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Wireless Sensing for Human Activity: A Survey

Jian Liu, Hongbo Liu, Yingying Chen, Yan Wang, Chen Wang

Abstract—With the advancement of wireless technologies and
sensing methodologies, many studies have shown the success of
re-using wireless signals (e.g., WiFi) to sense human activities
and thereby realize a set of emerging applications, ranging from
intrusion detection, daily activity recognition, gesture recognition
to vital signs monitoring and user identification involving even
finer-grained motion sensing. These applications arguably can
brace various domains for smart home and office environments,
including safety protection, well-being monitoring/management,
smart healthcare and smart-appliance interaction. The move-
ments of the human body impact the wireless signal propaga-
tion (e.g., reflection, diffraction and scattering), which provide
great opportunities to capture human motions by analyzing
the received wireless signals. Researchers take the advantage
of the existing wireless links among mobile/smart devices (e.g.,
laptops, smartphones, smart thermostats, smart refrigerators and
virtual assistance systems) by either extracting the ready-to-use
signal measurements or adopting frequency modulated signals to
detect the frequency shift. Due to the low-cost and non-intrusive
sensing nature, wireless-based human activity sensing has drawn
considerable attention and become a prominent research field
over the past decade. In this paper, we survey the existing wireless
sensing systems in terms of their basic principles, techniques and
system structures. Particularly, we describe how the wireless
signals could be utilized to facilitate an array of applications
including intrusion detection, room occupancy monitoring, daily
activity recognition, gesture recognition, vital signs monitoring,
user identification and indoor localization. The future research
directions and limitations of using wireless signals for human
activity sensing are also discussed.

I. INTRODUCTION

With the rapid development of sensing technology over
the past decade, considerable attention has been drawn on
human activity recognition to brace a broad range of compelling
applications, such as human-computer interactions on smart-
home appliances, elder care, well-being management and safety
surveillance. To facilitate these applications, active research
has been conducted to examine human activities through
sensing from different perspectives, including pinpointing target
person’s positions in an indoor environment, recognizing the
regular activities or specific body gestures that the person
performed and monitoring his or her vital signs (e.g., breathing
rate).

To effectively perform human activity recognition, various
sensing technologies, including motion sensors [1], vision-
based sensors [2], acoustic-based sensors [3] and pyroelectric
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infrared (PIR) sensors [4], are deployed to inspect different
human activities and gestures. Motion sensor based approaches
usually require individuals to wear a specialized device to track
body motions, which are not always convenient in practice.
The approaches relying on camera or visible light sensors
can only work well in the environments under certain light
conditions, which could be easily interfered by low illumination
condition, smoke, or opaque obstructions. Furthermore, the
stability of acoustic-based approaches is vulnerable to ambient
noise and surrounding sound interferences, and the sensing
range is also limited due to the fast attenuation of acoustic
signals. Overall, the aforementioned techniques involve extra
overhead in terms of complicated hardware installation and
diverse maintenance needs. To overcome the aforementioned
limitations, a low-cost and non-intrusive solution is desirable
to capture human body movements involved in their daily
activities. Recently more and more research work focus on radio
frequency (RF) (e.g., WiFi) based techniques to perform human
activity sensing. The prevalence of WiFi technology enables
almost every electronics in home/office environments such as
smart speakers (e.g., Amazon Echo, Apple HomePod), smart
TV, smart thermostat, and home security system interconnected
wirelessly. WiFi signals can usually reach tens of meters of
coverage in indoor environments, and the wireless links among
these smart devices provides rich web of reflected rays that
spread every indoor corner. The presence of people and related
body motion will have considerable impact on wireless signals
and result in significant changes in both amplitude and phase
of the received signals, which can be utilized to capture human
body movements involved in their daily activities.

To quantify the changes of the received WiFi signal,
researchers could measure the physical layer properties over
wireless channel such as the received signal strength Indicator
(RSSI) and channel state information (CSI), which are readily
available on many commercial network interface cards (e.g.,
Intel 5300 NIC [96] and Atheors 9580 NIC [97]) with
modified driver software. To pursue more precise sensing,
some researchers manipulate the transmitting wireless signals
on universal software radio peripheral (USRP) defined radio
platform, such as Frequency Modulated Carrier Wave (FMCW),
to detect the signal’s frequency shift caused by the human
motions [28]. Moreover, the Doppler effect is exploited to
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TABLE 1. APPLICATIONS OF WIFI SENSING FOR HUMAN ACTIVITY.

. c o Main Techniques
Section # Applications RSSI CSI FMCW Doppler shift

. Intrusion detection [5], [5]-[7] [71-191, [9]-[11] — —
Section Il 1— 0 occupancy monftoring | [121-[14] [151, [16] — —
Section IV Daily activity recognition [17], [17]-[20] [21]-[27] [28] [29], [30]

! Gesture recognition [31]-[33] [34]-[41] [42]-[44] [45]
Section V Vital signs monitoring [46]-[48] [49]-[54] [55]-[57] [58]-[66]
Section VI User identification — [67]-[71] — —

Indoor localization & tracking | [72]-[74], [74]-[83] | [84]-[91] [551-[571 | [281, [92]-[95]

measure the signal’s frequency shift associated with body
motions [45], which also needs the support of USRP platforms
to control the transmission and receiving of wireless signals.
We will elaborate these techniques in details in Section II.

Given the WiFi sensing techniques, a broad range of
emerging applications could be supported to improve the
quality of people’s lives. In this paper, we investigate the
state-of-the-art WiFi sensing studies on human activity and
related applications. We broadly divide these applications into
four categories: intrusion detection & occupancy monitoring,
activity & gesture recognition, vital signs monitoring and user
identification & localization. Specifically, intrusion detection &
occupancy involves the detecting any abnormality (i.e., human
intrusion of a room) and room occupancy monitoring (i.e.,
crowd estimation). Activity & gesture recognition ranges from
daily in-home activity (e.g., walking, cooking and washing
dishes) recognition to relatively smaller body gestures (e.g.,
arm/hand/finger/head motions) recognition. Vital signs moni-
toring refers to detecting breathing and heart rates associated
with minute human body vibrations, and user identification
& localization is using the WiFi-based location fingerprints
for indoor localization and the unique user-specific activity
behavior for further identity verification. The related work
for each application category will be introduced together
with their main techniques, which are summarized in Table I.
Figure 1 shows the typical workflow of the existing human
activity sensing systems using wireless signals. Specifically,
the sensing systems first extract signal changes associated
with human activities based on different sensing methods (e.g.,
RSSI, CSI, FMCW and Doppler shift). Next a series signal pre-
processing procedures (e.g., filtering, denoising and calibration)
are adopted to mitigate the impact of interference, ambient noise
and system offset. Finally the unique features are extracted and
fed into machine learning models to perform human activity
detection and recognition.

The remainder of this paper is organized as follows. We
first review the four key techniques to perform WiFi sensing
in Section II. Next the four categories of WiFi-based human
activity sensing applications are introduced. Specifically, the
studies on intrusion detection and room occupancy monitoring
is presented in Section III; in Section IV, we review the work
on regular activity and gesture recognition; we study the work
on human vital signs monitoring in Section V; and the work
on user identification and indoor localization and tracking will
be discussed in Section VI. In Section VII, we discuss the
limitations of existing work and the prospects of future WiFi-
based human activity sensing. Finally, we conclude the survey
of current human activity sensing work leveraging WiFi in
Section VIII.

II. TECHNIQUES FOR WIFI SENSING

For both commodity devices and customized hardware, there
are many physical layer properties that can be extracted over
wireless channel to facilitate human activity sensing. In this
section, we identify four common WiFi sensing techniques
based on different physical layer properties, including Received
signal strength indicator (RSSI), channel state information
(CSI), frequency shift for frequency modulated carrier wave
(FMCW), and Doppler shift, as summarized in Table II.

A. Techniques Using Commodity Hardware

Received Signal Strength Indicator (RSSI). Received
signals are available in most WiFi devices, which indicate
the path loss of wireless signals with respect to a certain
distance, and can be derived following Log-normal Distance
Path Loss (LDPL) model [100]:

d
P(d) = P(dy) + 10ylog = +Xs, (D)
0

where P(d) denotes RSSI measurement indicating the path
loss at distance d measured in Decibel (dB), P(dp) is the path
loss at the reference distance dy, ¥ is the path loss exponent,
and X; is a zero-mean normal noise caused by flat fading.

As one of the most representative RSS-based applications,
the success of utilizing RSSI to estimate the positions of
target users with carry-on WiFi devices has been demonstrated
for a long time [72]. It has also been noticed that the
existence of human body within the wireless sensing area
would cause signal attenuation, leading to the variation of
RSSI measurements. Thus, RSSI has been widely deployed for
human activity sensing in recent years, for example, device-
free indoor localization [82], [83], [101], room crowd density
estimation [12], [14], and breathing rate monitoring [46]-[48].
Although RSSI is easily obtained in any commodity WiFi
devices without additional hardware, it can only detect limited
types of human activities due to the coarse-grained channel state
information (i.e, single path loss value per packet). Furthermore,
It has been shown that the stability of the RSSI is not guaranteed
even in a static indoor environment [102], making it unreliable
in many application scenarios.

Channel State Information (CSI). To achieve accurate and
reliable human activity sensing, it is essential to capture more
fine-grained CSI, which represents the combined effect of, for
example, scattering, fading, and power decay with distance.
Since wireless signals could travel through almost any corner
in an indoor environment, the presence or movement of a
human body would alter the propagation of wireless signals,
resulting in the small changes in multiple reflected rays as
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TABLE II.

MAIN TECHNIQUE COMPARISON.

Techniques Derived Metric Granularity Additional Hardware | Existing Sensing Work

RSSI-based Wireless signal strength Coarse-grained No [51, [51-171, [12]-[14], [17], [17]-[20], [31]-[33], [46]-[48],
[72]-[74], [74]1-183]

CSI-based Cha"“f)lf C‘;)l"rg}te‘s"s“;/ E{(‘S’pemes Fine-grained No [71-19], [91-[111, [15], [16], [21]-[27], [34]-[41], [49]-[54],
[671-[71], [84]-[91]

Frequency shift associated U
FMCW-based with human body depth Fine-grained Yes [28], [42]-[44], [551-[57] [29], [30], [45], [98], [99]
. Frequency shift associated with X . .
Doppler Shift-based human body moving speed Fine-grained Yes [28]-[30], [45], [58]-[66], [92]-[95]
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Fig. 2. TIllustration of the multipath effect of wireless signals.

shown in Figure 2. All these multi-path rays contribute to
the measurable CSI values and could be used to detect and
track the human body movements. In contrast to RSSI, CSI
consists of a set of a complex values, including both amplitude
and phase information, for multiple orthogonal frequency-
division multiplexing (OFDM) subcarriers.Each subcarrier with
slightly different center frequency experiences different multi-
path fading effects, and all the subcarriers together depict
the wireless channel in a fine-grained manner. For instance,
IEEE 802.11n standard can render the CSI measurements for
52 and 128 subcarriers with 20MHz and 40MHz bandwidth
for each subcarrier, respectively, and the emerging 802.11ac
standard supports even wider bandwidth. CSI essentially allows
fine-grained channel estimation, and is expressed as:

H=[H\,H,,...H;,...Hy|" i € [1,N], ()

where N is the number of subcarriers, and H; can be represented
as:
H; = |Hjle/n 1), (3)

where |H;| is the CSI amplitude at the i, subcarrier, and /H;
denotes its phase. Similar to RSSI, CSI measurements can
be obtained at any devices with off-the-shelf WiFi interfaces
(e.g., Intel 5300 NIC [96] and Atheors 9580 NIC [97]) with
modified driver. Now it has been widely adopted by more and
more researchers to perform human activity sensing, such as
human intrusion detection, walking speed/direction estimation
and human activity recognition [21], [22].

B. Techniques Using Customized Hardware

Frequency Modulated Carrier Wave (FMCW). The hu-
man activities can also be captured based on radio reflections
off her body, specifically by estimating the time it takes the

£ () f,(©
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Fig. 3. Tllustration of FMCW operation.

wireless signal to travel from the transmitter to the reflecting
human body and back to the receiver. However, it would
be hard to measure the time of flight (ToF) directly since
wireless signals travel very fast, specifically at the speed of
light. Thus, FMCW which maps differences in time to the
shifts of carrier frequency is deployed to measure ToF of radio
signals. As shown in Figure 3, the carrier frequency of the
transmitting wireless signal fy() is repeatedly swept across
a specific bandwidth. After reflected from the human body,
it will introduce a frequency shift Af with the slope k (i.e.,
swept bandwidth divided by the sweep time) to the received
signal fy(t), and the time-shift (i.e., Ar) with respect to the
transmitting signal can be derived based on such frequency
shift as follows:
Af

k

Compared to measuring the ToF directly, it is much easier
to measure the frequency shift Af to obtain the A¢. Then the
round-trip distance of wireless signals (i.e., d = c-Af, and ¢
is the speed of light) can be obtained to describe the distance
of the human body relative to the transmitter and receiver. It
is important to note that, in contrast to off-the-shelf WiFi that
uses OFDM, FMCW technique relies on specialized device
(e.g., USRP) to generate the signal that sweeps the frequency
across time.

At “4)

A number of wireless sensing systems leveraging FMCW
technique have been developed to track different human
activities. For instance, the researchers utilize FMCW signals
generated by USRP software radio with directional antennas
to capture human figure through a wall [103], track user’s 3D
motion [28], estimate gait velocity and stride length [104],
detect vital signs [56], monitor sleep and insomnia [105], and
recognize people emotions [106].
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Doppler Shift. Doppler shift effects is another physical layer
property of wireless signals that can be used to perform human
activity sensing. Specifically, it measures the frequency change
of the received wireless signal as the transmitter and the receiver
move to each other. If we consider the received wireless signal
reflected from the human body as the signal emitted from
the wireless transmitter, any movements of the human body
would result in a Doppler shift. Specifically, positive frequency
change (i.e., Doppler shift) is produced if the person moves
towards the receiver, while negative frequency change occurs
if the person departs from the receiver. As shown in Figure 4,
when an object (e.g., hand) moves at the speed v along the
direction 6 with respect to the receiver, it will result in a
Doppler shift [107] as:

ap = 2eos®) o s)

where ¢ is the speed of light and f is the center frequency
of wireless signal. Leveraging Doppler shift effects, some
WiFi sensing systems are developed based on software defined
radio device (e.g., USRP N210) to detect walking [30], [98],
running [29] and human body/hand gestures [45], [99].

III. INTRUSION DETECTION & ROOM OCCUPANCY
MONITORING

In this section, we introduce the existing studies on the
room-level human activity sensing with WiFi signals, including
human intrusion detection and room occupancy monitoring.
We particularly focus on RSSI-based and CSI-based methods
leveraging the commodity devices.

A. Human Intrusion Detection

As an important security issue, human intrusion detection
has drawn considerable attention in recent years. Traditional
methods mainly rely on cameras (e.g., closed-circuit television
(CCTV) or Internet protocol (IP) cameras [108], [109]) or
dedicated sensors (e.g., acoustic sensor [3] or infrared (IR)
sensor [4]) to perform intrusion detection. However, camera-
based approaches are difficult to detect an intrusion event
under low illumination condition or without LoS view, while
the sensor-based approaches usually require complex hardware
installation and diverse maintenance needs. To reduce the im-
plementation/maintenance overhead, researchers take advantage
of existing WiFi infrastructure to perform intrusion detection.

The RSSI-based and CSI-based intrusion detection methods
are investigated.

RSSI-based Detection. RSSI-based methods primarily infer
intruders through detecting human disturbances to RSSI
measurements in WiFi networks. When an intruder enters the
sensing area, WiFi links would be disrupted due to the presence
or body motions of the intruder, resulting in the RSSI changes
of radio signals. Inspired by such phenomenon, the concept
of device-free passive detection using WiFi was first proposed
in [5], which facilitates intrusion detection leveraging time-
series analysis on the RSSI readings like the moving average
and moving variance techniques. Following the work [5], Ikeda
et al. [110], [111] leverage a threshold of RSSI fluctuation
width, the difference between the RSSI when event occurs
and the average of RSSI observed in advance in static state,
to identify intrusion. Other than the work [110], Moussa and
Youssef [6] later present an alternative algorithm, based on the
maximum likelihood estimator (MLE), to achieve better detec-
tion performance in real environments. RASID [7] develops
a non-parametric statistical anomaly detection technique with
adaptive environment-dependent profile updating to achieve
accurate and robust intrusion detection. In contrast to the
aforementioned techniques, RASID has significantly lower
overhead than MLE technique while maintaining comparable
detection performance. In addition, RASID is more robust to
temporal changes of training profiles as compared to other
existing intrusion detection systems.

CSI-based Detection. Due to the fine-grained wireless
channel measurement, CSI recently becomes a popular and
powerful tool for intrusion detection system design. Nishi-
mori et al. [112] measure the influences of antenna arrangement
on radio signal propagation in indoor environments, and then
utilize the channel matrix in MIMO channels to detect intrusion.
Hong et al. [113] further extract eigenvectors to achieve
intrusion detection with higher accuracy. Moreover, Honma et
al. [114] propose the antenna arrangements for the MIMO
interference to provide better intrusion detection performance.
FIMD [115] realizes device-free motion detection by leveraging
the eigenvalues of a CSI-based correlation matrix in a given
time period. Pilot [8] leverages the correlation of CSI over
time to monitor abnormal appearance and further locate the
entity. Moreover, PADS [9] and DeMan [116] further extract the
maximum eigenvalues of the covariance matrix from successive
full CSI information, including both amplitude and phase,
to enhance detection performance. Ding et al. [10] explore
phase difference between adjacent antenna pairs for passive
device-free motion detection. Additionally, OmniPHD [11]
achieves the omnidirectional sensing coverage for passive
human detection in typical multipath-rich indoor scenarios. The
aforementioned studies mainly rely on the characteristic from
matrix of CSI amplitude, phase or phase difference to detect
the sudden changes associated with human intrusion. Compare
to RSSI-based methods, CSI-based method can achieve more
accurate and reliable intrusion detection performance.

B. Room Occupancy Monitoring

Room occupancy monitoring plays a critical role in serving
various purposes including public area surveillance, energy
saving (e.g., controlling lights and air-flow rate) and hotspot

1553-877X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2019.2934489, IEEE

Communications Surveys & Tutorials

TABLE III. A COMPARISON OF EXISTING ROOM OCCUPANCY MONITORING STUDIES.

Work | Technique | Frequency Band | Number of People | Accuracy

Nakatsuka et al. [12] RSSI 2.4GHz 23-29 N/A

Yuan et al. [13] RSSI 2.4GHz 10 94%

Xu et al. [14] RSSI 2.13GHz 4 86%

Xi et al. [16] CSI 2.4GHz, 5GHz 4 83%

Guo et al. [15] CSI 2.4GHz 6 98% estimation errors are less than 2

persons in indoor environment
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Fig. 5. RSSI readings when there are different number of people in a room

when people are not moving around [13].

tracking in multi-functional room management, etc. Existing
studies [117], [118] mainly rely on surveillance camera to
inspect human flow, but the high deployment costs and privacy
concerns prevent them to be deployed in large-scale. Moreover,
some other studies infer people density based on the number
of detected devices. For instance, the number of connected
mobile devices via Bluetooth [119] and microphone/speaker
pair [120] are estimated to derive the people density. However,
the aforementioned approaches require the users to carry the
mobile devices running with specific applications, making
them not always applicable in practice. Differently, device-free
approaches rely on existing WiFi infrastructure to perform
room occupancy monitoring without requiring people to carry
additional devices. Specifically, we will investigate both RSSI-
based and CSI-based methods as follows. A comparison of
these solutions for room occupancy monitoring is summarized
in Table III.

RSSI-based Approaches. It is well known that RSSI
changes when a subject approaches the LoS of a wireless
link [5], [19]. Existing studies [12]-[14] also verified more
subjects in a room will make an even greater impact on the
surrounding wireless environment. To facilitate room occupancy
monitoring, the researchers empirically conclude that: (1) When
no subject in the area of interest, the RSSI values stay at a
stable level; (2) When some subjects enter the sensing zone, the
RSSI reading of some RF links would decrease dramatically;
and (3) The more the number of subjects, the more the radio
links are affected, resulting in significant drops on RSSI
readings. Figure 5 shows the collected RSSI readings from a
specific wireless link when there are different number of people

20
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CSl amplitude difference (dB)

5 10 15 20 25 30 5 10 15 20 25 30
Subcarrier ID Subcarrier ID

(a) Empty room (b) 1 person

CSI amplitude difference (dB)
CSI amplitude difference (dB)
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Subcarrier ID

0 15 20
Subcarrier ID

(c) 3 persons (d) 5 persons

Fig. 6. CSI amplitude difference between two antennas under different
number of subjects in a room [15].

(i.e., 0, 3 and 12) in a room, indicating the aforementioned
relationship between people density and RSSI readings. A set of
studies [12]-[14] conduct a large scale deployment of wireless
sensors in indoor environments and infer the number of moving
people leveraging RSSI from multiple wireless links. However,
these approaches need a large number of wireless nodes or
devices to create dense RF links, resulting in extremely high
cost and complex maintenance efforts.

CSI-based Approaches. Similar to RSSI-based solutions,
the variation of CSI measurements can also be extracted to
infer the number of walking people in an indoor environment.
As mentioned before, CSI provides more fine-grained channel
information (i.e., both amplitude and phase information) with
multiple subcarriers. Figure 6 shows the impact of different
number of subjects (i.e., no person, 1 person, 3 persons
and 5 persons) on CSI amplitude differences across 30
subcarriers [15]. It is obvious to find that more people could
induce a higher CSI variance over WiFi links. Inspired by this
observation, Xi et al. [16] theoretically studied the relationship
between the number of moving people and the variation of
wireless CSI. A stable monotonic function is formulated to
characterize the relationship between the crowd number and
various features of CSI (i.e., Percentage of nonzero Elements
(PEM) in the dilated CSI matrix). In addition, Guo et al. [15]
propose a comprehensive human flow management system
leveraging existing WiFi traffic to estimate crowd counting,
people density, walking speed and direction. Different from
the previous studies [16], [69], the proposed system adopts
a robust semi-supervised learning approach for estimation of
the number of participants, which can be easily extended to a
new environment. They also propose to utilize CSI variance
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Fig. 7. Histogram of CSI amplitudes on a particular subcarrier when a person
is cooking and sleeping, respectively [21].

histogram to estimate human density distribution within a
specific region.

IV. ACTIVITY & GESTURE RECOGNITION

Human activity recognition is the key technology to support
a broad array of applications including human-computer
interaction (HCI), elder care, well-being management and
security monitoring fields, etc. Traditionally, it mainly relies
on dedicated sensors, such as wearable devices [121] or
cameras [122]. However, wearable-based methods require users’
active participation (e.g., wearing sensor devices) and have
limited sensing capability, while camera-based approaches
usually raise privacy concerns, making them inapplicable
in personal areas. Compared to traditional human activity
recognition approaches, RF-based solutions are device-free
without incurring potential privacy issues (i.e., capturing
unnecessary and sensitive information). Generally, human
activity can be divided into two main categories, regular
activities (e.g., daily activity and abnormal body motion) and
gestures (e.g., hand/finger gesture and head motion). We will
discuss the related research on human activity recognition with
respect to the above two categories.

A. Activity Recognition

Regular activity refers to the daily in-home activity (e.g.,
walking, sitting, cooking and watching television). By tracking
a sequence of such meaningful activities of a person, it is
possible to suggest a healthier daily routine change towards
health improvement. Additionally, it also benefits many other
domains such as elder-care, latchkey child safety, etc. Specif-
ically, four types of WiFi-based regular activity recognition
approaches are reviewed as follows.

RSSI-based Recognition. Wireless signals are easily af-
fected by surrounding body movement that associated with
human activities, resulting in a special fluctuation pattern
on RSSI. Each specific activity has its particular way to be
conducted by human, it is thus possible to induce a unique
RSSI fingerprint on the RF-signals, which can be captured
by nearby wireless receivers. Sigg et al. [17], [18] propose a
device-free human activity recognition system by leveraging the
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Fig. 8. Similar CSI amplitude time series pattern for same walking
trajectory [21].

fluctuation of RSSI of WiFi signal caused by human movements.
Specifically, Sigg et al. [17] extract 17 empirical features (e.g.
highest signal peak and median signal strength) from RSS
signal and utilize k nearest neighborhood (KNN) classifier to
recognize four regular activities (i.e., lying, standing, walking
and crawling). To further improve the environmental sensing
generosity of RSSI-based system, Sigg et al. [18] focus on the
detection of static and dynamic activities of single individuals
by using active or passive systems and further recognize four
regular activities (i.e., lying, standing, walking and crawling).
Particularly, the active system employs dedicated transmitter
hardware as a part of the system while the passive system
solely uses ambient FM radio. In addition, radio tomographic
imaging (RTI) [19] is also an effective way to perform RSS-
based device-free motion tracking, which deploys a wireless
sensor network around the interesting area and uses the raw
RSS measurements to image the moving targets. Wilson and
Patwari also proposed VRTI [20], an extension of the RTI
technique, by leveraging the motion-induced variance of RSS
measurements for better activity recognition.

CSI-based Recognition. Due to the low-resolution and
limited sensing capability of RSSI measurements, it is difficult
to achieve fine-grained activity recognition. Therefore, recent
studies propose to exploit CSI measurements for better recog-
nition performance. Wang et al. [21] propose the first work,
E-eyes, to explore using fine-grained CSI to recognize daily
activities. Particularly, E-eyes seeks to utilize the relationship
between location and activity characteristics to develop a
location-oriented activity identification system to distinguish a
set of in-place (e.g., cooking, washing dishes, bathing, studying,
eating and sleeping) and walking activities (i.e., walking from
one room to another) with only a single WiFi access point.
For instance, the authors showed the similarity levels of the
CSI amplitude distribution for the same and different in-
place activity (i.e., cooking in a kitchen and sleeping on a
bed) respectively at a particular subcarrier in Figure 7. When
cooking, the histogram of CSI amplitude mainly ranges from
9 to 12, whereas the histogram while sleeping mainly ranges
from 11 to 16. Furthermore, regarding the large-scale body
movements (i.e., walking), CSI measurements exhibit similar
changing patterns for the same trajectory, whereas the changes
of CSI measurements over time are different for different
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trajectories, which is shown in Figure 8. This observation
validates that the CSI measurement from WiFi signals is
dominated by the specific in-place activity or unique path of the
walking activity, and it thus is a good alternative for recognizing
regular daily activities. However, the aforementioned system
(i.e., [21]) is based on empirical study, and lacks the theoretical
support explaining the relationship between CSI measurements
and human activities. Therefore, Wang et al. [22], [23] propose
a human activity recognition system, named CARM, which
builds CSI-speed model and CSI-activity model to quantify the
correlation between the movement speeds of different human
body parts and a specific human activity. The proposed system
can work in both trained and untrained environments, in which
a large set of daily activities (e.g., walking, running, opening
refrigerator, falling and boxing) are evaluated.

In addition to recognizing human daily activities, abnormal
human motion detection (e.g., falling down) is also important,
especially for timely elder-care. WiFall [24] is the first CSI-
based fall detection system. In order to achieve reliable fall
detection, WiFall constructs the radio propagation model to
analyze the time variability and special diversity of CSI and
trains a support vector machine(SVM) classifier to differentiate
fall from other human motions (i.e., walk, sit and stand up).
To further enhance the performance of CSI-based fall detection
system, Zhang et al. [25] propose Anti-Fall that uses both the
phase and amplitude of CSI readings to accurately detect the
fall from other fall-like activities. Moreover, Wang et al. [26]
find that the CSI phase difference over two antennas is more
sensitive to fall action. Also, they find the unique sharp decline
pattern of fall action in the time-frequency domain and first
propose to utilize the frequency-based features to detect fall
accurately. Similarly, Palipana et al. [27] propose FallDeFi that
extracts time-frequency features in CSI using the conventional
Short-Time Fourier Transform (STFT) to achieve accurate
fall detection. To ensure the fall detection system resilient to
environmental changes, the authors [27] also devise a sequential
forward selection algorithm to single out the robust features.

FMCW-based Recognition. In addition to the aforemen-
tioned RSSI and CSI based approaches that can leverage off-
the-shelf wireless devices, there are also some existing work
relying on USRP platform to facilitate activity recognition.
These methods precisely modulate the transmitting wireless
signals to sweep across a certain frequency band (e.g., FMCW
radio) and then derive At measurements based on the reflected
signals. Due to the super-heterodyne based architecture of
FMCW radio, the At measurements delivers good sensitivity
and stability on activity recognition. WiTrack [28] is one of the
precursory FMCW-based activity recognition system, which
leverages the radio signals reflected off human body to track the
3D motion of the user. By leveraging the T shape directional
antenna array, WiTrack can localize the center of a human
body in a 3D domain. It can also coarsely track body parts,
such as identifying the direction of a pointing hand with a
median of 11.2°. Additionally, WiTrack can distinguish a fall
action from other activities (e.g., standing, walking, sitting on
a chair and sitting on the floor) by monitoring the absolute
Z-axis value and the change in elevation as shown in Figure 9.

Doppler-based Recognition. Human activity recognition
can also be achieved by leveraging Doppler effects [29], [30],
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Fig. 9. WiTrack automatically detects falls by monitoring the absolute value
and the change in elevation [28].

which capture the minute changes in the WiFi signals caused
by human motion such as running [29], walking forward and
backward [30]. Chetty et al. [29] build a passive WiFi radar
running on USRP platform to measure the Doppler shifts caused
by the human activities through the wall. Adib et al. [30]
later improve the through-the-wall system by using MIMO
interference nulling to eliminate the flash effect of Doppler
shifts and render more accurate recognition performance.
Additionally, Okamoto et al. [123] use the temporal phase
shift obtained from the moving target in addition to MIMO
interference to measure the relative velocity between the target
and the antenna. Okamoto et al. [124] further utilize bistatic
radar model based on MIMO scheme to classify various human
activities and track multiple targets. Later work [125], [126]
build antenna array to measure the Doppler Shifts caused by
the daily movement of elder people (i.e., falling down on the
floor after standing, sitting on the chair after standing).

B. Gesture Recognition

Human gestures such as arm/hand movements, head motion
and even finger motion are important interaction interfaces
to smart Internet of Things (IoT) and mobile devices. In this
section, we review four main WiFi-based gesture recognition
technologies (i.e., RSSI, CSI, FMCW, and Doppler shift).
The existing gesture recognition systems are summarized in
Table IV.

RSSI-based Recognition. Early gesture recognition systems
mainly rely on RSSI extracted from off-the-shelf devices
to identify different hand gestures. Sigg [31] examine the
fluctuation in RSSI from the mobile phone to identify 11
different hand gestures, but the recognition accuracy is as
low as 51.0%. To eliminate the environmental effects of RSSI,
Melgarejo et al. [32] take advantage of directional antennas and
short-range wireless propagation properties and achieve higher
recognition accuracy with 25 hand gestures. The proposed
gesture recognition system has been successfully applied to
gesture-based electronic activation from wheelchair and gesture-
based control of car infotainment system. Abdelnasser et
al. [33] devise WiGest that further improves the recognition
accuracy of 8 hand gestures to 96%. The wavelet techniques
are adopted to eliminate the environmental interferences and
ambient noises from the RSSI measurements. Also, WiGest
requires no training efforts and works well in none-line-of-
sight scenario. However, due to the coarse granularity and the
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TABLE IV. A COMPARISON OF WIFI-BASED GESTURE RECOGNITION WORKS.
Work Technique Gesture Accuracy
Sigg [31] RSSI 11 hand gestures 51%
Melgarejo et al. [32] RSSI 25 hand gestures 92%
Abdenasser et al. [33] RSSI 8 hand gestures 96%
Nandakumar et al. [34] RSSI, CSI 4 arm gestures 91%
WiG [127] CSI 4 arm gestures 92%
Virmani et al. [35] CSI 6 arm gestures 91.4%
WiDraw [128] CSI Hand trajectory for drawing letters, words, and sentences | 91%
Li et al. [36] CSI 9 finger gestures 90.4%
SignFi [37] CSI 276 head, arm, hand and finger gestures 94.81%
WiCatch [38] CSI 9 two-hand gestures 95%
Ali et al. [39] CSI Keystroke recognition 93.5%
Fang et al. [41] CSI 5 hand and mouth gestures 86.3%
Wang et al. [40] CSI 9 mouse movements 91%
Adib [42] FMCW Hand gestures of multiple people simultaneously 95%
Soli [43] FMCW 4 hand gestures 92.1%
WiSee [45] Doppler shift | 9 arm/leg involved gestures 94%

high sensitivity of RSSI to environmental changes, RSSI-based
gesture recognition systems have no ability to capture more
fine-grained gestures (e.g., finger gestures, keystrokes, mouth
movements).

CSI-based Recognition. To further improve the recognition
accuracy and capture more subtle motion, the fine-grained CSI
information becomes prevalent for gesture recognition [34]—
[41]. Nandakumar et al. [34] propose to leverage both RSSI
and CSI information to recognize arm movements, and it can
achieve 91.0% accuracy with respect to four arm gestures
(i.e., right, left, push, pull). In comparison, WiG [127] is
an arm gesture recognition system solely relying on CSIL
The recognition accuracy of WiG is up to 92% in line-of-
sight scenario and 88% average accuracy in none-line-of-sight
scenario. However, both the above two systems [34], [127]
work effectively only under consistent setup (i.e., stand at the
same position with same orientation) during training and testing
phases. To combat such limitation, Virmani et al. [35] propose
WiAG to recognize user’s arm gestures with different positions
and orientations, which largely improve the practical usability.
The key idea behind WiAG is to convert the training samples to
the virtual samples for all gestures in all possible configurations
through the proposed gesture translation function. In addition
to the regular hand gesture recognition, WiDraw [128] can
continuously track the hand’s trajectory to enable in-air drawing
by using the Angle-of-Arrival (AoA) estimation with CSI.

Instead of tracking the whole hand, Li et al. [36] proposes
WiFinger to recognize 9 finger gestures of American Sign
Language with the accuracy as high as 90.4%. WiFinger enables
continuously input text in off-the-shelf WiFi environment to
facilitate human-computer interaction. SignFi [37] further ex-
ploits CSI measurements to recognize sign language involving
the head, arm, hand, and finger gestures. The system extends the
recognizing ability to 276 sign gestures by using Convolutional
Neural Network (CNN). Moreover, WiCatch [38] is developed
to detect two-hand gestures by constructing the virtual antenna
array based on CSIM samples in time domain.

To push the limit of more subtle gestures recognition, Ali
et al. [39] propose a CSI-based keystroke recognition system,
named WiKey, which can capture more fine-grained variations
in CSI values to recognize different keystrokes. Moreover, Fang
et al. [41] propose HeadScan to recognize the head and mouth
gestures including eating, drinking, coughing and speaking.
However, the usability of HeanScan is restricted by using a

wearable WiFi system instead of off-the-shelf WiFi device to
capture the head gestures. In contrast, Wang et al. [40] leverage
off-the-shelf WiFi to recognize the mouth movements by using
partial multi-path effects derived from the CSI measurements.

FMCW-based Recognition. In addition to WiFi-based
gesture recognition systems, FMCW radar have also been
applied to gesture recognition [42]-[44]. FMCW radar takes
up to 1.79 GHz bandwidth compared to 20 MHz bandwidth of
WiFi devices, so it can achieve much higher time resolution
on gesture recognition. Adib et al. [42] propose the first multi-
person gesture tracking system with FMCW radar, which
is able to recognize the hand gestures of multiple people
simultaneously. In addition, due to the high-resolution and great
robustness of FMCW radar, FMCW-based gesture recognition
systems are on their way to commercialization. In 2016, Google
proposes a public project Soli [43] aiming to develop a robust,
high-resolution gesture recognition system for human-computer
interaction based on FMCW radar. NVIDIA also develops
a short-range FMCW radar-based system for sensing hand
gestures for intelligent driver assistance systems [44].

Doppler-based Recognition. As a Doppler-based gesture
recognition system, WiSee [45] successfully recognize 9
arm/leg involved gestures based on the unique Doppler shifts
profile extracted from wireless signals as shown in Figure 10.
Due to the different relative body movements to the wireless
radar sensor, we can observe unique positive and negative
Doppler shift pattern of these arm/leg gestures. A proof-of-
concept prototype using USRP-N210s is evaluated in both
office and apartment environment, and the experimental results
indicate WiSee can achieve the average recognition accuracy
as high as 94%.

V. VITAL SIGNS MONITORING

Vital signs (i.e., breathing and heart rates) and biometric
statistics are important indicators for evaluating one’s sleep
quality, stress level and health conditions. Traditional ap-
proaches, such as camera-based (e.g., DistancePPG [129])
and sensor-based (e.g., Geophone [130], [131]) methods, could
accurately track vital signs. However, these approaches either
need to work under bright lighting condition or require complex
installation and maintenance efforts. Differently, RF-based
approaches become more appealing due to their low-cost,
contact-free, easy-to-deploy properties. Leveraging the main
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Fig. 10. Unique positive and negative Doppler shifts corresponding to each
gesture [45].

techniques discussed in Section II, four different vital sign
monitoring system, RSSI-based, CSI-based Dopper-based and
FMCW-based, are reviewed as follows.

RSSI-based Recognition. Many existing studies observed
that even the minute body movements associated with breathing
and heartbeat would impact the wireless channel, resulting in
the fluctuated RSSI readings. Inspired by such observation,
Kaltiokallio, Ossi Johannes et al. [46] measure RSSI from 16
frequency channels in IEEE 802.15.4 wireless sensor network to
detect the user’s breathing rate. Consider the interferences from
other body motions, N. Patwari et al. [47] defined "breakpoints"
to indicate the sudden changes of RSSI signal caused by the
user’s motion interference (e.g., a person rolls over in bed or
moves a foot) and apply appropriate mean removal to ensure
the breathing rate estimation more robust to motion interference.
Figure 11 compares the RSSI signals of four links obtained
from basic method (top) and breakpoint method (bottom). The
green-dot areas are the estimated breakpoints, showing the
breathing rate estimation with breakpoint method is more
robust to motion interferences. However, the above approaches
usually require additional wireless network infrastructure with
high-density placement of sensor nodes. BreathTaking [132]
model the breathing signals as sinusoidal waveforms and apply
the maximum likelihood estimation (MLE) to estimate the
breathing rate based on the RSSI measurements collected on
around 20 wireless links. Additionally, UbiBreath [48] can
achieve accurate estimation of user’s breathing rate with the
error less than 1 breaths per minute (bpm) and also detect
apnea with more than 96% accuracy.

CSI-based Recognition. Due to the low granularity, RSSI-
based approaches usually rely on redundant dimensions (i.e.,
multiple wireless links from various devices) to capture minute
movement related to vital signs. Toward accurate vital sign
estimation with less complex infrastructure, many studies turn
to CSI signals for detecting subdued actions. Liu el al. [49],
[50] re-use existing WiFi network to track the breathing and
heartbeat concurrently without requiring dedicated/wearable
sensors or additional wireless infrastructure. Figure 12 shows
the CSI amplitude of four subcarriers extracted from a laptop 3-
meter-apart away from a sleeping person. The proposed device-
free approach has the potential to be widely deployed in home
and many other non-clinical environments. BodyScan [51] can
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Fig. 12. CSI amplitude measurements of four subcarriers when a person is
in asleep [51].

recognize a diverse set of human activities while estimating
the user’s breathing rate, by analyzing the CSI captured by
two designed wearable devices on the user’s hip and wrist.
WiCare [52] utilizes CSI of WiFi signals to monitor breathing
rate with the coexistence of some micro-motions (e.g., reading,
writing, using the phone). Specifically, WiCare is able to
distinguish micro-motions of a specific individual from his/her
breathing based on the fact that breathing results in the CSI
fluctuation with a much narrower frequency band compared to
micro-motions. PhaseBeat [53] leverages CSI phase differences
between two receiving antennas on WiFi devices [133] to
monitor breathing rate and heart rate in real time. Along with
this direction, Wang et al. [54] further verify the feasible
condition (e.g., user’s relative location and orientation) to
perform breathing estimation with extensive experimental
studies. The proposed system employs Fresnel zone model
to explore the feasibility of breathing rate detection based on
one’s breathing depth, location and orientation.

FMCW-based Recognition. Doppler-based vital sign recog-
nition approaches present good performance under some
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Fig. 13.  FMCW phase changes due to breathing and hearbeat [56].

specific circumstances, however, it does not have a good way to
eliminate the influence of moving objects in the front or behind
the target. Since FMCW radar can separate the radio signal
reflections from different objects, Anitori et al. [S5] propose
to detect breathing and heartbeat leveraging 9.6 GHz FMCW
radar signal. Vital-Radio [56] uses FMCW radar to separate the
reflections from different objects as different buckets depending
on the distance between these objects and the device. The
system could differentiate multiple users and track their vital
signs simultaneously. As shown in Figure 13, breathing causes
the variation on FMCW radar signal phase, where peaks and
valleys correspond to exhale and inhale periods, respectively.
Moreover, heartbeats are modulated on the top of the breathing
motion. Zhang at al. [57] demonstrate that for the FMCW-based
approach, the breathing signal’s harmonics may overwhelm
the heartbeat signal, making the latter invisible in the spectral
analysis sign. Therefore, they propose to suppress unnecessary
periodic fluctuation component with a projection matrix.

Doppler-based Recognition. Doppler radar is notable on
low-power, cost-effective and robust on longer distance, low
visibility, and through-wall detections [134]. SleepMinder [58]
implements a radio-frequency Doppler radar system to capture
physiological movements in the form of phase modulation.
Passive radar system [59] extract breathing rate based on micro
Doppler derived from cross ambiguity function (CAF) [135].
Another critical issue of Doppler-based approaches is that
the noise produced by random body movement influence the
monitoring accuracy. Figure 14 shows the difference of received
Doppler radar signals with and without occlusion scenario.
Salmi, Jussi, Olli Luukkonen, and Visa Koivunen. [60] show
that nonlinear (arctan, or phase) demodulation combined with
proper offset estimation could give good performance only
if the radar presents close tA set ofo user’s chest. Several
following studies [61]-[63] introduce signal demodulation
methods and mutually injection-locked SIL radars to cancel
the influence of random body movement. WiSpiro [64] exploit
2.4 GHz Doppler radar to capture the breath volume based
on phase-motion demodulation algorithm, which eliminate the
impact from body movement. Other than CW Doppler radar,
Zhao, Heng et al. [65] employ digital-IF Doppler radar [66]
to further improve the performance on vital sign recognition
with its high sensitivity and low power design.
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VI. USER IDENTIFICATION & LOCALIZATION

Due to the inherent behavioral and physiological differences
existed among different people, researchers have demonstrated
the possibility to perform user authentication by characterizing
the wireless signal affected by human activities. Such device-
free approaches are low-cost and easy-to-deploy leveraging
the prevalent WiFi signals made available by IoT devices (i.e.,
smart refrigerator, smart TV and thermostat, etc.), and the
privacy of users are also preserved. Additionally, localizing
users or devices in an indoor space, such as an office building
or a mall, has attracted significant attention in the past decades.
In this section, we will review the related work on user
identification as well as indoor localization using WiFi signals.

A. User Identification

WiFi-based user identification approaches primarily rely
on CSI to capture the unique physiological and behavioral
characteristics inherited from people’s daily activities (e.g.,
human gait pattern) to discriminate people. We review the
CSI-based approaches as follows. These approaches are also
summarized in Table V.

CSI-based. Existing studies [67]-[69] perform user identifi-
cation by capturing the unique walking gait pattern based on
the CSI measurements. Specifically, Zhang et al. [67] extract
10 representative features from CSI variations caused by human
walking to uniquely identify each individual among a group of
2 to 6 people. Zeng et al. [68] propose to identify a person’s
steps and walking gait for user identification leveraging the
CSI amplitude features, but it requires the human subject to
walk along a path with a distance of 1 meter parallel to the LoS
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TABLE V. A COMPARISON OF WIFI-BASED USER IDENTIFICATION WORKS.

Work | Technique | Frequency Band | Accuracy | Activity | Distance

Zhang et al. [67] CSI 2.4GHz/5GHz 93% for 2 subject, 77% for 6 subject Human walking 2m

Zeng et al. [68] CSI 2.4GHz 92% for 2 subject, 80% for 6 subject Steps and walking gait 2-3m

Wang et al. [69] CSI 5GHz 79.28% for top-1, 89.52% for top-2, 93.05% for top-3 Movement speed of different body parts | 6m

WEFID [70] CSI N/A 91.9% for 9 subjects, 93.1% for 6 subjects Standing, marching and walking 3.6m

Shi et al. [71] CSI 5GHz 94% for walking, 91% for stationary activities Walking and stationary activities 10m
path between the WiFi transmitter and receiver. Additionally, S ‘ ‘ "= CSleff amplitude
Wang et al. [69] examine the moving speed changes of different 45 Exponential Fitting

body parts, e.g., torso and legs, from the spectrogram, as shown
in Figure 15 and correlates the movement speed of different
body parts with WiFi spectrogram, which are exploited to
recognize the gaits from different users at a distance of more
than 6 meters to the LoS path. However, these approaches
are limited to walking people either following well-designed
paths (e.g., clear LoS path between the WiFi devices) or
moving near the WiFi transceivers. Moreover, WFID [70]
performs device-free user authentication via characterizing the
uniqueness of subcarrier-amplitude frequency (SAF) from CSI
measurements when the users are standing, marching, and
walking. Different from the aforementioned approaches based
on walking activities, Shi er al. [71] examine the WiFi signals
and extracts unique physiological and behavioral characteristics
inherited from people’s in-home or in-office activities including
both walking activities (e.g., waking between rooms) and
stationary activities (e.g., operating appliances) to differentiate
each individual person. The authors exploit the unique variation
patterns on both amplitude and relative phase of CSI caused
by people’s daily activities. A deep learning based model
is developed to perform both activity recognition and user
authentication, and thereby facilitate many applications in both
corporate offices and residential areas.

B. Indoor Localization & Tracking

Beside human motions, the locations of people also have
significant impacts on wireless signal propagation in an indoor
environment. Therefore, the physical properties of wireless
signals can be used to infer the locations. There are a large

body of work in the field of indoor localization and tracking.

In this paper, we described a subset of the work that provide
localization and tracking in term os adopted sensing techniques
(i.e., RSSI-based, CSI-based and FMCW-based).

RSSI-based. Banhl and Padmanabhan [72] introduces
RADAR, a radio-frequency (RF) based system, which uses
RSSI measurements to model the relationship between signal
strength and distance and further track the people inside a
building. To improve the accuracy, Guvenc et al. [73] and Paul
[74] propose to use Kalman filter algorithm to the propagation
model of RSSI-based localization system. In addition, some
other approaches (e.g., [74]-[76]) are developed to combine
RSS measurements with the measurements of other sensors
(e.g., GPS [75], [76], infra-red (IR) motion sensor [74]) to
enhance the stability of indoor localization. Since RSSI is too
sensitive to the small environmental changes, it is critical to
ensure the robustness of RSSI-based localization system. A
differential RSSI-based approach [77] is proposed to model
the shadowed links and utilizes the particle filter to realize
location estimation robustly. A dynamic distance reference
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Fig. 16. Relation between effective CSI readings and distance [84].

anchor method is proposed in [78] to alleviate environmental
effects. The proposed system computes the dynamic correction
coefficient for each distance reference anchor node based on
each RSSI measurement, and a continuous feedback is provided
to reflect the environmental changes for robust location
estimation. Xie ef al. [79] present a K-Nearest-Neighbor (KNN)
scheme based on spearman distance to eliminate the multi-
path attenuation in RSSI-based localization system. Hong et
al. [136] rely on Support Vector Machine (SVM) to detect
eigenvector changes of RSS measurements and further improve
the localization accuracy. To enhance the efficiency of RSSI-
based system, Barsocchi et al. [80] propose a virtual calibration
technique for wireless signal propagation model, which does not
require the human intervention during training phase. Xiong
and Jamieson [81] propose ArrayTrack, which requires no
calibration beforehand to achieve high localization accuracy
using RSSI. Unlike aforementioned approaches which only
localize the single person, Bocca et al. [82] and Nannuru et
al. [83] utilize Radio-frequency (RF) tomography of RSSI
measurements to achieve multi-user localization in indoor
environments.

CSI-based. CSI-based indoor localization, first proposed
by Wu et al. [84], [85] and Sen et al. [86], is emerging to
replace RSSI, due to its fine-grained channel information and
high robustness. Wu et al. [84], [85] re-defined the indoor
propagation model based on a modified free space path loss
propagation model to capture the relationship between the
effective CSI readings (i.e., CSleff in Figure 16) and distance.
Figure 16 illustrates the approximated relationship between
CSleff and distance according to the refined propagation model.
Through exponential fitting, a CSI-distance model can be built
to enable indoor localization. Similarly, Sen et al. [86] model
the channel response and demonstrate that the localization
accuracy using CSI can achieve the granularity of Im x 1m
boxes. Furthermore, Sen et al. [87] propose to effectively
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reduce the impact of multipath reflections by applying CSI
information to indoor localization system. Different from the
aforementioned localization systems involving multiple access
points (APs), SAIL [88] is proposed to capture the user’s
location accurately with only a single WiFi AP. Additionally,
Wang et al. [89], [90] propose to use deep learning techniques
to facilitate indoor localization. Specifically, the weights in the
deep network replace the raw CSI measurements to represent
the location fingerprints.

FMCW-based. The first FMCW-based localization system,
proposed by Vossiek et al. [92], uses three FMCW radars to
achieve object tracking in 3-D space. In contrast to the work
that relies on a wireless signal channel for localization, Feger
et al. [93] and Gierlich et al. [94] propose to apply multiple-
input multiple-output (MIMO) technique to FWCW system
for high-precision location estimation. Recently, WiTrack [28]
further leverages the MIMO FMCW technique to obtain the At
measurements to track single moving person and the related
motion of different body parts. To enhance the performance of
WiTrack, Adib et al. proposed WiTrack2.0 [95] that not only
achieves multiple moving people tracking but also localizes
multiple static people through the TOF measurements of
FMCW signals. Evaluation of WiTrack2.0 shows that it can
localize up to five people simultaneously with a median
accuracy of 11.7 cm.

VII. LIMITATIONS AND DISCUSSIONS

Although the aforementioned research studies have demon-
strated the powerful capability of WiFi-based sensing systems
on serving a broad array of applications, there still exist
limitations and open problems that need further exploration in
the future.

Impact of Environmental Changes. For many RSSI or
CSlI-based sensing systems that need to build training profiles
(e.g., activity recognition [21], gesture recognition [127] and
indoor localization [72], [86]), the profiles can be easily altered
by environmental changes (e.g., furniture movements, closing a
door), which could lead to the inconsistency between incoming
testing instance (e.g., activity, gesture and location) and the
profiles. As a result, the system usually needs a huge amount of
extra efforts to re-train the profiles, which requires unacceptable
labor cost and system downtime. To mitigate the impacts of
environmental changes, existing studies [22], [23] build CSI-
speed model and CSI-activity model to quantify the correlation
between the movement speeds of different body parts and a
specific activity, but it may affect the sensitivity of the proposed
system on detecting human activities. Furthermore, AutoFi [91]
develops a novel contaminant removal module and applies
feature-preserving autoencoder [137] to intelligently calibrate
the Wi-Fi profiles. It estimates the CSI changes caused by the
environment changes and then eliminates these contaminants
with a linear regression module with the autoencoder, making
the profile features adaptive to the new environment. More
efforts, such as intelligent profile calibration with multiple WiFi
links and advanced data filtering/machine learning techniques,
would be helpful in future work.

Impact of User’s Location and Orientation. In addition to
the environmental changes, the user’s location and orientation

also have critical impact on the performance of WiFi-based
sensing systems. For the human involved activities, the differ-
ences on users’ location and orientation could induce different
variation pattern of RSSI or CSI measurements. Thus, existing
systems usually require the user to keep the same location
and orientation during both the training and testing phases.
Some research studies attempt to overcome such limitations.
For example, existing work WiAG [35] proposed a translation
function that can generate virtual samples of a given gesture in
any desired configuration (i.e., location and orientation) based
on the real samples of the same gesture under another known
configuration. Yet WiAG needs additional efforts to derive a
few parameters (i.e, gesture shape and speed) by asking the
user to hold a smartphone while performing gestures, making it
less practical for some application scenarios. A more efficient
and convenient solution is to build a rigorous theoretical model,
which is independent to the user’s location and orientation,
to map the relationship between WiFi measurements and the
human involved action/activity.

Multi-user Activity Sensing. Existing FMCW-based solu-
tion WiTrack2.0 [42] can track the hand gestures of multiple
people simultaneously leveraging a directional antenna array.
Vital-Radio [56] can differentiate multiple users and track their
vital signs simultaneously through differentiating the reflections
from different subjects. The CSI-based approach [49], [50]
could use the frequency difference of multiple users’ breathing
rates to track them simultaneously. However, most of the RSSI
and CSI based sensing approaches can only handle single-
person case as it is challenging to distinguish the movements of
multiple people from WiFi signal measurements. A promising
way would be isolating concurrent activities of different people
in separate spaces and perform activity sensing separately, but
a complex web of WiFi links in an area is required.

Re-using Real WiFi Traffic. The sensing capability of
many existing RSSI or CSI-based sensing systems is usually
fulfilled with periodic WiFi traffic at a constant rate. Existing
WiFi sensing systems relying on RSSI or CSI measurements
need to be running with periodic WiFi traffic at a constant
rate to keep continuous and synchronized sensing ability. The
researchers usually use ping command to generate such traffic
to satisfy this requirement. However, real WiFi traffic depends
on the real-time demand of users or IoT devices, which cannot
be manageable. Moreover, the commercial routers can only
broadcast beacon packages with a default constant interval
100ms to help keep the network synchronized. Empirical
demonstration of re-using such aforementioned real WiFi traffic
in various sensing application domains would be necessary.
Additionally, FMCW and Doppler-based solutions require well-
defined transmitting signals, which might be hard to use on
the top of the existing WiFi signals. Further exploration needs
to be made along with this direction.

Security & Privacy Considerations. With the rapid ad-
vancement of WiFi sensing techniques, it also raises serious
security and privacy breaches. Existing work has demonstrated
that WiFi signals can be used to snoop keystrokes [39] and
infer mobile phone password [138]. Adversaries could also
use existing activity sensing systems to spy on the position
and activities of others (e.g., neighbors). Thus, when we enjoy
the convenience brought by the WiFi sensing technologies, we
need to pay more attention to the accompanying security and
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privacy concerns. There is an urgent need to derive security
solutions during the new sensing system design.

VIII. CONCLUSION

In this work, a survey of recent studies on human activity
sensing systems using RF signals (e.g., WiFi) has been provided.
We review a broad array of emerging applications associated
with human body movements using wireless signals, including
intrusion detection, room occupancy monitoring, activity and
gesture recognition, vital signs monitoring, identity identifica-
tion and indoor localization. According to the sensing technique
introduced in these studies, we categorize the literature into four
major categories: RSSI-based, CSI-based, FMCW-based and
Doppler-shift-based. These compelling wireless sensing studies
have shown promising performance in various application
domains. In addition, we also point out the limitations of
the current WiFi-based sensing approaches and show a few
challenges that need to be addressed in the future.
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