-based solutions may result in privacy concerns

induced by the rich information embedded in the visual content

captured by camera, and their performance could be degraded by

the surrounding lighting conditions.

Cardiac-pattern basedUserVerificationUsingBuilt-inCam-
era. In this paper, we explore to extract cardiac biometrics from

the built-in camera. It has been demonstrated the cardiac feature is

intrinsic, unique and non-volitional among a large population [1, 26,

34, 55]. Instead of using PPG/ECG sensors, in this work we search

for the unique cardiac features extracted from the cardiac motion

patterns in fingertips, by pressing on the built-in camera. We hope

the extracted cardiac features from fingertips are distinguishable

among different individuals and could serve as a candidate for ef-

fective user verification. The cardiac features are usually affected

under practical scenarios: the extracted cardiac motion patterns are

impacted by the lighting conditions; Heartbeats are varied under

movements and human emotion changes; the fingertip pressing

position and pressure also play a critical role in cardiac biometric

feature extraction. To address the above challenges, CardioCam

adaptively updates camera configuration and dynamically derives

cardiac motion patterns to suppress the effects caused by ambient

light changes. We also develop a mechanism that could handle

different fingertip pressing positions and pressure by choosing the

most sensitive pixels to derive cardiac motion patterns from the

video frames captured by the built-in camera.

To facilitate biometric extraction, CardioCam segments the car-

diac measurements into different heartbeat cycles and normalizes

the duration/amplitude of each cardiac cycle to mitigate the impact

of heartbeat rate/strength variations. The normalization process

will enhance the robustness of the derived cardiac biometrics while

preserving morphological distinctiveness embedded in the cardiac

motion pattern. We further extract user-specific heartbeat features

within each cardiac cycle via morphological characteristic analysis.

To effectively suppress the small-scale cardiac motion variations, a

feature transformation scheme based on Principal Component Anal-

ysis (PCA) [23] is developed. These feature abstractions are used

to construct legitimate user profiles during the system enrollment.

During verification phase, CardioCam examines the Euclidean dis-

tance of the feature abstractions between new observations and the

user profiles to authenticate the legitimate user or reject adversaries.

The main contributions of our work are summarized as follows:

• To the best of our knowledge, CardioCam is the first low-cost,

general user verification system that uses cardiac biometrics

extracted from the built-in cameras on mobile devices or IoT

appliances.
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• We demonstrate that the intrinsic, unique and non-volitional

cardiac properties can be preserved when extracting the

cardiac features from fingertips; the cardiac biometrics are

well captured by the reflected lights on the built-in camera

when the user presses her/his fingertip upon.

• We develop a gradient-based optimization technique that

adapts the configuration of camera to ambient light changes

and human movements variations and derives high-quality

cardiac measurements from a set of dynamically selected

image pixels. Given the selected pixels that are sensitive to

cardiacmotion, the impacts of fingertip position and pressure

upon the camera can be suppressed.

• With the proposed cardiac biometric feature extraction and

the feature transformation scheme based on PCA, we demon-

strate that CardioCam can robustly verify users and is re-

silient to the modeled attacks, in which an adversary presses

his/her own fingertip upon the camera hoping to pass the

system.

• We perform extensive experiments involving 25 subjects

under various data collection strategies and system settings.

The results demonstrate that CardioCam can achieve over

99% average true positive rate (TPR) to verify users while

maintaining less than 4% false positive rate (FPR) to well

reject adversaries.

2 RELATEDWORK
Traditional user verificationmechanisms rely on either password [29]

or graphic screen patterns [52], which require users to memorize

complicated text/graph secrets, to verify their identities. Since these

solutions only verify the secret itself instead of a user, they are usu-

ally vulnerable to various attacks such as shoulder surfing [53], and

smudge attack [9].

As an alternative, many researchers resort to physiological bio-

metrics to perform user verification. In particular, fingerprint-based

solutions [7, 21, 22, 31] have become an essential specification on

many premium smartphones such as iPhone and Samsung Galaxy

S series. However, the fingerprint reader is still unavailable in most

of the mid-range and low-end mobile devices, the fingerprint based

systems are also vulnerable to spoofing attacks by using synthetic

artifacts [14, 48]. Besides the fingerprints, other human biometric

features (e.g., iris [27], face [15], and palmprint [47]) are also ex-

ploited to achieve user verification with the assistance of cameras,

especially the built-in camera on mobile devices, which has already

been used for device authentication [10]. However, the privacy

concerns of such vision-based solutions prevent them from exten-

sive use due to the rich information embedded in the image/video

captured by cameras. For instance, the surrounding background

scene may disclose the user’s location, living environment or any

personal stuff. Additionally, the biometrics (e.g., iris, face, palm-

print) captured in the aforementioned vision-based solutions are

all external features of human beings, which can be forged by an

adversary for launching spoofing attacks [17, 18, 49].

To overcome the aforementioned weaknesses, some studies rely

on intrinsic cardiac biometrics (e.g., heartbeat patterns) derived

from electrocardiogram (ECG) [11, 20, 45, 55] and photoplethys-

mography (PPG) [25] signals. However, these methods require the

Atrial systole

Isovolumetric 

contraction

Ventricular ejection

Isovolumetric 

relaxation

CameraFlashlight

Reflected light

(a) Human cardiac cycle [37] (b) Data collection

Figure 2: Four phases of cardiac cycle and data collection
leveraging camera and flashlight.

users to attach specialized sensors to their chest or fingertip, mak-

ing them hard to be applied to mobile users. Cardiac Scan [30]

recently proposes a non-obtrusive way to extract distinct cardiac

motion pattern with Doppler radar for user authentication, but the

involvement of specialized devices also adds extra cost and brings

inconvenience to the mobile users.

In order to remove the limitation on involving specialized equip-

ments, some studies explore to capture the cardiac biometrics lever-

aging the readily available sensors on commercial off-the-shelf

devices. Specifically, Matsumura et.al. [32] demonstrate that the

heart rate and pulse volume can be measured when the users put

their fingertips upon the built-in camera. Additionally, Seismo [51]

proposes to derive pulse transit time (PTT) leveraging smartphone

accelerometer and built-in camera. Some researchers [13, 50] fur-

ther make use of both built-in camera to estimate blood oxygen

level PhO2 and Hemoglobin level. Towards this direction, this paper

takes one step further to explore the feasibility of using built-in

camera to extract non-volitional and hard-to-forge cardiac biomet-

rics to perform user verification. Comparing to existing biometric

authentication (e.g., fingerprint, face recognition), CardioCam has

better scalability since it only requires the built-in camera and

flashlight that are available in almost all kinds of mobile devices.

In addition, our system is a light-weight user verification system

with extremely low computational complexity and memory/energy

overhead.

3 PRELIMINARIES
3.1 Kinetics of Cardiovascular System
The heart pumps the blood into the vessels through alternative

cardiac muscle contraction and relaxation, which forms a periodic

heartbeat pattern, called cardiac cycle, while the vessels carry blood

circulated throughout the whole body, including the fingertips. The

human heart contains four chambers (i.e., upper left and right atria;

and lower left and right ventricles), and a typical cardiac cycle

usually involves four major phases: atrial systole, isovolumetric

contraction, ventricular ejection and isovolumetric relaxation, as

shown in Figure 2 (a). In the phase of atrial systole, the ventricles are

contracting, while the atria are relaxing and collecting blood. Then

isvolumetric contraction occurs, and the ventricles contract with

no corresponding blood volume change in all chambers. When the

ventricles start ejecting blood (i.e., ventricular ejection), the atria

contracts to pump blood to the ventricles. Finally, a short interval,

called isovolumetric relaxation, begins and the atria valve starts
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Figure 3: Cardiac cycles of two users extracted from the cam-
era’s red and green channels.

closing until the onset of another cardiac cycle. Due to the exis-

tence of physiological differences on cardiovascular systems (e.g.,

heart size, shape and tissues, etc.), different people have different

amplitudes of cardiac muscle contraction and relaxation. Conse-

quently, the blood flow in the vessels follows a unique variation

trend within a cardiac cycle for different individuals. Both ECG and

PPG signals have the capability to reveal unique cardiac biometrics

embedded in the four phases of a cardiac cycle [5], and existing

work [34] has demonstrated the uniqueness such cardiac biomet-

rics among a large population. Similar to PPG based approaches,

CardioCam measures cardiac motion patterns in terms of blood

flow variations by illuminating the fingertip with an external light

source (i.e., flashlight), making it possible to capture equivalent

unique biometrics. In addition, the blood flow passing through the

veins in fingertip will result in unique cardiac motion pattern. Such

pattern could reveal the distensibility of fingertip vascular [16] and

reflect distinctive vein characteristics (e.g., vein distribution), which

has been demonstrated among a large population [38, 55].

Therefore, we are inspired to extract effective biometric features

from the cardiac motion pattern to perform user verification.

3.2 Capturing Cardiac Motion
Given the intrinsic, unique and non-volitional properties of car-

diac motion pattern, the next step is how to effectively extract the

biometric features. Unlike existing works that rely on specialized

instruments to capture the cardiac motion, we seek to examine

the blood flow, which reflects the unique cardiac motion, through

the fingertips with commercial off-the-shelf devices. As shown in

Figure 2 (b), by illuminating the fingertip skin with the flashlight

on smartphone, the built-in camera can continuously observe the

variations on light absorption introduced by blood flow changes,

where the unique cardiac features are embedded.

Specifically, each pixel of the built-in camera acts as an indepen-

dent light sensor to detect the light changes on fingertip. Due to

the high resolution of current smartphone cameras (e.g., 1280× 720

pixels per frame), fine-grained cardiac cycle monitoring can be

achieved. Besides, the three color channels (i.e., Red, Blue and

Green) of each pixel provide multiple dimensions for effective fea-

ture extraction. By contrast, traditional cardiac monitors, such as

photoplethysogram (PPG) sensors, can only support up to 3 differ-

ent photodiodes (i.e., red, green, infrared photodiodes), which is

equivalent to three pixels, for cardiac dynamic detection [2].

Figure 3 shows light intensity changes of two different color

channels (i.e., red and green) across three cardiac cycles of two

different users.We normalized the time scale of each cardiac cycle to

remove the impacts of fluctuating heartbeat rate. It is obvious to find

that the two users exhibit different cardiac motion patterns for both

color channels, which confirm that unique cardiac features can be

captured by smartphone camera. Additionally, since human skin has

different absorption/reflection rate for the light of different colors,

the cardiac motion patterns revealed by red and green channels

have slight differences, which instead provide some redundancy

for reliable cardiac feature extraction.

4 SYSTEM OVERVIEW
4.1 Challenges
In order to achieve effective user verification leveraging unique

cardiac biometrics with ubiquitous built-in camera on mobile and

smart devices, a number of challenges need to be addressed.

Reliable Cardiac Measurements. The success of user verifica-
tion is built upon reliable measurements on cardiac motion pattern.

However, various impacting factors, such as ambient lighting con-

dition, fingertip pressing position and human motion can impact

the reliability of the derived cardiac measurements under practical

scenarios. Thus, it is critical to mitigate these impacts in cardiac

measurements for the proposed system.

Uniqueness of Cardiac Characteristics. Since the cardiacmo-

tion pattern is indirectly obtained by capturing the blood flow vari-

ation in fingertips with built-in camera, it is a challenging task to

convert the recorded video frames to reliable cardiac biometrics

associated with unique cardiac motion pattern. Furthermore, to

facilitate effective user verification, it is important to extract and

validate representative biometric features from the raw cardiac

measurements.

System Robustness. The cardiac measurements are also af-

fected by many random factors, such as the emotion changes, heart

and breath rate variations. The system should be capable to elimi-

nate such randomness and derive robust biometric abstractions. It is

necessary to develop a transformation algorithm that can suppress

the small-scale cardiac motion variations.

4.2 Attack Model
We consider the attacking scenario where an adversary attempts

to access the sensitive information or functionality (e.g., schedule,

photos and mobile payment) on the private mobile device that is left

unattended by legitimate users. The adversary does not have any

prior knowledge of the cardiac biometrics of the legitimate users.

To spoof the device, the adversary tries to pass the user verification

process with the adversary’s own cardiac biometrics by pressing

his or her fingertip upon the built-in camera. Furthermore, the

adversary can also shift the position of his fingertip with respect to

the camera or adjust finger pressure, aiming to yield similar cardiac

biometrics as the legitimate user.

4.3 System Overview
The basic idea of CardioCam is to verify the user’s identity leverag-

ing the intrinsic, unique, and non-volitional cardiac biometrics with

the assistance of ubiquitous built-in camera/flashlight on mobile
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Figure 4: System Overview of CardioCam.

devices. CardioCam can be triggered when a user is trying to access

sensitive information/functionalities (e.g., mobile payment, photo)

or unlock her or his mobile device by either swiping up on the

device’s touchscreen or pressing the on-off button. Considering

time for video recording and profile matching, CardioCam takes

about 2.5 seconds to complete one-time user verification. As illus-

trated in Figure 4, Data Acquisition is then initialized with both

the build-in camera and flashlight turned on when detecting the

camera is covered by a fingertip. Under the illumination of flash-

light, the blood flow in fingertip, which is associated with cardiac

motion pattern, will be captured by the built-in camera in the form

of video frames. Before cardiac motion derivation, we first develop

a gradient-based optimization technique to adapt the camera config-

urations (i.e., flashlight intensity, ISO) to complement ambient light

changes. Next, the reliable cardiac motion pattern is derived via the

module Dynamic Cardiac Wave Extraction from the captured video

frames. Since the pressing position and pressure of fingertip may

keep slightly changing during the verification process, we propose

Dynamic Pixel Selection to merely include a subset of pixels that

are most sensitive to cardiac motion to boost the signal-to-noise

ratio of the cardiac measurements. In particular, the sensitive pix-

els are determined within each individual cardiac cycle, which is

segmented by searching for subsequent local minima in cardiac

measurements. Then the video stream of the selected pixels will

be converted to three cardiac waves with respect to red, green and

blue channels, following with a bandpass filter and a normalization

process to mitigate the impacts caused by human respiration and

heart rate changes, respectively.

In the Cardiac Biometric Extraction module, CardioCam extracts

30 systolic-diastolic features directly from the cardiac measure-

ments and 36 non-fiducial features after further processing. The

systolic and diastolic features are represented as normalized dis-

tances/slopes between four fiducial points (i.e., Diastolic Point (DP),

Systolic Point (SP), Dicrotic Notch (DN), Dicrotic Wave (DW) [2])

within each cardiac cycle. The four fiducial points are used to char-

acterize the four phases of cardiac contraction and relaxation. The

fiducial point positions can be localized through recursively finding

the local maxima and minima within a cardiac cycle. To further

extend feature space, CardioCam also passes the cardiac measure-

ments through two high-pass filters to reveal cardiac uniqueness

via overall signal morphology and extract more fine-grained non-

fiducial features. The non-fiducial features, which are denoted as

the normalized distance between local maximums and minimums

of the processed measurements, are also unique among different

users.

Finally, User Verification Model facilitates user verification by

matching new cardiac observations to the predefined a user profile.

Instead of directly building user profile with the aforementioned

morphological features, the system performs profile construction

by converting these features into a set of robust feature abstracts

through principal component analysis (PCA). PCA transformation

preserves the key characteristics that are effective to discriminate

different users while eliminates the impact of unpredictable interfer-

ences. The verification succeeds if the featured abstracts are within

a certain Euclidean distance from the user profile. Otherwise, it

fails and denies the access request.

5 FINGERTIP TOUCH DETECTION &
CAMERA PARAMETER OPTIMIZATION

In this section, we first introduce how to detect fingertip touch

on the built-in camera, and we then discuss the camera/flashlight

configuration optimization to mitigate the impacts of ambient light

for reliable cardiac motion derivation.

5.1 Fingertip Touch Detection
Under the illumination of the built-in flashlight, the captured video

frames have the color dominated by red channel (i.e., the color

of blood) if the camera is fully covered by a fingertip. When the

camera is fully covered, the red pixels would show extreme high

intensity, otherwise give relatively low intensity. We thus exam-

ine the proportion of red channel component in the overall light

intensity across all the pixels in each frame t ∈ T as follows:

Pr (x ,y) =
r(x,y)(t)

r(x,y)(t) + д(x,y)(t) + b(x,y)(t)
,

(x ∈ X ,y ∈ Y , t ∈ T ),

(1)

where r(x,y), д(x,y), b(x,y) denote the light intensity in red, green,

and blue channel at pixel (x ,y), respectively. X and Y represent

the frame width and height, and T is the total number of frames in

the captured video. By comparing Pr with a predefined threshold

(i.e., τ = 0.85), we can determine the pixels that are covered, and

the cardiac motion derivation starts up only when over 95% of the

pixels are dominated by red channel.

5.2 Camera Parameter Optimization
Our preliminary study finds that the reliable cardiac motion pat-

terns can only be obtained under appropriate camera configurations
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Figure 5: Illustration of the assessment score S of cardiac
waves under various conditions.

with adequate amount of light entering the camera. Extremely low

or high flashlight illumination would degrade the pixel sensitivity

on capturing the cardiac motion patterns from the camera. Due

to the various ambient lighting conditions, CardioCamera needs

to adapt the camera configurations to complement the light in-

troduced by ambient sources (e.g., sun, artificial light). We thus

design a gradient-based optimization scheme on camera/flashlight

configuration to mitigate the impacts of ambient light.

Cardiac Cycle Segmentation. Periodic cardiac motion results

in regular changes of blood flow in the fingertip, which are repre-

sented as pixel value variations on camera videos. To capture the

cardiac cycles embedded in such pixel value variations, CardioCam

first calculates the time-series cardiac measurements by averaging

pixel values of red channel for each frame in a video stream. We

choose the red channel because the captured video frames have

the color dominated by the color of blood, and the red pixels have

the best sensitivity on the blood flow variations. Then, CardioCam

exploits peak-valley detection algorithm [44] to identify the val-

leys with a minimum prominence of 40, and the segment between

two detected consecutive valleys is considered as a cardiac cycle.

The threshold is determined through our empirical study based

on the cardiac signal samples collected from 25 subjects. Due to

heart rate differences between individuals, the number of frames

in each cardiac cycle ranges from 36 to 65. Note that the above

segmentation algorithm will also be used for both Dynamic Cardiac
Wave Extraction (Section 6) and Biometric Extraction (Section 7).

Biometric Sensitivity Assessment. We study the pixel sensi-

tivity by evaluating the light intensity changes (i.e., absolute pixel

value changes in frames) during each cardiac cycle. Specifically, we

calculate the element-wise (pixel-by-pixel) difference, Di f f (r(x,y)),
between the two frames with maximum and minimum pixel aver-

ages in red channel as:

Di f f (r(x,y)) = r(x,y)(tmax ) − r(x,y)(tmin ),

(x ∈ X ,y ∈ Y ),
(2)

where tmax and tmin denote the indexes of frames that have max-

imum and minimum averages of pixel values, respectively. Then,

we indicate the distribution of Di f f (r ) with a histogram H with k
bins and derive the assessment score as below:

S =
k∑
i=1

i2 ×
|Hi |

X × Y
, (3)
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Figure 6: Comparison of the cardiac waves derived under
dim and bright ambient light conditions, respectively.

where |Hi | denotes the number of the pixels falling into ith bin.

Figure 5(a) shows the average light intensity in the red channel of

two video streams including the four cardiac cycles. It is obvious to

observe that higher assessment score (i.e., S=8.5) indicates a better
biometric sensitivity, and thus confirms the effectiveness of the

proposed assessment scheme on assessing pixel sensitivity.

Gradient-based Configuration Update. As illustrated in Fig-

ure 5 (b), either high or low camera ISO/flashlight illumination

cannot achieve satisfied frame quality on detecting cardiac motion

pattern. Particularly, the maximum assessment score can be found

at flashlight intensity of 0.2, 0.2, 0.3 when ISO is 300, 400, and 500,

respectively. This observation motivates us to search for an op-

timal camera and flashlight configuration (i.e., ISO and flashlight

intensity) that maximizes the pixel sensitivity (i.e., assessment score

S). Specifically, we develop an iterative searching method, where

the next configuration adjustment is based on the feedback from

current one. The flashlight/ISO offset of each iteration is calculated

as follows:

an+1 = an + γ ▽ S(an ), (4)

where an denotes either flashlight intensity or camera ISO configu-

ration at n-th cardiac cycle and the corresponding assessment score

is represented as S(an ). At each cardiac cycle, an is updated follow-

ing the gradient ascent direction ▽S(an ) with fixed step values (i.e.,

γFL = 0.05 and γI SO = 5) until the satisfactory pixel sensitivity

is reached (i.e., beyond an empirical threshold). The optimization

procedures are summarized in Algorithm 1.

Figure 6 shows an example of the derived cardiac waves from

a user when the surrounding environments are in two different

ambient lighting conditions (i.e., dim and bright ambient light),

respectively. As CardioCamera adaptively adjusts the camera flash-

light and ISO configuration to complement the ambient light varia-

tions, we observe that the cardiac waves collected under the two

different lighting environments exhibit similar morphological char-

acteristics. The results indicate that the proposed camera parameter

optimization is a promising and reliable approach to ensuring the

high-quality cardiac motion pattern derivation.

6 DYNAMIC CARDIACWAVE EXTRACTION
To extract unique and reliable cardiac biometrics, it is essential

to derive cardiac waves that are robust to ambient noises and the

ever-changing position/pressure of fingertip during the verification

process. In this section, we introduce how to derive reliable cardiac
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Algorithm 1 Video Biometric Optimization

function CameraAdjustment

2: I SO = 550, Sprev = 0, FLprev = 0

while S < Threshold do
4: Sprev = S

FL = Camera .f lashliдht
6: S = Score(Framepeak , Framevalley )

Feedback = (S − Sprev )
8: if FL − FLprev > τ then

FLprev = FL
10: Of f setf l = Feedback ∗ γFL

FL = FL +Of f setf l
12: Camera .f lashliдht = FL

else
14: Of f setiso = Feedback ∗ γiso

I SO = I SO +Of f setiso
16: Camera .I SO = I SO

end if
18: end while

end function

via selecting the most sensitive pixels to cardiac motion in the video

frames captured by built-in camera.

6.1 Dynamic Pixel Selection
Our preliminary studies find that the light intensity sensed by dif-

ferent pixels on camera are subject to the differences of fingertip

thickness, pressing position and pressure. Therefore, a pixel se-

lection strategy is required to dynamically exclude the ineffective

camera pixels for cardiac wave extraction.

Specifically, we first calculate the average of the frames in a

cardiac cycle and then identify two frames that have the maximum

and minimum average pixel values, respectively. Element-wise

difference between these two frames is then calculated by using

Equation 2. We select the effective pixels that have sufficient max-

to-min difference and obtain a mask matrix,Mk (x ,y), by using the

following equation:

Mk (x ,y) =

{
1, Di f f k (r(x,y)) > γ

0, Di f f k (r(x,y) ≤ γ ,
(5)

where Di f f k (r(x,y)) is the element-wise difference of pixel (x ,y)

in the kth cardiac cycle. Based on our experiments with different

subjects, we empirically determineγ = 15 to ensure fiducial features

(i.e., systolic and dicrotic points) can be correctly derived. The mask

matrix has the same size as the video frames and is applied to all

the frames in one cardiac cycle.

6.2 Cardiac Wave Derivation
Although blood flow variation can be captured by all sensitive

pixels, deriving cardiac measurements from all individual pixels

will incur significant computational overhead. Additionally, cardiac

motion patterns derived from different camera pixels may exhibit

extremely high similarity across different color channels (i.e., red,

green, blue). Thus we use the pixel average over the three color

channels (i.e., red, green, blue) to derive three cardiac waves. In

particular, the cardiacwaves are derived based on the selected pixels,

which are adaptively updated for each cardiac cycle. To simplify
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Figure 7: Two different fingertip pressing positions and the
corresponding cardiac motion patterns.

the cardiac wave derivation, the derived cardiac wave segment of

the kth cardiac cycle can be obtained as:

W k
c (t) =

∑
x,y M

k (x ,y) × ck
(x,y)(t)∑

x,y M
k (x ,y)

, (6)

whereW k
c (t) and ck

(x,y)(t) denote the derived cardiac wave and

light intensity respectively at t th frame in the channel c (i.e., r ,д,b).
As shown in Equation 6, only the sensitive pixel values are involved

in cardiac wave generation through multiplying the pixel matrix by

the mask. Figure 7 (a) gives an example that two different fingertip-

touch positions from the same person, respectively. And Figure 7 (b)

shows the corresponding cardiac waves derived from the selected

pixels. We can observe that the two cardiac waves are surprisingly

similar to each other even the fingertip touch positions are differ-

ent. The results validate that our dynamic cardiac wave derivation

algorithm is robust to the impact of the fingertip position changes.

6.3 Data Calibration and Normalization
According to our empirical study, the cardiac wave derivation is also

affected by the user’s respiration and inherent defects of camera.

Previous study [35] found that the impacts of respiration on cardiac

measurement normally appear at the frequency band less than

0.3Hz. To further mitigate the above interferences, a bandpass

Butterworth filter [39] with the passing frequency band 0.3Hz ∼

10Hz is adopted to further calibrate the cardiac wave. Additionally,

there are several intrinsic factors related to human emotion (e.g.,

exercising or resting) that may also affect human heartbeat rate

and strength, so the cardiac wave duration and amplitude will be

either stretched or shrunk. To ensure the robustness of the cardiac

biometrics, we normalize both the duration and amplitude of one

cardiac cycle into a common scale [0, 1] to mitigate the impact of

heartbeat rate/strength fluctuation.

7 BIOMETRIC EXTRACTION
We propose to exploit both systolic-diastolic and non-fiducial fea-

tures to capture the unique physiological characteristics inherited

from the user’s cardiovascular system. Specifically, systolic-diastolic

features are the amplitude of the inflection points in the cardiac

cycles. Such amplitudes represent round-trip delay time of blood

flow and are proportional to unique physiological characteristics

(e.g., height, arterial stiffness [33]). While non-fiducial features

characterize the overall signal morphology of the cardiac cycle.
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(a) Systolic-diastolic features (b) Non-fiducial features

Figure 8: Systolic-diastolic features extracted from a car-
diac wave and non-fiducial features derived from the decom-
posed wave passing a 2Hz high-pass filter.

Such morphology characteristics represent cardiac motion patterns

which are unique among individuals.

7.1 Systolic-Diastolic Features
In our proposed system, we first extract 30 systolic-diastolic features

(i.e., fiducial features) directly from the cardiac wave to characterize

cardiac motion. The fiducial features contain the biometric charac-

teristics that are unique and non-volatile with respect to different

individuals, and these features are invariant to the emotional state,

such as anxiety, nervousness or excitement [20]. As shown in Fig-

ure 8 (a), the four cardiac phases in a cardiac cycle are separated

by three fiducial points: diastolic peak (DP), dicrotic notch (DN)

and systolic peak (SP). We locate these fiducial points by searching

for the local maximums and minimums within each cardiac cycle.

Specifically, the normalized time intervals t1, t2, t3 and t4 charac-
terize the duration of ventricular ejection, isovolumetric relaxation,

atrial systole and isovolumetric contraction, respectively, while the

normalized amplitude values h1 and h2 represents the blood flow

volumes in corresponding cardiac phases. Note that h3 is excluded
as a feature since it keeps constant (i.e., 1) after normalization.

Additionally, we also explore the normalized slopes s1, s2, s3 and
s4 to depict the gradient of blood flow changes in each phase as:

sj = |
hj
tj |, j = 1, 2, 3, 4. We extract a set of 10 systolic-diastolic

features from every color channel (i.e., red, green, blue) and ob-

tain 30 features in total. As depicted in Figure 9 (a), the pairwise

Pearson correlation of the systolic-diastolic features from the same

user present higher correlation than those of different users, which

validates the effectiveness of this feature-set.

7.2 Non-fiducial Feature Derivation
The data calibration process (i.e. bandpass filter with cutoff fre-

quency 0.3 − 10Hz) removes the impacts of human respiration,

but the subtle movement of fingertip still introduces the interfer-

ences beyond 0.3Hz and thereby distorts the biometrics embedded

in the cardiac wave. We are thus motivated to utilize high-pass

filter to mitigate the interferences caused by the fingertip move-

ment and then extract distinct non-fiducial features. Comparing to

fiducial characteristics, non-fiducial features could better charac-

terize overall signal morphology (e.g., shape) of each cardiac cycle.

Recent study [24] has shown the success in deriving non-fiducial

U1

U2

U3

U1 U2 U3

U1

U2

U3

U1 U2 U3

(a) Systolic-diastolic features (b) Non-fiducial features

Figure 9: Pairwise Pearson Correlation of systolic-diastolic
and non-fiducial features extracted from 30 cardiac cycles
for three different users (i.e., U1, U2, and U3): the features
of same user are highly correlated while the features of dif-
ferent users present lower correlation.

features from the PPG signal for differentiating users. Specifically,

the cardiac waves pass through two high-pass filters with the cut-

off frequencies of 1Hz and 2Hz to obtain two non-fiducial cardiac

wavesWd1 andWd2, respectively. The normalized distances be-

tween the local maximums and minimums ofWd1 andWd2 are

unique to each individual and together serve as non-fiducial fea-

tures for characterizing cardiac motion. As shown in Figure 8 (b),

6 features {x1,x3,x5, |y1 − y2 |, |y3 − y4 |, |y5|} are extracted from

every color channel of the two non-fiducial cardiac waves, so there

are 36 non-fiducial features in total. The 6 features are selected by

finding the horizontal and vertical peak-to-valley distances that

are the most distinctiveness among different users. As shown in

Figure 9 (b), the much lower correlation between the non-fiducial

features of different user than that of the same user demonstrates

the effectiveness of this selected feature-set.

8 USER VERIFICATION MODEL
8.1 Feature Transformation grounded on PCA
Cardiac waves may have small-scale variations from day to day,

thus we propose a feature transformation scheme to construct reli-

able user profile and perform user verification ground on PCA [23].

Specifically, PCA transforms cardiac features into a set of orthogo-

nal principal components in a low dimensional space, where the

first few ones are the most representative and robust to signal

disturbances. The principle components can be derived through ap-

plying singular value decomposition (SVD) to the biometric matrix,

which consists cardiac features of n cardiac cycle observations, and

derive the principle components asW = {w1,w2, ...,wp }, where

w j , j = 1, · · · ,p, represents a n-by-1 principle component vector.

Next, we select the top k principal components, called cardiac

abstracts, with the largest normalized variances. Particularly, we

find that all the cardiac cycles share similar first several princi-

pal components, which describe the morphological outline of the

derived cardiac wave, and the remaining components could bet-

ter discriminate different individuals. Therefore, we discard the

first two principal components and start the principal component

selection process from the third component. The principal compo-

nent selection process satisfies the following objective function:
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Figure 11: Performance of CardioCam on verifying individual user leveraging
1 cycle, 3 cycles, and 5 cycles, respectively.

arдmin{k |
∑k
j=3

w j∑p
i=1wi

< τ ,k < p}, where k is the number of se-

lected principal components and τ = 0.9 is a pre-defined threshold,

which is empirically determined to balance the tradeoff between

verification performance and computational complexity.

8.2 Profile Matching
Given that the cardiac abstracts derived from feature transforma-

tion, we conduct the user verification through measuring the simi-

larity between the newly captured cardiac abstracts and the profiled

cardiac abstracts. Intuitively, the cardiac signs from the legitimate

user should have small distance from his/her profile, whereas an

unauthorized user should have a relatively large distance. Cardio-

Cam uses a set of cardiac abstract vectors F = { f1, ..., f70} derived
from 70 cardiac cycles in the profile of a legitimate user. For each

cardiac cycle, the cardiac abstract vector is obtained via multiply-

ing a cardiac feature vector with principal component matrixW
described in Section 8.1. Given the profiled cardiac abstracts, each

newly captured cardiac wave that requests verification will undergo

feature transformation grounded on PCA to obtain a cardiac ab-

stract vector s . Then, we compute the average Euclidean distance

between each s and F as below:

Dist(s) =

∑n
i=1 ∥ fi − s ∥

n
. (7)

Subsequently, a thresholdη is then applied to perform profile match-

ing through a hypothesis test as: the user verification successes if

Dist(s) ≤ η; otherwise the verification fails, indicating an adversary
or unauthorized user is detected. In order to obtain an optimized

threshold, our system needs both legitimate samples and also some

adversarial samples from simulated spoofing attacks to examine and

score a set of pre-defined thresholds. Particularly, we recursively

score the thresholds leveraging Youden’s J statistic [54], which

is a single statistic that characterizes performance on identifying

both the attacker and the legitimate user, and choose the threshold

with the maximum Youden’s J statistic. Specifically, the optimized

threshold ηu for the useru is derived via the following optimization

function: arдmax J (ηu ) = {ηu |ηu ∈ S ∧ ηy ∈ S : J (ηy ) ≤ J (ηu )},
where S denotes the set of distances for threshold selection.

9 PERFORMANCE EVALUATION
9.1 Experimental Methodology
Devices. We implement CardioCam on iPhone 7 with AVFoun-
dation framework which provides various image processing and

camera configuration functions. iPhone 7 is equipped with a built-

in high-definition rear camera with 12 megapixel, which enables

video frame rate of 60f ps with a resolution of 720p/1080p. Although
iPhone 7 supports slow-motion video recordingwith 120f ps/240f ps ,
we choose the frame rate of 60f ps that is available on most of the

mobile devices, especially the mid-range/low-end smartphones. In

addition, we further adjust the frame rate (i.e., 30/40/50/60f ps) and
video resolution (i.e., 240/360/480/720p) programmatically by call-

ing the built-in AVCaptureDevice.Format class to test the generality

of our system, which is presented in Section 9.5. Note that Cardio-

Cam only adjusts flashlight intensity and camera ISO for better

capturing cardiac motion pattern, and the other camera parameters,

such as focus distance, shutter speed, and white balance, are locked

in the proposed system.

Cardiac Data Collection. The cardiac dataset is collected from
25 participants (19 males and 6 females) aging from 25 to 33. Partic-

ularly, we construct a main dataset, which contains three trails for

each participant, and each trail lasts 60 seconds including around

60-75 cardiac cycles. In total, we collect 5, 583 cardiac cycle samples

from the 25 participants. During the data collection, there is no re-

striction on the postures of participant (e.g., standing or sitting) and

surrounding environments (e.g., indoor or outdoor). In addition, we

further construct four separated datasets involving 8 participants

to investigate the impacts of biometric variations, different fingers,

various fingertip pressing positions, and emotion state changes. We

will elaborate the data collection details in section 9.4.

Verification Strategies. To test the performance of our system,

we alternatively set each participant as the legitimate user and the

remaining 24 participants act as attackers. During the process of

user enrollment, the first 70 pre-collected cardiac cycles of each

legitimate user is used for PCA coefficient derivation and profile

construction, and the rest of the cardiac cycles are for system vali-

dation.

Evaluation Metrics. To evaluate our system performance, we

define five different metrics: true positive rate (TPR) and false positive
rate (FPR); balanced accuracy (BAC); receiver operating characteristic
(ROC) curve; area under the ROC curve (AUC). Particularly, TPR
is the percentage of users that are correctly verified as legitimate

users, and FPR is the percentage of attackers that are mistakenly

identified as legitimate users. BAC is the equal-weight combination

of TPR and true negative rate (TNR), i.e.,TNR = 1− FPR. The ROC
curve is created by plotting the TPR against the FPR under various

threshold settings (i.e., η from 0 to 400). AUC is a measurement
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Figure 12: Performance of Individual system components.

of how well the verification model can distinguish between the

legitimate and spoofing samples. Note that AUC is usually between

0.5 (random guess) and 1 (perfect verification).

9.2 Performance of User Verification
Figure 10 depicts the average ROC curves of verifying 25 partici-

pants leveraging different numbers of cardiac cycles (i.e., 1, 3 and

5) in each verification. Specifically, the AUC for each ROC curve is

calculated as 0.958, 0.974, 0.987 for verification with 1 cycle, 3 cycles

and 5 cycles, respectively. It is easy to find that 5 cardiac cycles give

the best performance. The results demonstrate the effectiveness of

CardiaoCam on user verification even with only 3 cardiac cycles per

user. Furthermore, in Figure 11, we also present BAC of verifying

all 25 participants. We can find that CardioCam achieves 95.5%,

97.9% and 98.6% average BAC with the corresponding standard

deviation (STD) of 3.8%, 2.7%, 2.2% for 1 cycle, 3 cycles and 5 cycles,

respectively. The above results confirm that CardioCam is highly

reliable on verifying all the legitimate users while rejecting the

adversaries.

9.3 Effectiveness of Each System Component
Systolic-Diastolic/non-fiducial Features. To analyze the effec-

tiveness of the extracted systolic-diastolic/non-fiducial features,

we evaluate CardioCam under three different feature sets: systolic-

diastolic feature only, non-fiducial feature only, and the combined

feature set. Figure 12(a) shows BAC of verifying 25 users leveraging

the three feature sets under 1 cycle, 3 cycles, and 5 cycles. Given 5

cardiac cycles, our system can achieve average BAC of 89.8%, 85.3%,

98.6%, with only systolic-diastolic, only non-fiducial, and the com-

bined feature set, respectively. We observe that systolic-diastolic

feature set could achieve better verification performance than that

of the non-fiducial feature set. This is because the fiducial features,

which describe the amplitude of the inflection points in the four

stages of the cardiac cycle, are more robust to heartbeat rate vari-

ations. In fact, both fiducial and non-fiducial features contribute

to the authentication power of CardioCam, and they are comple-

mentary. We observe that the combined feature set achieves the

best BAC, indicating that the combination of systolic-diastolic and

non-fiducial feature sets can further enhance the user verification

accuracy.

Dynamic Cardiac Wave Extraction. Figure 12(b) the impact

of dynamic cardiac wave extraction on the user verification per-

formance. We find that CardioCam is more effective in verifying

user with dynamic wave extraction. In particular, when using only

1 cardiac cycle for user verification, CardioCam is improved by 7%

BAC using dynamic cardiac wave extraction. This is because the

proposed dynamic cardiac wave extraction mechanism can effec-

tively select sensitive pixels and suppress the impacts of ambient

noises introduced by small scale variations of fingertip pressing

position and pressure.

Feature Transformation grounded on PCA. Next we study
the effectiveness of the proposed feature transformation scheme

grounded on PCA method. Figure 12(c) depicts the BAC of user

verification with and without feature transformation leveraging

1, 3, and 5 cycles. We find that the feature transformation scheme

can greatly improve the user verification accuracy, especially when

only 1 cardiac cycle is used for user verification. This is because the

proposed feature transformation method suppresses the biometric

variations in the cardiac biometrics, making the systemmore robust.

9.4 Evaluation of System Robustness
Biometric Permanence. The cardiac motion patterns always ex-

perience small-scale disturbance from day to day, so we further

study the robustness of CardioCam by examining the biometric per-

manence of cardiac motion. Specifically, we take the first 70 cardiac

cycles from all the samples to construct the profile for each of the

8 participants, including 5 males and 3 females with ages ranging

from 21 to 35.. The data collected in the following three months

are used for testing. In addition, during the data collection, there is

no restriction on the time of day and surrounding environments

(e.g., indoor or outdoor), thus the cardiac cycles of each participant

are collected under various ambient light conditions. Figure 13(a)

shows the BAC of user verification with 1, 3, and 5 cycles. We find

that CardioCam shows very robust performance on user verifica-

tion even though the cardiac cycles are collected on different days.

Specifically, we can observe that CardioCam achieves 90.8%, 94.4%,

95.7% average BAC with standard deviation of 3.1%, 2.6%, 2.2% for

1 cycle, 3 cycles and 5 cycles, respectively. Therefore, we can con-

clude that there is no significant performance decreasing with the

cardiac samples collected from different days, which demonstrates

the robustness of CardioCam in a long term.

Impacts of Emotion State. We also study the robustness of

CardioCam under various human emotional states. We design a

set of emotional tasks involving different levels of stress, and each

participant is asked to perform two low-stress tasks (i.e., sitting,

listening to music) and two high-stress tasks (i.e., reading, running).
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Figure 13: Performance evaluation of collecting cardiac cycles from different days, different emotion states, different fingers,
and different fingertip placements.

The designed tasks involve both mental activities and physical exer-

cise (i.e., running) that would greatly change the human’s heartbeat

rate. Particularly, we construct user profile with 70 cardiac cycles

when the participant is sitting. Then, we evaluate CardioCam when

the 8 participants are performing one of the four emotional tasks.

Figure 13(b) shows the user verification accuracy with respect to

four different emotional tasks in terms of TPR and FPR. We find

that CardioCam achieves high TPR while maintaining low FPR for

all the four tasks. Even for the high-stress task of exercise, which

can significantly raise heartbeat rate, CardioCam can still achieve

over 94% TPR and less than 4% FPR. This is because the cardiac

normalization process and the proposed feature transformation

mechanism greatly suppress the interferences caused by human

emotion changes. Additionally, since running activity is the aero-

bic exercise that incurs more significant heartbeat variations than

many other common physical activities (e.g., walking), CardioCam

has the potential to suppress cardiac motion variations introduced

by both physical exercises and daily activities.

Impact of Different Fingers. We next examine the perfor-

mance of CardioCam with different fingers of the same user applied

for user verification. Since the blood circulating in the five fingers

are supplied by the same artery, the blood flow pattern should be

consistent across different fingertips. For each person among the 8

participants, we collect around 180 cardiac cycles from both index

and middle fingers. The user profile is constructed with 70 cardiac

cycles collected from either index finger or middle finger, and the

remaining cardiac cycles are used for system validation. In order to

test the worst case performance of CardioCam, only 1 cardiac cycle

is used to verify each individual user. As shown in Figure 13(c),

CardioCam achieves similar ROC curves no matter the training set

is collected based on index or middle finger. Specifically, both two

ROC curves achieve high AUC around 0.953, which validate the

effectiveness of our system regardless of which fingertip pressing

upon the camera surface.

Impact of Different Fingertip Pressing Positions. To vali-

date the effectiveness of CardioCam on mitigating the impact of

varying fingertip pressing positions, we conduct a set of exper-

iments involving 8 participants with their fingertips pressing at

different positions upon the camera. Specifically, each subject is

required to collect two sets of cardiac motion patterns, and each

set includes around 180 cardiac cycles with two different fingertip

pressing positions the participant is accustomed to. Specifically, the

user profile is constructed with the first 70 cardiac cycles collected

from one of the two pressing positions, and the proposed system

is then evaluated with the rest of the cardiac samples. Figure 13(d)

depicts the average ROC curves of verifying the 8 users leveraging

only 1 cardiac cycle in each verification. CardioCam has similar ver-

ification performance for both pressing positions, which imply the

effectiveness of the proposed method on suppressing the impacts

of different fingertip pressing positions.

9.5 Impact of Video Quality
Impact of Camera Sampling Frame Rates. CardioCam infers

cardiac motion pattern from the light intensity changes of recorded

video stream, so the quality of caridac features is easily affected

by the video frame rate. To evaluate the impact of frame rate, the

cardiac samples from 25 participants are collected under the frame

rates of 30, 40, 50, 60 frames per second(fps) to verify the user iden-

tity with 5 cardiac cycles. As the average AUC for user verification

shown in Figure 14 (a), we can observe that the higher the frame

rate is, the more the verification accuracy improves. This is because

the high frame rate mitigates the motion blur in the cardiac wave

derivation and ensures a high resolution on the cardiac motion

pattern estimation. The above results show that our system has

consistently good performance regardless of different frame rates.

Impact of Camera Resolution. At last, to further study the

impact of the video quality on capturing unique cardiac biometrics,

we use systolic-diastolic/non-fiducial features from video frames

with scaled-down resolutions (i.e., 320 × 240, 640 × 360, 854 × 480)

to verify 25 users’ identity with 5 cardiac cycles. The AUC for

the four different camera resolutions are shown in Figure 14 (b).

We can find that CardioCam achieves over 0.98 AUC for all of

the four resolutions. And the verification performance is highly

consistent across different camera resolutions. This is primarily

because CardioCam leverages the average light intensity changes

of the whole frame, instead of individual or portions of pixels,

to capture cardiac biometrics. It is easy to conclude that video

resolution has little impact on the user verification performance.

10 DISCUSSION
Deployment Feasibility. CardioCam has a minimum hardware

requirement (i.e., camera and flashlight) to facilitate user verifi-

cation leveraging cardiac biometrics. Specifically, the camera and

flashlight are readily available in most mobile devices and IoT ap-

pliances, so it will not bring extra cost and inconvenience to the

mobile users. Furthermore, as illustrated in section 9, the proposed
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CardioCam system can still achieves high verification accuracy of

0.953 and 0.98 even under low frame rate (i.e., 30fps) and a low

camera resolution (i.e., 240p). Therefore, we believe CardioCam can

be applied to a broad range of mobile and IoT devices with the need

of reliable user verification.

Memory and Energy Consumption. Our system is a light-

weight user verification system with low computational complex-

ity and memory/energy overhead. The most memory and power-

intensive task in CardioCam is data acquisition, which captures

user cardiac pattern with the built-in camera. The recorded video

lasts for 2 seconds and takes up only 0.2MB of the memory, and

the corresponding power consumption is as low as 4.6J. Given the

captured cardiac pattern, CardioCam only takes around 0.5 seconds

to complete one-time user verification due to its low complexity de-

sign, affordable for most mobile and IoT devices without imposing

much overhead.

Authentication Delay. In contrast to other user verification

scheme, such as fingerprint and face ID, CardioCam normally takes

longer time to complete the verification process (i.e., at least 2.5

seconds depending on individual heart rate). We further find that a

large proportion of the time cost is spent on optimizing the camera

configuration instead of cardiac sign collection. To reduce the time

cost, we will conduct in-depth study on the relationship between

pixel sensitivity and ambient light intensity, so that the optimization

process can be completed in prior to the cardiac sign collection.

Accuracy Improvement and Further Evaluation. While it

is not yet clear whether the cardiac features in our system are suf-

ficiently distinctive in a large user population, our results show

promise, at least as an additional signal used in conjunction with

other existing techniques (e.g., fingerprint and face recognition).

In our future work, we target to evaluate the system’s scalabil-

ity using various devices with different camera-flashlight settings,

more serious attacks (e.g., the attacker can reproduce the systolic-

diastolic features). We will try to improve the verification accuracy

by exploring the advances in mobile/IoT hardware, such as emerg-

ing multiple cameras and improvements in video frame rate (e.g.,

120-240fps), and the fiducial/non-fiducial features that are more

discriminative among different people. In addition, we used the

video frames with various scaled-down resolutions for evaluating

the impact of camera resolution. The results show that CardioCam

is capable of suppressing the impacts of frame resolution due to

the use of pixel average instead of the image features (e.g., edges,

interest points). To further study the impact of low-resolution cam-

eras on our system, we will evaluate the scalability of CardioCam

with low-end smartphones that have lower camera resolution (e.g.,

320 × 240).

Copping with Spoofing Attack. The most extreme case is

when an adversary acquires cardiac waves of the legitimate user

(e.g., via pulse oximetry) and tries to spoof CardioCam by regener-

ating the cardiac motion pattern with a semiconductor light source

(e.g., a red light-emitting diode). To deal with such attacks, we

could further explore cardiac motion patterns of different color

channels (e.g., green and blue), which are hard to forge with the

light source of single color. We would leave the detailed study of

such adversarial cases as an avenue for our future work.

Robustness under Cardiac Illnesses. Currently, our work

mainly focuses on verifying the identifies of health people, who do
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Figure 14: Performance evaluation under different video
qualities.

not have heart diseases such as arrhythmia and congenital heart

failure. But the cardiac abnormalities could have considerable im-

pacts on the cardiac motion pattern and thus affect the stability of

cardiac biometrics. In the future, we plan to apply CardioCam to

the people with cardiovascular diseases and develop more general

user verification mechanisms.

11 CONCLUSION
In this paper, we propose CardioCam, the first low-cost, general

and hard-to-forge cardiac biometric based user verification sys-

tem. Unlike existing user verification systems, CardioCam extracts

unique cardiac biometrics for verifying the user’s identity lever-

aging the readily available built-in camera in mobile devices and

IoT appliances. To enable highly reliable cardiac motion deriva-

tion, we devise a gradient-based camera configuration optimization

technique together with dynamic pixel selection to mitigate the

impact from ever-changing ambient light and fingertip touch pres-

sure/positions. To facilitate accurate user verification, CardioCam

takes two types of biometrics, morphological and non-fiducial fea-

tures, into consideration. A prototype system is implemented to

evaluate the performance of CardioCam through extensive experi-

ments involving 25 subjects. The results demonstrate that Cardio-

Cam can achieve remarkable accuracy and robustness on verifying

legitimate user while denying unauthorized users under various

camera settings and data collection modes.
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