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Abstract—Recently, gesture recognition has gained consider-
able attention in emerging applications (e.g., AR/VR systems)
to provide a better user experience for human-computer inter-
action. Existing solutions usually recognize the gestures based
on wearable sensors or specialized signals (e.g., WiFi, acoustic
and visible light), but they are either incurring high energy
consumption or susceptible to the ambient environment, which
prevents them from efficiently sensing the fine-grained finger
movements. In this paper, we present RF-finger, a device-free
system based on Commercial-Off-The-Shelf (COTS) RFID, which
leverages a tag array on a letter-size paper to sense the fine-
grained finger movements performed in front of the paper.
Particularly, we focus on two kinds of sensing modes: finger
tracking recovers the moving trace of finger writings; multi-touch
gesture recognition identifies the multi-touch gestures involving
multiple fingers. Specifically, we build a theoretical model to
extract the fine-grained reflection feature from the raw RF-signal,
which describes the finger influence on the tag array in cm-
level resolution. For the finger tracking, we leverage K-Nearest
Neighbors (KNN) to pinpoint the finger position relying on the
fine-grained reflection features, and obtain a smoothed trace via
Kalman filter. Additionally, we construct the reflection image of
each multi-touch gesture from the reflection features by regarding
the multiple fingers as a whole. Finally, we use a Convolutional
Neural Network (CNN) to identify the multi-touch gestures based
on the images. Extensive experiments validate that RF-finger can
achieve as high as 88% and 92% accuracy for finger tracking
and multi-touch gesture recognition, respectively.

I. INTRODUCTION

With the flourishing of ubiquitous sensing techniques, the
human-computer interaction is undergoing a reform: the nat-
ural human gestures, e.g., finger movements in the air, is pro-
gressively replacing the traditional typing-based input devices
such as keyboards to provide a better user experience. Such
gesture-based interactions have promoted the development of
both Virtual Reality (VR) and Argument Reality (AR) systems,
where users could directly control the virtual objects via per-
forming gestures in the air, e.g., writing words, manipulating
the tellurion or playing the VR games. Toward this end, the
gesture-based interaction can further enable the operations on
the smart devices in the Internet-of-Things (IoT) environments,
e.g., withdrawing the curtains, controlling the smart TVs.
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Fig. 1. Illustrations of application of RF-finger.

Therefore, accurately recognizing gestures in the air, especially
fine-grained finger movements, has a great potential to provide
a better user experience in emerging VR applications and IoT
manipulations, which will have a market value of USD 48.56
billion by the year of 2024 [2].

Existing gesture recognition solutions can be divided into
two categories: (i) Device-based approaches usually require
the user to wear sensors, e.g., RFID tag or smartwatch, and
track the motion of the sensors to recognize the gestures [15,
17]. These studies usually derive the gestures by building
theoretical models to depict the signal changes received from
the sensors. However, device-based approaches either suffer
from the uncomfortable user experience (e.g., attaching the
RFID tag on the finger) or the short life cycles due to the high
energy consumption. (ii) Device-free approaches recognize
the gestures from ambient signals through different kinds of
techniques without requiring the user to wear any devices. As
the most popular solutions, camera-based solutions, such as
Kinect and LeapMotion, construct the body or finger structure
from the video streams for accurately gesture recognition.
Nevertheless, they usually involve high computation and may
incur privacy concerns of the users. More recent works try
to recognize the gestures based on WiFi [16], acoustic sig-
nals [18] and visible light [9]. However, these solutions are
either easily affected by the environmental noise or incapable
of sensing fine-grained gestures at the finger level. In this
work, we are in search of a new device-free mechanism that
can recognize finger-level gestures to facilitate the growing
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Fig. 2. Preliminary study of the RF signal reflection.

VR applications and IoT operations.
The recent advances demonstrate that the emerging RFID

technology not only can sense the status of objects with
device-based solutions [7, 10–12, 20], but also has the po-
tential to provide device-free sensing by leveraging the multi-
path effect [4, 21]. In this work, we present RF-finger, a
device-free system based on RFID tag array, to sense the
fine-grained finger movements. Unlike previous studies, which
either locate the human body in a coarse-grained manner [21]
or simply detect single stroke from the hand movement for
letter recognition [4], RF-finger focuses on tracking the finger
trace and recognizing the multi-touch gestures, which involves
a smaller tracking subject and more complicated multi-touch
gestures than existing problems. As shown in Figure 1, by
leveraging the tag array attached on a letter-size paper, RF-
finger seeks to support different applications including writing,
multi-touch operations, gaming, etc.

Specifically, we deploy only one RFID antenna behind
the tag array to continuously measure the signals emitted
from the tag array, and recognize the gestures based on
the corresponding signal changes. In designing the RF-finger
system, we need to solve three main challenging problems. i)
How to track the trajectory of the finger writings? Since the
finger usually affects several adjacent tags due to the multi-
path effect, it is inaccurate to locate the finger as the position
of tags. In our work, we theoretically model the impact of
the moving finger on the tag array to extract the reflection
features, and then exploit the reflection feature to pinpoint
the finger with a cm-level resolution. ii) How to recognize
the multi-touch gesture? Multi-touch gesture indicates the RF-
signals reflected from multiple fingers are mixed together in
the tag array, making it even more difficult to distinguish these
fingers for gesture recognition. To address this problem, we
regard the multiple fingers as a whole for recognition and
then extract the reflection feature of the multiple fingers as
images. We then leverage a Convolutional Neural Network
(CNN) to automatically classify the corresponding gestures
from the image features. iii) How to obtain stable signal
quality from the tag array? In real RFID systems, misreading
is a common phenomenon due to the dynamic environments
that affects the signal quality, especially when reading multiple
tags simultaneously, such as a tag array. To address this
problem, we utilize a signal model to depict the mutual
interference between tags, which provides recommendations
on tag deployment that re-arranges the adjacent tags in a

perpendicular way to reduce the interference.
The contributions of RF-finger are summarized as follows:

i) We design a new device-free solution based on Commercial-
Off-The-Shelf (COTS) RFID for both finger tracking and
multi-touch gesture recognition. To the best of our knowledge,
we are the first to recognize the multi-touch gestures based on
a RFID system through a device-free approach. ii) We build a
theoretical model to depict the reflection relationship between
the tag array and the fingers caused by the multi-path effect.
The theoretical model provides guidelines to develop two algo-
rithms to track the finger trajectories and recognize the multi-
touch gestures. iii) We experimentally investigate the impact
of tag array deployment on the signal quality. We analyze
the mutual interference between tags via a signal model and
provide recommendations on tag deployment to reduce the
interference. iv) We implement a system prototype, RF-finger,
for finger tacking and gesture recognition. Experiments show
that RF-finger can achieve the average accuracy of 88% and
92% for finger tracking and gesture recognition, respectively.

II. PRELIMINARIES & CHALLENGES

In order to design a system to track the fine-grained finger
movements, we first conduct several preliminary studies on
the impact of finger movement on the RF-signals, and the
feasibility to use RFID tag array for gesture recognition.
Based on the observations, we summary three challenges for
designing our system.
A. Preliminaries

Impact of Finger Movement on RF-Signals. RFID tech-
nique has been widely used in locating and sensing system
based on the physical modalities on RF-signal [20], i.e., phase
and Received Signal Strength Indicator (RSSI). Moreover,
when a human moves around the tag, both the phase and
RSSI are changing accordingly due to the multi-path en-
vironment variance [21]. Therefore, we first investigate the
impact of finger movement on RF-signals, which is much
smaller than human body. As shown in Figure 2(a), a typical
finger movement can be decomposed into two basic directions:
horizontal movement (i.e., swipe in front of the tag) and
vertical movement (i.e., approach/departure the tag). Hence,
we conduct two experiments to investigate the influence of
these two finger movements. Figure 2(b) presents the signal’s
phase and RSSI readings when the finger is moving towards
(i.e., vertically) the tag from 20cm away. We find that both
the phase and RSSI readings change in a wavy pattern, and
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Fig. 3. Preliminary study of the tag array deployment.

the peak-to-peak amplitude [1] increases slowly with the
approaching finger. This indicates that the approaching finger
leads to larger reflection effect.

Additionally, when we swipe the fingers 40cm along the
horizontal direction as shown in Figure 2(a), we observe sim-
ilar phenomenon in Figure 2(c). The peak-to-peak amplitude
first increases and then decreases as the fingers swipe across
the tag. The results indicate that the peak-to-peak amplitude
correlates with the distance between the finger and the tag,
which is later analyzed in Section III. Since the peak-to-peak
amplitude indicates the linear distance between finger and tag,
we can deploy a tag array to track the moving finger.

Signal Interference within a Tag Array. When we deploy
the tag array to capture the finger movement, the density of the
array is a fundamental factor on understanding the granularity
of the gestures. For example, a sparse tag array can only
recognize the coarse-grained strokes based on the detected
tags affected by the whole hand [4]. Therefore, to recognize
the finger-level gestures, we should exploit a dense tag array
deployment to serve better recognition capability.

In this work, we use the small RFID tag AZ-9629, whose
size is only 2.25cm × 2.25cm, so that the tags can ar-
range tightly. Specifically, we deploy a 5 × 7 tag array into
15cm×21cm rectangular space, while each tag only occupies
3cm × 3cm space. A simple deployment is to universally
deploy all tags with the same orientation as shown in Fig-
ure 3(a). Under this deployment, Figure 3(b) shows the RSSI
distribution of 35 tags in the unit of dBm when there is no
finger around. We observe that the RSSI readings vary greatly
across different tags due to the electromagnetic induction
between the dense tags [8]. In particular, larger RSSI values
are captured from the marginal tags than those from the tags
in the center. Therefore, a new deployment is proposed in
Section IV-B to provide stable and uniform RF-signals.

B. Challenges

To develop the finger-level gesture tracking system under
realistic settings, a number of challenges need to be addressed.
Tracking Fine-grained Finger-writing. Given the area size
3cm× 3cm of each tag, it can only achieve a coarse-grained
resolution of the finger moving trace by detecting the sig-
nificantly disturbed tag. Moreover, the dense tag deployment
may also lead to the detecting errors due to the mutual tag
interference as shown in Figure 3(b). Therefore, we should
have an in-depth understanding about the signals from the tag
array during the finger movement and then develop the system
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Fig. 4. Reflection model of a tag.

to track finger trace in fine granularity.
Recognizing Multi-touch Gestures. Unlike the finger-
writing, multi-touch gesture indicates several parts of the tag
array are affected by different fingers. However, the distance
between adjacent fingers is similar to the size of the tag,
and the finger may affect the tags even though it is 10cm
away as shown in Figure 2(b) and Figure 2(c). Hence, it is
difficult to distinguish these fingers from the coarse-grained
tag information. To address the challenge, we treat multiple
fingers as a whole without distinguishing each finger and
design a novel solution to recognize the multi-touch gestures
from the whole of the multiple fingers.
Reducing the Mutual Interference of Tag Array. The
received signal of the RFID tag can be easily affected by
the adjacent tags, as shown in Figure 3(b). Such interference
may lead to large tracking error, we thus need to find a way
to obtain the uniform signal across all tags by reducing the
mutual interference effect of the tag array.

III. MODELING FINGER TRACKING UPON A TAG ARRAY

In this section, we introduce the reflection effect of RFID
tag array with a theoretical wireless model. Particularly, we
start from the reflection of a single tag, which explains the
experimental results in Section III and introduces to extract
the reflection feature in our system. Then, we move forward
to the reflection of a tag array, which integrates the reflection
features of nearby tags to facilitate the perception of the fine-
grained finger movement and the multi-touch gestures.

A. Impact of Finger Movement on a Single Tag

The signal received from the tag is typically represented as
a stream of complex numbers. In theory, it can be expressed
as:

S = X · Sh, (1)
where X is the stream of binary bits modulated by the tag, and
Sh = αeJθ is the channel parameter of the received signal. In
RFID system, we can obtain the channel related information,
including both the RSS in the unit of dBm as R and the phase
value as θ, thus the channel parameter Sh can be calculated
as:

Sh =

√
10

R
10

1000
eJθ =

√
10R/10−3eJθ. (2)

Figure 4 illustrates the reflections in RFID system with a
simple case, where the finger swipes across a tag. Besides the
free-space signals directly sent from the RFID antenna, the tag
would also receive the signals reflected by the moving finger.
In the corresponding I-Q plane, two received signals can be
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Fig. 5. Reflection model of a tag array.

represented as Sfree and Sreflect, respectively. Therefore, the
actual signal received by the reader can be represented as:

Sactual = Sfree + Sreflect. (3)
Here, the finger movement affects Sreflect due to the change
of reflection path, thus both the RSS and phase of Sactual also
vary accordingly. In order to track the finger movements, we
need to separate Sreflect from the received signals to roughly
describe the distance of the reflection path. Specifically, we
can estimate Sreflect by subtracting Sactual by Sfree, where
Sfree can be measured without the reflection object.
B. Impact of Finger Movement on a Tag Array

The single tag model depicts the signal change on one tag
caused by the finger movement, but the tag array involving
multiple tags, meaning the finger affects several adjacent tags
at the same time. To better understand the reflected signals
from the finger, we derive the theoretical model of tag array
as follows. In Figure 5(a), we use a one-dimension tag array
to illustrate the finger impact on the tag array for simplicity.
Specifically, the antenna A interrogates six tags T1 to T6, while
the finger H is hanging upon the tag array.

According to the single tag model, we can derive the
reflection feature Sreflect for each tag. Additionally, Sreflect
can be further divided into two parts based on the reflection
path in Figure 5(a):

Sreflect = SA→HSH→Ti . (4)
where SA→H represents the signal from A to H. SH→Ti
represents the signal reflected from H to Ti, and varies based
on the tag’s position. In an ideal channel model [5], SH→Ti
is defined as:

SH→Ti =
1

d2HT i

eJθHT i , (5)

where dHT i
is the distance between H and Ti. θHT i

is the
phase shift over the distance dHT i . Formally, the phase shift
can be calculated from the wave length λ as:

θHT i = 2π
dHT i

λ
mod 2π. (6)

For each tag Ti, we can combine Eq. (4) and Eq. (5) to
calculate the power of the Sreflect [5] as:

Preflect = |Sreflect|2 = C ∗ 1

d4HT i

, (7)

where | · | denotes the module of the complex parameter to get
the power and C = |SA→H|2 is a constant power. Therefore,
the magnitude of Preflect is determined by dHT i

, meaning
the finger leads to larger reflection power to the close tags.

Given the position of H, we can calculate the distribution
of reflection power Preflect in the 2D space from Eq. (7).

Signal Stream: !"#$%
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Fig. 6. System framework.

Figure 5(b) illustrates the case where the finger is at (0, 0) co-
ordinate with 3cm height and each 1cm×1cm grid is supposed
to deploy a tag. We set C to 1 for simplicity in this figure. We
note that the power highly concentrates at the position of the
finger. Therefore, we can use the theoretical power distribution
as a pattern to estimate the finger position from the measured
power distribution of the whole tag array. By computing the
theoretical power distribution in a fine-resolution manner, we
are able to refine the recognition resolution of the tag array
with the correlation-based interpolation. In Section V-B, we
will show the effectiveness of the tag array model by extracting
the reflection feature from the reflection power distribution.

IV. SYSTEM OVERVIEW

A. System Architecture

The major objective of our work is to recognize the fine-
grained finger gestures via a device-free approach. Towards
this end, we design an RFID-based system, RF-finger, which
captures the signal changes on the tag array for gesture
recognition. As shown in Figure 6, RF-finger consists of four
main components: two core modules Signal Pre-processing
and Reflection Feature Extraction, followed by two function-
ality modules Finger Tracking and Multi-touch Recognition.
Specifically, RF-finger takes as input the time-series signal
si(t) received from each tag i of the tag array, including both
the RSSI and phase information. The Signal Pre-processing
module first calibrates the measured signal by interpolating the
misreading signal and smoothing the signal. Next, we divide
the smoothed signals into separated gestures by analyzing the
signal variance of all tags, which accurately estimates the
starting and ending point of a gesture. Then, the Reflection
Feature Extraction module extracts the reflection features of
the gesture based on our reflection model in Section III.

After extracting the reflection features from RF signal, two
main functionality modules are followed for finger tracking
and multi-touch gesture recognition. For the finger-writing,
the Finger Tracking module locates the finger from the re-
flection features in each time stamp based on the K-Nearest
Neighbors (KNN) algorithm. Locations in consecutive time
stamps are connected together and smoothed via Kalman filter
to obtain a fine-grained trace. For the multi-touch gestures,
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Fig. 7. Shuffled deployment of the dense tag array.

the Multi-touch Recognition module leverages a Convolu-
tional Neural Network (CNN) to automatically classify each
gesture from the visual features. Particularly, it constructs a
3-frame image of the gesture from the reflection features,
which describes the influence range of the multiple fingers
in the starting/middle/ending period of the gestures. Then we
learn the neural network model from the 3-frame image for
gesture classification. Finally, we can recognize the gestures
by analyzing the classification scores based on CNN.
B. Dense Tag Array Deployment

As illustrated in Section II-A, we observe that the adjacent
tags in the dense tag array have great impacts on the signal
quality of other tags due to the electromagnetic interference [8,
19]. The principle behind such influence is the electromagnetic
interference between the two tags [8]. As a result, the parallel
deployed tags will affect the nearby tags due to the mutual
interference. To eliminate such mutual interference, we shuffle
the directions of part tags as shown in Figure 7(a) by making
the nearby tags perpendicular to each other. In this way, we
can minimize the interference between nearby tags by making
the electromagnetic interference perpendicular to each tag. As
a result, we can then achieve a stable RSSI measurement
across all tags, which is shown in Figure 7(b). Therefore, we
adopt the perpendicular deployment of the tag array in our
system.

V. RF-FINGER SYSTEM DESIGN

In this section, we will talk about the detailed design of the
proposed RF-finger system. Specifically, we first preprocess
the raw RF-signals and then extract the reflection features to
depict the finger influence on the tag array. Finally, we track
the finger trace and recognize the multi-touch gestures from
these reflection features.
A. Signal Preprocessing

Given the received RF-signals, which involve some inherent
measurement defects such as misreading tags and noise, the
data calibration process is developed to improve the reliability
of the RF-signals by interpolating the misreading tags and
smoothing the signal. In RFID system, the misreading tags
are usually caused by the highly dynamic environment during
the finger movement. Therefore, we can interpolate the mis-
reading RF-signals from adjacent sampling rounds based on
the continuous movement of the finger. Take a phase stream
θ(t) as an example, which is time-series phase values from
one tag. If there is a misreading phase θ(ti), we calculate the
interpolation value from other phase reading as:
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Fig. 8. Illustration of signal preprocessing in RF-finger.

θ̂(ti) = θ(ti−1) + (θ(ti+1)− θ(ti−1))
ti − ti−1
ti+1 − ti−1

, (8)

where θ(ti−1) and θ(ti+1) are two adjacent phase readings
before and after time ti. After interpolation, a moving average
filter is applied to smooth the signal, which further removes
high-frequency noise. Figure 8(a) illustrates the effectiveness
of our data calibration by comparing the phase stream before
and after data calibration. The phase stream shown in the figure
is from one tag in the array, when the user is performing
right rotate gesture. From the enlarged figure, we could clearly
see the misreadings are well interpolated. Moreover, after
smoothing, the high-frequency serrated waves are removed.

To capture the signal pattern of a specific finger movement,
we need to identify its starting and ending point, which
correspond to the gesture people tend to raise the hand up
and drop the hand down. Therefore, a segmentation method
based on the detection of the calibrated RF-signals variance
is developed to detect the actions of rasing/releasing hand
to segment gestures. Intuitively, we observe that the signal
should be stable when people drop the hand down, and the
signal of some tags experiences distinct variations when the
user performs the gestures. Therefore, we further leverage a
sliding window to calculate the variance stream of each tag
from the calibrated RF-signals, and the starting/ending points
should have large variance values. Figure 8(b) illustrates the
variance stream of all the 35 tags, which takes as input the
calibrated phase stream. We find only part of the tags have
large signal variance at the same time, because the finger only
affects several tags close to the finger. Thus, we continuously
calculate the maximum variance of each sliding window for
the maximum variance stream. Based on the first and last
peak of the max variance stream, we can detect the action of
raising/releasing hand and then take the signal stream between
them as the gesture signal.

B. Reflection Feature Extraction

After signal processing, we have the segmented and noise-
less signal of each individual gesture, so we first leverage
the reflection model in Section III-A to derive the reflection
signals Sreflect of each tag. Then we extract the reflection
features from the Sreflect as the likelihood distribution inside
the tag array zone, where the likelihood of each position
depicts the probability that the finger locates at the position.
Before defining the likelihood, we derive the reflection signal
of each tag by removing the free-space signal as Sreflect =
Sactual − Sfree. Particularly, Sactual is collected during the
gesture period and Sfree is collected before the gesture.
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Fig. 9. Illustration of the extracted reflection features.

Therefore, Sreflect demonstrates the reflection signal caused
by the finger movements. Figure 9(a) illustrates the RSSI
distribution of Sreflect when the finger is at (10, 10). We find
that the finger affects several tags around (10, 10) and the
adjacent tags even have the same RSSI value. The reason is
that both the finger and the palm reflect the RF-signal, making
the reflection signal mixed together.

We further use the reflection model of tag array in Sec-
tion III-B to extract the reflection features from Sreflect.
Specifically, we partition the reflection range of our tag array
into cm-level grids. Suppose the finger is right upon the grid
(x, y), then we can derive the theoretical reflection power Pi
for each tag i according to Eq. (7). Given the measured RSSI
values Ri for tag i, we define the likelihood Ix,y of grid (x, y)
from the Pearson correlation coefficient [13] as:

Ix,y =
1

N − 1

N∑
i=1

(
Pi − µP
σP

)(
Ri − µR
σR

), (9)

which indicates the probability that the finger locates at (x, y).
N is the size of the tag array. µ and σ are the corresponding
mean and standard deviation value of P and R, respectively.
All the probabilities Ix,y form a new likelihood matrix as
the reflection feature in our work. Figure 9(b) illustrates
the reflection feature extracted from the RSSI distribution of
Sreflect. We can observe a peak on the probability distribution
around (10, 10), representing the estimated location range of
the finger.

C. Finger Trace Tracking

Based on the extracted reflection features, we next demon-
strate how to track the finger writing by locating the finger
continuously at each sampling round. The basic idea is to use
the K-Nearest-Neighbor (KNN) method to track the tendency
of finger movement on the whole and leverage Kalman filter
to smooth the trace for better recognition. The intuition of
KNN method is that the reflection features concentrate on
the position of finger as shown in Figure 9(b), so grid Ix,y
with larger value is closer to the finger. However, noisy
reflection features may deviate the localization result away
from the groundtruth, because traditional KNN method just
weight averages the K grids without considering the position
of them. Therefore, we first filter the grids based on the fact
that the finger always moves continuously, which removes the
grids far away from the finger location in the last sampling
round. Then, we estimate the location of the finger F (t) at
time t from the K grids with the largest likelihood as:
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Fig. 10. Illustration of tracking the finger trace from reflection features.

F (t) =

∑K
i=1 Ii × (xi, yi)∑K

i=1 Ii
, (10)

where Ii is the ith largest grid and (xi, yi) is the corresponding
coordinate. The concatenation of the estimated locations F (t)
is the trace of the finger. At last, we use the Kalman filter
to smooth the trace of finger-writing trace based on the fact
that the finger is continuously moving for writing. Due to the
space limitation, we only present the state transition function
based on a velocity model as:

F (t) = F (t− 1) + v(t− 1) ∗∆t, (11)
where v(t) is the moving speed and ∆t is the sampling
gap. Based on the Kalman filter, we are able to migrate the
errors in KNN localization to provide a smooth trace from the
velocity model. Figure 10 uses a sample case to illustrate the
effectiveness of our tracking method. Figure 10(a) presents
the mechanism of filtering the grids for KNN localization.
By removing the grids that are far away from the estimated
location in the last round, we can reduce the interference of the
reading errors from some tags. Besides, Figure 10(b) illustrates
the effectiveness of tracking the finger-writing of letter “e”
using KNN method and Kalman filter.
D. Multi-touch Gesture Recognition

In this work, we consider to recognize 6 multi-touch ges-
tures as shown in Figure 13(b). When we track the finger trace,
the RF signals received from the tag array are only affected
by one main moving finger. In regard to the multi-touch
gestures, the signals affected by different fingers are mixed
together, making it hard to distinguish each finger. Intuitively,
each multi-touch gesture usually has a unique motion pattern
within the tag array zone. In order to effectively discriminate
different multi-touch gestures, we evenly separate the gestures
period into 3 frames of equal length, which represent the
starting/middle/ending period of the gestures, respectively. For
each frame, we accumulate the reflection features Ix,y(t) of
time t to generate the statistic feature Ix,y as:

Ix,y =
∑
t∈T

Ix,y(t), (12)

where T is the duration of a frame. The statistic feature
Ix,y thus constructs an image about the unique pattern of
gesture during this frame. Then the 3-frame image is used
as the basic feature representation for gesture recognition.
Figure 11 illustrates the 3-frame image of “left rotation”, while
the gesture is shown in Figure 13(b). We can roughly detect
the rotation pattern from this 3-frame image, which reflects
the physical movement of the hand.
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Fig. 11. 3-frame images of the “left rotation” for gesture recognition.

Given the feature representation (i.e., 3-frame image) of
each multi-touch gesture, we leverage Convolutional Neu-
ral Network (CNN) to recognize the target gestures, which
provides better performance in image classification mission.
Figure 12 presents the structure of our CNN model, which
takes as input the 3-frame image and produces the classi-
fication scores of each gesture for recognition. Particularly,
our CNN model contains five hidden layers, including two
convolutional (Conv) layers and two pool layers followed by
a Fully Connected (FC) layer. Conv layer is the core building
block, which leverages a set of learnable filters to extract the
local properties of the image. For example, in Figure 11, the
two fingers of starting period are placed horizontally, and then
rotate to vertical direction at the ending period. Therefore,
based on these well learned filters, CNN can automatically
detect these local properties for gesture recognition, even
though the gestures are not performed at the same place.

During the training process, we learn the model by col-
lecting the 3-frame images for each gesture with manually
labels. The model automatically learns the properties from
the 3-frame images, which can accurately character each
gesture from the view of images. In the validation process,
we construct the 3-frame image from the reflection features
of testing gestures and use the trained model to classify them.
Finally, we recognize the testing gestures based on the CNN
model.

VI. PERFORMANCE EVALUATION

A. Experimental Setup & Metrics

In order to validate the effectiveness of the proposed RF-
finger system, we conduct the experiments on both the finger
tracking and multi-touch gesture recognition in realistic set-
tings. The experimental setup of RF-finger system consists of a
5×7 tag array of AZ-9629 RFID tags and an ImpinJ Speedway
R420 RFID reader integrated with a S9028PCL directional
antenna as shown in Figure 13(a). The tag array is deployed
using the shuffled deployment as shown in Figure 7(a) and
the average sampling rate is 13Hz. The RFID antenna is
placed 50cm behind the tag array to interrogate the tags, while
the user performs finger gestures in front of the tag array. A
LeapMotion is also deployed under the tag array to collect
video stream for comparison.

The experiments are carried out in a typical indoor environ-
ment involving 10 participants in total (8 males and 2 females).
Before performing each gesture, the user is required to drop

Input
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layer 1
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layer 2
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layer 2
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layer
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Output

layer

Fig. 12. Illustration of CNN structure for gesture recognition.

his/her hand down to collect the free-space signal Sfree, which
is used for reflection feature extraction. For the finger tracking,
we ask 4 participants to write the 26 letters and 4 shapes (i.e.,
�,4,©,♥) 10 times. In the KNN method, K is set to 5 as
default. For the multi-touch gesture recognition, we ask all the
10 participants to perform each of the 6 gestures as shown in
Figure 13(b) 30 times. Particularly, 80% of the gesture related
RF dataset (i.e., 1440 gestures) are used to train the CNN
model, and the other 20% are used to evaluate the trained
model. Only one CNN model is trained for all the users.
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RFID antenna (Back)
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RFID reader

(a) Experimental setup
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(b) Multi-touch gestures
Fig. 13. Evaluation setup & multi-touch gestures.

We define three different metrics to evaluate the perfor-
mance of the finger movements.
Recognition accuracy: For the finger writing letters, we
recover the writing trace and then use LipiTk [3] to recognize
the trace, which provides a candidate letter set C with different
confidences. Given a test set Tx of the traces for letter x, the
recognition accuracy of x is defined as

∑
||{x}∩C||
||Tx|| , where || · ||

measures the set size.
Distance error: For the shapes in finger tracking, the dis-
tance error is defined as DTW (F,FG)

max(L(F ),L(FG)) , which indicates the
average Dynamic Time Warping (DTW) distance between the
tracking trace F from RF-finger and the groundtruth shape
FG. L() calculates the number of points in the trace.
Classification accuracy: For the multi-touch gestures, the
classification accuracy is defined as Gc

Ga
, where Gc and Ga

are the numbers of correctly classified gestures and performed
gestures, respectively. Particularly, we first train a general
CNN model and then use the model to classify all the multi-
touch gestures.
B. Finger Tracking of Letters

We first evaluate the accuracy of recognizing the finger
writing letters based on LipiTk. Since LipiTk produces several
candidate letters with different confidences, we use the first
three candidates with the larger confidence as the recognition
result. As shown in Figure 14(a), RF-finger achieves an
average recognition accuracy of 88%. For all the letters, the
recognition accuracies are all above 80%, while 14 of 26 letters
achieve more than 90% recognition accuracy. Particularly,
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Fig. 14. Evaluation results.

letter “a”, “f”, “h”, “k” and “y” are correctly recognized with
100% due to their distinct shapes.

Moreover, we evaluate the robustness of RF-finger by
comparing the recognition accuracy across different users. We
also vary the size of candidate set produced by LipiTk for
comparison. As shown in Figure 14(b), all the users achieve
more than 75% the accuracy based on the first candidate. As
we increase the number of candidates to three, the accuracy
increases to more than 85%, meaning we can correctly rec-
ognize the letters from the first three candidates with more
than 85% probability. Particularly, user 3 achieves the highest
recognition accuracy as 94%, while the lowest accuracy is
84% for user 4. Therefore, RF-finger is robust to recognize
the letters from the finger writings of different users.

Additionally, we compare the letter recognition accuracy of
RF-finger with that of LeapMotion by varying the number of
candidates. As shown in Figure 14(c), it is encouraging to
find that the accuracy of RF-finger is only 3% to 6% lower
than the LeapMotion, which validates the accuracy of RF-
finger. Particularly, RF-finger achieves about 89% recognition
accuracy when we use 3 candidates, and LeapMotion achieves
92% accuracy. Therefore, RF-finger achieves comparable ac-
curacy for the recognition of finger writings with the video-
based technique (i.e., LeapMotion).
C. Finger Tracking of Shapes

Next, we evaluate the accuracy of finger tracking by com-
paring the shapes of RF-finger with the shapes of groundtruth
drawn on the paper. Particularly, we test 4 basic shapes, i.e.,
rectangle, triangle, circle and heart (�,4,©, ♥), respectively.
Figure 14(d) illustrates the traces of RF-finger, which include
�, 4, ©, ♥ and letter “a”, “k”, “m”, “s”, “z”. All the finger
traces can be easily recognized with little distortion. Besides,
all the traces are written in a 15cm× 15cm square, indicating
RF-finger can track the trajectory with fine-grained resolution.

Furthermore, we compare the trace of RF-finger with the
groundtruth on the paper. Particularly, we use DTW to map
each location in the trace of RF-finger to the groundtruth on the

paper. We use the average DTW distance to characterize the
tracking accuracy of RF-finger as shown in Figure 14(e). We
find three of the shapes have the average error as low as 1cm,
while the error for rectangles is about 2.3cm. Through in-
depth investigating, we find all the tracked rectangles are easily
recognized (similar to Figure 14(d)), but they are distorted with
some rotations, leading to a little bit higher tracking error than
the other shapes. Overall, RF-finger is able to accurately track
the finger trace with small error.
D. Multi-touch Gesture Recognition

Finally, we evaluate the performance of multi-touch recogni-
tion using the CNN based classification algorithm. Figure 14(f)
presents the confusion matrix of classifying the 6 gestures. We
find 5 of the 6 gestures achieve over 90% accuracy for gesture
recognition. Even though these gestures are not performed at
exactly the same position over the tag array, CNN model
can still correctly classify them via the local property of
the images, e.g., the relative positions of fingers in different
periods. The average accuracy of the all gestures achieves as
high as 92%, indicating RF-finger can be used to accurately
recognize the multi-touch gesture.

We also show the robustness of the CNN model by compar-
ing the recognition accuracy across different users. All the 10
users perform the 6 gestures in front of the tag array, while the
users randomly choose the position over the tag array to per-
form. As shown in Figure 14(g), the proposed method achieves
around 90% accuracy for most of the users. Particularly, the
lowest accuracy is as high as 89%, while the highest accuracy
is 94%. Therefore, RF-finger can accurately classify the multi-
touch gestures based on the properties extracted from the CNN
model.

Besides, we also present the learning rate of our CNN
model as shown in Figure 14(h). We randomly choose 1440
gestures from all the 1800 to train our CNN model. All the
parameters in each CNN layer automatically update in each
epoch to improve the recognition accuracy of the training
dataset. Particularly, we find the CNN model achieves as high
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as 90% accuracy when training dataset exceeds 800 learning
epochs, while the training accuracy reaches 98% after 2000
learning epochs. The result indicates that our CNN model can
converge quickly to about 90% accuracy with fewer epochs
and reasonable time.

VII. RELATED WORK

There have been active research efforts in gesture recogni-
tion, which can be broadly divided into two main categories:
Device-based Approaches. Previous research has shown that
both the built-in motion sensors on wearable devices and
the wearable RFID tags attached on human body can be
utilized for gesture recognition [6, 14, 17]. For example,
ArmTrack [15] proposes to track the entire arm solely relying
on the smartwatch. FitCoach [6] assesses dynamic postures in
workouts by recognizing the exercise gestures from wearable
sensors. However, these methods suffer from the short life
cycles due to high energy computation. RF-IDraw [17] and
Pantomime [14] track the motion pattern of RFID tags for
gesture recognition. These approaches, however, require the
tags to be attached to the finger or the passive object held by
the user. It will reduce the user experience with the attached
RFID tags on human body, especially for the manipulation
in the VR applications. Different from previous studies, we
propose a device-free approach with a RFID tag array, which
indicates the user can perform each gesture naturally without
wearing any specialized device.
Device-free Approaches. As an emerging solution for gesture
recognition, device-free approaches gain significant attentions
in recent years. As a mature technique, camera-based ap-
proaches, e.g., Microsoft Kinect and LeapMotion, are able to
extract the body or finger structure based on the computer
version techniques. However, reconstructing the body or finger
structure from video streams usually incurs high computation
and unexpected privacy leakage. Nowadays, several studies
try to recognize the gestures leveraging specialized signals,
e.g., WiFi [16], acoustic signal [18] and visible light [9].
However, these solutions are either easily affected by the
ambient noise or incapable of sensing fine-grained gestures.
Yang et al. propose to locate the human body based on
COTS RFID technique via a device-free approach [21], which
shows the potential of device-free sensing in RFID system.
More recently, RF-IPad [4], another device-free approach
based on RFID, is proposed to recognize the human writing
by detecting the stroke. However, we focus on tracking the
finger trace, which is a finger-level and fine-grained tracking
problem. Moreover, we are able to recognize the multi-touch
gestures with a device-free approach based on RFID, which
still remains open so far.

VIII. CONCLUSION

In this paper, we propose RF-finger, a device-free system to
track the finger writings and recognize the multi-touch gestures
based on COTS RFID system. RF-finger provides a practical
solution to precisely track the fine-grained finger trace and
recognize multi-touch gestures, which facilitates the in-the-air
operations in many smart applications (e.g., VR/AR and IoT

systems). Our key innovations lie in modeling the reflection of
the finger on the tag array and extracting the reflection features
of the finger based on the model. Through the reflection
features, we leverage the KNN method to track the finger trace
and the CNN model to recognize the multi-touch gestures.
The experimental results confirm the effectiveness of RF-
finger on both finger writing tracking and multi-touch gesture
recognition, which achieves over 88% and 92% accuracy.
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