

Artificial Intelligence: AI-facilitated Building Design

Presenters: ORNL – Brett Bass, Ph.D. and Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM, IREE SmithGroup – Peter McNally, Stet Sanborn Computational Design Detroit (co.de.D) and Turing School of Software & Design – Leland Curtis

ORNL is managed by UT-Battelle LLC for the US Department of Energy

U.S. Energy and Buildings Overview

Goal of DOE's Building Technologies Office: 30% EUI reduction by 2030 compared to 2010 baseline

Building Energy Modeling building descriptions + weather = estimated building energy consumption, demand, emissions, equity, ...

5-year vision

Digital Twin of every U.S. Building by 2020 Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important

building inputs

	Small Office	Outpatien t	Large Office	Medium Office	Hospital	Warehous e	Small Hotel	Large hotel
Inputs	458	3483	1072	760	1955	333	1823	887
	Strip Mall	Retail	Quick Service Restaurant	Full Service Restaurant	Mid Rise Apt	High Rise Apt	Secondary School	Pri ma r School
Inputs	800	438	281	286	1464	4617	1621	1051

Sensitivity Analysis

2. Time on world's #1 fastest highperformance machines

3. Identify and compare data sources for important inputs

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input	Building footprints
variables	
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Comparison Matrix

4. Establish partnerships and APIs for scalable data retrieval

5. Algorithms to extract

Window-to-wall ratio

Computer Vision

building properties

HPC Tools for Modeling and Simulation Capturing building energy consumption

Demonstrate and stimulate opportunities toward a sustainable built environment

6. Create OpenStudio & EnergyPlus models

DOE Prototype Buildings

7. Make models freely available online

Download BEM for your building(s) Use cases:

- Simulation-informed analysis
- Utility program formulation (utility)
- Business model evaluation (ESCO)
- City-scale emissions (cities)
- Sales/marketing leads (local jobs)
- New building design (AEC firms)
- Resilience (government, insurance)
- Automated financing (PACE, banks)

Building simulation at scale

Data EnergyPlus

Size Simulations

64

128

256

512

1,024

65,536

131,072

262,144

524,288

Data EnergyPlus

Size Simulations

229,376

458,752

5 GB

11 GB

22 GB

44 GB

88 GB

5.6 TB

11.5 TB

23 TB

45 TB

440 GB

880 GB

Time

18:14

18:19

18:34

18:22

20:30

26:11

31:29

44:52

68:08

Time

(mm:ss)

20:44

28:20

Nation-scale...

- Free model of every U.S. building (<u>bit.ly/ModelAmerica</u>)
 - OpenStudio (v3.1.0) and EnergyPlus (v9.4)
 - State_county.zip (requires free Globus Connect Personal)
 - New, Joshua R., Adams, Mark, Bass, Brett, Berres, Anne, and Clinton, Nicholas (2021). "Model America – data and models of every U.S. building." ORNL Constellation, <u>https://doi.ccs.ornl.gov/ui/doi/339</u>, April 14, 2021.
- 125,714,640 buildings, 124,178,694 simulated, 122,930,327 (97.8%) shared
- Dynamic archetypes of models and floor area multipliers for any geographical region
- Automatic Building Energy Modeling (AutoBEM) software
 - Related publications: <u>bit.ly/AutoBEM</u>

Design Pace

Project Information

ARCHITECTURAL SITE PLAN A

CAK RIDGE

The Problem With Performance Analysis

CONSULT PERFORMANCE ANALYSIS

Current:

Design Space Exploration

WHAT IS A DESIGN SPACE?

SMITHGROUP

11

Open slide master to edit

Design Space Exploration

UDSE: Assign Inputs => Explore Outputs

UDSE: Assign Outputs => Explore Input Ranges

Universal Design Space Exploration Workflow

Universal Design Space Exploration Workflow

Parametric Sampling

Sampling parameter	Inputs	Sampling parameter	Inputs
	Higher education		Low
	Lab - high intensity	Plate depth	Typical
Duo guono tauno	Office	-	High
Program type	Hospital		Low
	Healthcare - outpatient	Floor-to-floor height	Typical
	Residential (Apartments)	C	High
	1A		Bad
	1B	Solar design	Typical
	2A	e	Good
	2B	Average window-to-wall	0.25
	3A		0.4
	3B	ratio	0.7
	3C		Baseline
	4A	Envelope quality	High
Climate zone	4B		Ultra
	4C	Construction type	Common
	5A	Construction type	Less Common
	5B		Baseline
	5C	Lighting power density	Better
	6A		Best
	6B		Baseline
	7A	IIVAC sustam	Good
	7B	H VAC System	Great
	Low		Ultra
Total square footage	Typical	Sat points	Baseline
	High	Set points	Expanded
	Low		
Target floor area	Typical		
C	High		

Asign Pre-generation

Solar Design Wiledou-to-Wall Ra Sepont That R-Value Roof R-Value Window U-Value Window U-Value Window U-Value

> Total EUI Heating EUI Cooling EUI Equipment EUI Fan EUI Pano EUI

ORNL Resources

- AutoBEM (Automatic Building Energy Modeling)
 - Uses building properties as inputs to generate building energy models
 - EnergyPlus/OpenStudio
- Access to Supercomputing Resources

Clark County (Las Vegas) Modeling Example

Digital Twin: Energy, Demand, Emissions, \$ Savings

Results: Digital Twin of a Utility (every building)

EPB: 178,368 building energy models Validated against 15-minute electricity (colored by modeled energy/ft²)

		Hurse Hurse		
llagter and the Discourse of the	Building Propert	ties for Building	26593100	000
	Num Floors	de la contra	7	
	Square Footage	1,648,094		
1.	Annual Energy Usage	13,069,609 kWh		
	Annual Aggregated Den	27,260 kW		
wat.	EUI		8 kWh/ft^2	
112	CO2 emissions		12,968,594 lbs	
8	Estimated wholesale vs	retail cost	671 125 S	
. di				
4.4		Savings		
AL.				
i i vinat		Annual Energy Savings	Annual Demand Savings	Annual Cost Savings
	1: Env: Insulate Roof 💿	425,721 kWh 3.3%	1,402 kW 5.1%	\$62,161
	2: Env: Reduce Space Infiltration	100,741 kWh 0.8%	691 kW 2.5%	\$20,418
	3: HVAC: Adjust Thermostat Setpoint (4F) 1	23,547 kWh 0.2%	12,089 kW 44.3%	\$194,30
	4: HVAC: Smart Thermostat (8F) 💿	-28,720 kWh -0.2%	12,113 kW 44.4%	\$189,788
	5: HVAC: Change Electric HVAC COP	119,645 kWh 0.9%	347 kW 1.3%	\$16,727
	6: Light: Change Lighting Power Density	706,276 kWh 5.4%	848 kW 3.1%	\$79,657
	7: Change to Gas Water Heater 🔍	151,892 kWh 1.2%	241 kW 0.9%	\$18,063
	8: Change to Gas HVAC	145,468 kWh 1.1%	967 kW 3.5%	\$28,994
ren 1	9: Combined Electric* Savings Potential (1 2 5 6)	1,352,383 kWh	3,288 kW	\$178,963

10: Combined Demand

Savings Potential (4,7,8)

Scalable Computing

- Models typically take days to develop
- AutoBEM allows for massive scalability
 - AutoBEM can be used by a single person to develop and simulate 200k models in less than a day
 - Modeler rate of \$150/hr
 - 2 days for basic model (16 hours)
 - \$480 million dollars and 365.3 years for this modeler to develop 200k basic models

Modeling Quality	Typical Model Development Time
Basic	2 Days
Functional	1 Week
Detailed	2 Weeks

AutoBEM Workflow

- Create input table from parametric sampling matrix
- Generate building energy models using AutoBEM
 - Building geometry, building type, HVAC type, etc.
- Fine tune models for more specific changes
 - Lighting, HVAC COP, etc.
- Simulate models using HPC resources

Data Exploration

CAK RIDGE

24

Outpatient 2A Outpatient 3A Outpatient 4A Outpatient 1A -0.42 Height -0.50 -0.57 -0.55 NumberFloors -0.56 -0.57 -0.45 -0.50 -0.67 TotalArea -0.77 -0.79 -0.78 WindowWallRatio -0.02 0.00 -0.06 0.11 FloorHeight 0.06 0.00 -0.04 0.19 0.08 PlateDepth 0.05 0.14 -0.13 PlateLength -0.13 -0.22 -0.09 -0.16 SkinArea -0.39 -0.47 -0.52 -0.51 SkinFloorRatio 0.28 0.25 0.17 0.26 -0.36 GlassArea -0.43 -0.50 -0.46 EnvelopeFloorAreaRatio 0.19 0.30 0.27 0.28 EnvelopeQuality 0.04 -0.04 0.01 0.13 -0.17 LightingPowerDensity -0.18 -0.47 -0.37 SetpointSetting -0.14 -0.14 -0.12 -0.18 **HVACSetting** 0.27 0.15 0.36 0.19

Artificial Intelligence

- Al can be used as surrogate for EnergyPlus simulations
 - Don't need every point of design space
- Use input variables (building type, area, height, etc.) to predict building energy usage
- Several algorithms evaluated
 - Linear Regression
 - Neural Network
 - Random Forest

Prototype App: Single Design

CAK RIDGE

Shoebox ai v1.02		-	×
Model Design Space Chart Controls	3D Model Scatter Plot Sensitivity Analysis		
	EUI : 72.52 kBTU/sf		
Climate Zone 4B •			
Building Type Large Office •			
Total Area 70000			
Target Floor Area 14000			
Plate Depth 90			
Floor-Floor Height 10			
➢ FACADE PARAMETERS			
40			
Solar Design Typical 🔹			
Envelope Quality Baseline 👻			
HVAC Setting Baseline -	W S		
HVAC Setpoint Baseline 🔹			
LPD Setting Baseline (100%)			
EUI : 72.52 kBTU/sf Cooling : 0.43 kBTU/sf Heating : 42.93 kBTU/sf Equipment : 30.94 kBTU/sf Fans : 0.58 kBTU/sf Pumps : 0 kBTU/sf HeatRejection : 0 kBTU/sf HeatRecovery : 0.75 kBTU/sf			

Prototype App: Design Space Exploration

Prototype App: Real-time Analytics

Prototype App: Real-time Analytics

Questions?

Open slide master to edit