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Abstract: Several companies, universities, and national laboratories are developing urban -scale 

energy modeling that allows the creation of a digital twin of buildings for the simulation and 

optimization of real -world, city -sized areas. Prior to simulation -based assessment, a baseline of 

savings for a set of utility -defined use cases was established to clarify the initial business case for 

specific energy efficient building technologies. In partnership with a municipal utility, 178,337 

OpenStudio and EnergyPlus models of buiÓËÐÕÎÚɯÐÕɯÛÏÌɯÜÛÐÓÐÛàɀÚɯ1400 km 2 service area were created, 

simulated, and assessed with measures for quantifying energy, demand, cost, and emissions 

reductions of each building. The method of construction and assumptions behind these models is 

discussed, definition s of example measures are provided, and distribution of savings across the 

building stock is provided under  a maximum technical adoption scenario . 

Keywords:  urban-scale energy modeling; grid-interactive efficient buildings; valuation; demand 

side management 

 

1. Introduction  

In 2019, approximately 125 million buildings in the United States accounted for USD 412 billion 

in energy bills, 40% of national energy consumption, 73% of electrical consumption, 80% of peak 

demand, and 39% of emissions. The United States (US) Department of Energy (DOE) has set 

aggressive goals for energy-efficiency in buildings ɭa 30% reduction in average energy use intensity 

of all US buildings by 2030 compared to a 2010 baseline [1]. 

Urban building energy modeling  (UBEM) is a useful tool in accomplishing this goal as it informs  

decision makers regarding  optimal savings at scale. Building energy modeling at an urban scale is 

primarily carried out  using a bottom-up approach (compared to top -down  distributions ) as 

individual building simulations allow for more specific results and decision making. This method 

requires data collection on an individual building scale including building geometry, height, building 

type, building age, and any of the approximately 3000 parameters that constitute a building energy 

model . Building prototypes or archetypes can be used to assign building parameters that may be 

unknown ( e.g., Heating, Ventilation, and Air Conditioning (HVAC ) type and efficiency). The 

methodology for collecting  data that are used is among the primary factors in distinguishing UBEM 

approaches as more data used to describe a buildin g often lead to more accurate results. The data are 

then used to create and simulate building energy models. If available, the results can be calibrated to 

actual data which can make simulation findings more impactful.  

Various UBEM analyses have been performed in different geographic areas and using different 

methodologies. A study of 332 residential buildings in Kuwait City introduced a Bayesian calibration 

method or archetype assignment with improved error rates compared to deterministic approaches  
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[2]. A similar Bayesian approach was taken on 2663 buildings in Cambridge, Massachusetts, where 

annual and monthly calibration approaches were compared [3]. A smaller analysis of 22 California 

urban buildings evaluate d a Data-driven Urban Energy Simulation method which aim ed to capture 

the inter-building dynamics of dense urban areas. The results indicated that the framework was able 

to adequately predict energy consumption at various time intervals and partially captur e inter-

building dynamics  [4]. A study in Boston modeled 83,541 building to outline a workflow for a large 

number of buildings. This analysis was not calibrated but was roughly crosschecked using US 

national consumption data. Metered energy data were the main inhibitor of using these models to 

guide energy policy [ 5]. While measured energy use is a frequent limitation for most studies, the 

models in this paper benefited from empirical validation of the models with comparison to sub -

hourly, building -specific, whole -building electrical use . 

To coordinate commercial building research across multiple disciplines, Commercial Reference 

Building Models were developed for the most common buildings [6,7] and later adapted as 

Commercial Prototype Building Models for use in code update development [8]. The current suite of 

Commercial Prototype Building Models covers 16 common building types ɭoffices, hotels, schools, 

mercantile, food service, healthcare, apartments, and warehouseɭin 17 ASHRAE climate zones [9] 

and represents different construction vintages (pre -1980, 1980ɬ2004) and building energy standards 

(ASHRAE Standards 90.1-2004, 2007, 2010, 2013 and 2016; and International Energy Conservation 

Code 2006, 2009, 2012 and 2015). The current combination results in an overall set of 2448 building 

models that covers 80% of the US commercial floorspace [8]. These models have been used to analyze 

the energy savings and cost impacts of energy-efficiency code updates [9,10]; develop prescriptive 

new construction and retrofit design guides [11,12]; create technical potential scales for building asset 

scores [13,14]; develop typical energy -conservation measure savings estimates for up-front incentives 

through utility programs [15]; create performance, cost, lifetime and time-to-market targets for new 

technologies to inform DOEɀs technology investment portfolio [16]; and many other applications [17-

21]. 

Many previously published articles and reports thoroughly document the energy -related 

parameters of prototypical building models  and sometimes even the data sources, statistical findings, 

or assumptions underlying those models  [6-8]. However, a scientific process is needed to enable the 

definition, collection , and modeling of real buildings at scale in a way that reduces the building 

energy performance gap (i.e., the error rate between measured and modeled energy use). The range 

of acceptable error rates is often specific to a certain use case and can lead to objections for use in 

building codes, informing standards development , utility program rollout, energy eff iciency 

investments, or other decision-making  criteria . 

Objectives 

This paper reports statistical distribution of  potential  energy, demand, emissions, and cost 

savings across building type and vintage for a sample of 178,337 empirically validated building 

energy models for several utility -prioritized building technologies . It describes a systematic approach 

for creating urban-scale building  energy models, defines ÈɯÜÛÐÓÐÛàɀÚɯprimary use cases, demonstrates 

scalable analysis of building energy models, and showcases the distribution of potential savings from 

energy efficient building technologies.  Traditionally, power generating companies own bulk 

transmission lines that operate at high voltages, whereas local power companies own and maintain 

the lower -voltage power lines that connect to most homes and businesses. The service area for this 

study was the Electric Power Board of Chattanooga, Tennessee (EPB), an electrical distributor that 

purchases bulk energy from the Tennessee Valley Authority (TVA).  The information presented here 

is a portion of a broader work involving additional technologies , valuations for new utility business 

models, microclimate variation, resilience, and empirical validation to 15  min  data from each 

buildin g, climate change, and land use impacts. As such, these topics are beyond the scope of the 

current paper. 

2. Use Cases and Measures 



Energies 2020, 12, x 3 of 22 

 

The utility prioritized 98 different use cases  with the top five involving peak rate structures, 

demand side management, emissions, energy efficiency, and customer empowerment. For these use 

cases, nine monetization scenarios (Table 1) were defined to identify  critical questions that could be 

readily converted into a revenue stream that could be defined in terms of local currency USD) for 

relevant time periods (e.g., monthly, annually) . This more intelligent deployment , maintenance, and 

operation of the distribution network reduce utility overhead/cost s that are passed on to the 

consumer. Such techniques have allowed ÛÏÌɯÜÛÐÓÐÛàɀÚ customers to avoid the three previous rate 

increases by the transmission utility in their territory . 

Table 1. Use cases and potential sources of savings considered in this study for each building 

technology further defined in Table 2. 

Number  Use Case Monetization  

1a Peak Rate Structure Identify buildings that contribute disproportionately to energy/demand costs  

1b Peak Rate Structure 
Quantify wholesale vs. retail cost/year for all buildings under different rate 

structures 

2a 
Demand Side 

Management 

Monthly peak demand savings, annual energy savings, and dollar savings  

based on rate structure for each building 

2b 
Demand Side 

Management 

Location-specific deferral of infrastructure (e.g. , feeder, substation) cost 

savings potential  

3 Emissions Emissions footprints for each building  

4a Energy Efficiency Optimal retrofit savings of each independent building technology  

4b Energy Efficiency Optimal retrofit package savings of dependent building technologies  

5a 
Customer 

Empowerment  

/ÌÙÊÌÕÛÐÓÌɯÙÈÕÒÐÕÎɯÖÍɯÌÈÊÏɯÉÜÐÓËÐÕÎɀÚɯ$ÕÌÙÎàɯ4ÚÌɯ(ÕÛÌÕÚÐÛà 

for similar building type and vintage  

5b Cost Savings 
Monthly peak demand savings, annual energy savings, and dollar savings  

based on rate structure for each building 

Table 2. Building technologies/controls (measures) simulated in each of the 178,337 building energy 

models to quantify savings defined in Table 3. Acronyms: IECC (International Energy Conservation 

Code), HVAC (Heating, Ventilation, and Air Conditioning) . 

Number  Description  Category Values Source 

1 Insulate Roof Envelope R-16.12 to R-28.57 IECC-2012 [22] 

2 Reduce Space Infiltration Envelope Reduce 25% from building vintage  
EnergyStar whole-

house [23] 

3 Smart Thermostat (2.2 °C) HVAC  2.2 °C, 2 h prior to peak Utility request  

4 Smart Thermostat (4.4 °C) HVAC  4.4 °C, 4 h prior to peak Utility request  

5 
Change Electric HVAC 

COP 
HVAC  

COP to 3.55 (heating) 

3.2 (cooling) 
IECC-2012 

6 
Change Lighting Power 

Density 
Lighting  LPD 0.85 W/ft

2

 IECC-2012 

7 
Change to Gas Water 

Heater 
Water 

Efficiency 80% 

(assumes electric baseline) 
IECC-2012 

8 Change to Gas HVAC HVAC  
Efficiency 80% 

(assumes electric baseline) 
IECC-2012 

Table 3. Consolidated simulation  outputs calculated for each measure. Acronym: ECM (Energy 

Conservation Measure) 
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Category Description  

building  ID Unique identifier of each building  

electricity (kWh)  
Total simulated electrical consumption. (Default: Annual, monthly, 

daily, 15 min unless stated otherwise) 

demand (kW)  
Total annual energy demand summed over ÉÜÐÓËÐÕÎɀÚɯÚÐÔÜÓÈÛÌËɯ

monthly peaks. (Annual, monthly ) 

energy (GJ) Total electricity + gas consumption 

emissions (lbs) 

Total emissions based on simulated energy use for Carbon Dioxide 

(CO2), Sulfur Dioxide (SO2), 

Nitrogen Oxides (NOx), Nitrous oxide (N2O), and Methane (CH4).  

cost (USD) 

Wholesale and retail costs combining simulated energy and 

demand. 

A simplified block rate structure is employed.  

cost difference (USD) 
Cost difference between wholesale and retail electricity rate. 

Wholesale is treated as a 30% reduction from the retail rate. 

(electricity,  demand, energy, 

emissions, cost) savings 
Savings = BaselineɭECM 

While traditional literature focuses on Energy Conservation Measures (ECMs), some of the 

technologies simulated save demand, emissions, or cost rather than energy, so we use the more 

ÎÌÕÌÙÈÓɯÛÌÙÔɯɁÔÌÈÚÜÙÌÚɂɯÛÏÈÛɯÞÌÙÌɯÐÔ×ÓÌÔÌÕÛÌËɯÜÚÐÕÎɯ.×ÌÕ2ÛÜËÐÖ [24], EnergyPlus [25], or custom 

tools implemented in C/C++ for quickly modifying building energy models (BEM) at scale. Each use 

case and monetization scenario (Table 1) is described, along with the implemented  measures (Table 

2) to quantify the performance benefits (Table 3). In subsequent analysis, mathematical or statistical 

operations are performed on these fields to determine items of interest such as average 

wholesale/retail cost difference (i.e., average revenue recovery per building by the electrical 

distributor), maximum peak  contribution (i.e. , ÞÏÐÊÏɯÉÜÐÓËÐÕÎɯËÙÐÝÌÚɯÜÛÐÓÐÛàɀÚɯ×ÌÈÒɯËÌÔÈÕËȺȮɯÛÖ×ɯƕƔǔɯ

of electricity  savings (i.e., low -hanging fruit for energy efficiency), and average energy  

savings/average demand savings per technology (i.e., what is the energy/demand synergy or tradeoff 

for each technology). 

2.1. Peak Rate Structure 

Utilities and related service companies are beginning to leverage grid -interactive efficient 

building (GEB) technolog ies and aggregate load from these intelligent, connected devices in sufficient 

quantity to be compelling to the traditional business model of electrical distributors. Reducing the 

use of energy during ÈɯÜÛÐÓÐÛàɀÚɯtimes of peak demand offers the possibility  of reducing demand, 

emissions, and costs for both utilities and their rate-payers. If trends continue, dynamic building 

responses to user cost/comfort tolerances and electric grid needs may replace the need for new power 

plants. 

In order to assess the demand-saving potential of a GEB technology, it is both important and 

challenging to find the timing and peak contribution of each building , and its end uses, to the relevant 

rate structure for energy and demand charges that signals the value of dispatchable loads. With this 

information, the buildings with the highest peak contribution can be targeted for demand and energy 

reduction measures. The peak demand hour of each month supplied by EPB and the hourly 

simulation output for all buildings in the service area were used to estimate the peak demand 

contribution of each building for each month. 

TÏÌɯÊÖÚÛɯËÐÍÍÌÙÌÕÊÌɯÉÌÛÞÌÌÕɯ35 ɀÚɯÊÏÈÙÎÌÚɯÛÖɯ$/!ɯÈÕËɯ$/!ɀÚɯÊÏÈÙÎÌÚɯÛÖɯÐÛÚɯÊÜÚÛÖÔÌÙÚɭ

effectively , the difference between the wholesale and retail prices of electricityɭwas investigated in 
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this use case. Analysis of these cost differences was performed with the intent of identifying more 

equitable rate structures and better resilience against potential rate structure changes (e.g., 

interconnect impacts for new solar installations).  We leveraged 16 building types and 5 vintages in 

our study to analyze demand impacts for both residential and commercial buildings, even though 

very few residential customers currently opt -in to a time-of-use tariff. 

Wholesale costs were estimated as a 30% reduction from retail costs for the purposes of this 

study. Analysis of  the minimum and maximum monthly demand charges and total electricity energy 

usage ÐÕËÐÊÈÛÌËɯÛÏÈÛɯÈɯÜÛÐÓÐÛàɀÚɯ&2 ƖɯÙÈÛÌɯÚÛÙÜÊÛÜÙÌɯÔÈàȮɯÖÕɯÈÝÌÙÈÎÌȮɯÉÌɯÈɯÎÖÖËɯÚÜÙÙÖÎÈÛÌɯÍÖÙɯÜÛility -

specific saving estimations for commercial buildings  if full rate structure tariff and block rates are not 

easily applied. In the future , as more accurate building types and other building information are 

layered into the analysis, the correct rate structure for each building will need to be reevaluated. This 

is especially true for residential buildings. To address business-sensitive concerns, we used a straight 

30% reduction from retail prices to derive wholesale prices to simplify sensitive data pro cessing and 

facilitate the open sharing of results. 

2.2. Demand Side Management 

By better managing demand, utilities can reduce use of the most expensive and dirty generation 

assets, potentially passing on significant  savings on to their customers. There are many ways for 

utilities to reduce demand including conservative voltage reduction, deployment of storage devices, 

or aggregated signaling to intelligent building devices. In this study, several building measures ma y 

reduce demand, but the only ones explicitly designed to do so are smart thermostat and smart water 

heaters implemented in simulation through the use of  OpenStudio Measures [26]. 

For this utility, measures which reduce the utility -wide peak demand hour of each calendar 

month are studied. This peak hour is defined in terms of both the transmission and distribution 

peaks, TVA and EPB peaks, respectively. The purpose of the smart thermostat is to use the thermal 

capacity of the building as a thermal battery ÛÖɯɁÊÖÈÚÛɂɯÛÏÙÖÜÎÏɯÛÏÌɯ×ÌÈÒɯËÌÔÈÕËɯ×ÌÙÐÖËȭɯ3ÏÐÚɯÐÚɯÈÐËÌËɯ

by pre-cooling or pre -heating the building ȮɯÈÚɯÈ××ÙÖ×ÙÐÈÛÌɯÍÖÙɯÌÈÊÏɯÖÍɯÉÜÐÓËÐÕÎɀÚɯÛÏÌÙÔÈÓɯáÖÕÌÚɯÎÐÝÌÕɯ

the building state and active weather,  prior to the peak hour.  

%ÖÙɯÛÏÐÚɯÚÛÜËàɀÚɯÈÕÈÓàÚÐÚ, we altered the thermostat values in all thermal zones by 2.2 or 4.4 °C 

at the request of the utility, with the realization that these relatively large values could impact  

comfort . For the 2.2 °C scenario, a two hour pre -condition ing period was used where the thermostat 

setpoint was set to the average of the existing cooling and heating setpoint temperature with an 

added 0.5 °C deadband to avoid hysteresis. Then, for the peak demand hour and the following four  

hours after the peak, the cooling setpoint increased by 2.2 °C and heating setpoint decreased by 2.2 

°C. For the 4.4 °C scenario, the approach was the same except the pre-conditioning began four hours 

prior to peak onset. 

The smart water heater measure functions similarly. In this scenario, the measure only turns off 

the heating coil during the peak demand hour. This is accomplished by reducing the water heater 

setpoint temperature schedule for the peak hour to 12.78 °C. Because this value is so much lower than 

the normal 60 °C setpoint temperature, the heating coils will never turn on for the single hour.  

To investigate the opportunity  of leveraging demand management for deferred maintenance or 

upgrade costs, we took a subset of the total service area specific to a certain feeder. Utility -provided 

GPS coordinates of every electrical meter were compared with building centroids using Euclidean 

distance to match the utilÐÛàɀÚɯÊÜÚÛÖÔÌÙ-oriented PremiseID with the building -oriented Building  ID. 

Because of this customer/building mismatch prevalent for most utilities, it should be explicitly noted 

that an individual customer may span multiple buildings , and multiple customers  may reside in an 

individual building. Sum and average fields in Table 4 are across all buildings for ÛÏÌɯÜÛÐÓÐÛàɀÚɯservice 

territory.  

Table 4. Average demand savings, both absolute (kW) and relative (% peak), for 178,337 building s 

from a utility -controlled smart thermostat under a 2.2 °C pre-conditioning scenario.  
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 Commercial  Residential  
Total  

(Residential and Commercial)  

Av erage savings (kW/bldg)  408.4 kW 52.46 kW 92.02 kW 

Relative Savings (% of peak) 39.49% 11.15% 14.30% 

2.3. Emissions 

Emissions do not typically have a cost (e.g., carbon tax) explicitly associated with them today 

but are often of concern due to regulatory compliance requirements, environment, and social costs. 

To determine the contribution to various emissions outputs per buildin g in the service area, we used 

the $ÕÝÐÙÖÕÔÌÕÛÈÓɯ/ÙÖÛÌÊÛÐÖÕɯ ÎÌÕÊàɀÚɯȹEPA) Emissions & Generation Resource Integrated Database 

(eGRID) [23]. This database provides emission outputs for the United States with dynamic querying . 

TÏÌɯÚÛÈÛÌɯÖÍɯ3ÌÕÕÌÚÚÌÌɀÚɯƖƔƕƚɯdata were used for several emission types as summarized in Table 5. 

These values are in pounds per megawatt -hour,  to assess energy-equivalent pound s of pollutants 

released per building per year. 

Table 5. Conversion factors from energy to emission type  ËÌÍÐÕÌËɯÉàɯ$/ ɀÚɯÌ&1(#ɯȻ27]. 

Symbol  Description  
Emission Rate 

(lb/MWh)  

CO2 Equivalent  

(lbs /MWh)  

NOx  Nitrogen Oxides  0.513 NA  

SO2 Sulfur dioxide  0.803 NA  

CO2 Carbon dioxide  992.271 992.271 

CH4 Methane 0.074 1.85 

N2O Nitrous oxide  0.015 4.47 

2.4. Energy Efficiency 

Energy efficient building technologies can reduce demand and emissions, but also cut into the 

energy used to recover costs of transmission and distribution from ratepayers. The measures studied  

(Table 2) consist mostly of traditional  energy efficiency measures. 

Adding roof/attic insulation is among the first energy efficiency measures many people consider. 

It can often be cost-effective and acts primarily to improve the thermal performance of the envelope 

so more of the conditioned air can make the occupied space more comfortable for a longer duration. 

For roof insulation, this study increase d the R-value of 16.12 to 28.57, the prescribed R-value by 

International Energy Conservation Code  (IECC) ƖƔƕƖɯÍÖÙɯ"ÏÈÛÛÈÕÖÖÎÈɀÚɯÊÓÐÔÈÛÌɯáÖÕÌ [9]. This change 

in R-value is independent of the roof construction type and alters the default insulation level inherent 

to all the building type roof constructions.  

Often more cost-effective than insulation is reduction in space infiltration. Reducing air 

exchange between the outside and the conditioned inside through the sealing of attic wall joists and 

weatherstripping of doors/windows  can result in significant energy savings, especially for older, 

leakier buildings . While insulation reduces conductio n pathways, sealing to reduce infiltration 

reduces the pathways for convective heat transfer. This study reduced infiltration in each of the 

ÉÜÐÓËÐÕÎÚɯÉàɯƖƙǔȮɯÈÙÙÐÝÌËɯÈÛɯÛÏÙÖÜÎÏɯÈɯÊÖÔÉÐÕÈÛÐÖÕɯÖÍɯÌÕÎÐÕÌÌÙÐÕÎɯÒÕÖÞÓÌËÎÌɯÈÕËɯ$ÕÌÙÎà2ÛÈÙɀÚɯ

assumptions for whole house air sealing [23]. 

The Heating, Ventilation, and Air Conditioning (HVAC) equipment that conditions temper ature 

ÈÕËɯÙÌÓÈÛÐÝÌɯÏÜÔÐËÐÛàɯÖÍɯÈÐÙɯÐÕɯÈɯÉÜÐÓËÐÕÎɀÚɯÊÖÕËÐÛÐÖÕÌËɯÚ×ÈÊÌɯÜÚÌÚɯa significant amount of energy. In 

ÛÏÌɯ42ȮɯÛÏÌɯÈÝÌÙÈÎÌɯÉÜÐÓËÐÕÎɀÚɯÌÕÌÙÎàɯÜÚÌɯÍÖÙɯÚ×ÈÊÌɯÊÖÕËÐÛÐÖÕÐÕÎɯÐÚɯƙƘǔɯÍÖÙɯÙÌÚÐËÌÕÛÐÈÓɯÈÕËɯƗƖǔɯÍÖÙɯ

commercial. This study defines the baseline for HVAC savings by changing to an 80% efficient 

natural gas heating coil as prescribed by IECC 2012. HVAC efficiency can be measured in terms of 
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the unitless Coefficient of Performance (COP), and this study increased cooling and heating COPs to 

3.55 and 3.3, respectively. These align with IECC 2012 requirements for air source heat pumps [22]. 

No other HVAC parameters were changed.  

Many homeowners may be familiar with the shift from incandescent  to compact fluorescent 

lightbulbs (CFLs), and light emitting di ode (LED) bulbs. There are similar technology shifts for 

commercial buildings. For the same lighting output, CFLs use approximately 1/3 of the energy of 

incandescents, and LEDs use approximately 1/3 of the energy of CFLs. For an incandescent, 

approximately  94% of the energy is radiated as heat with only 6% light in the visible spectrum. Older 

lighting technologies are essentially efficient space heaters that happen to give off light as a by-

product. As such, swapping to a more efficient lighting technology often results in less internal heat 

gain with a corresponding lower cooling bill and higher heating bill. The assessment of this 

lighting/thermal coupling of paired -measure tradeoffs is as easily done by spreadsheet as by whole-

building energy modeling, bu t care should be taken as this thermal effect may or may not be captured 

in some analyses. The measure used changes the lighting power density (LPD) to 0.85 W/sf in all 

spaces in the building, which is the LPD prescribed by IECC 2012, and considers the thermal impact 

of this more efficient lighting . 

Most buildings use a tank for water storage with heating for hot water provided by either an 

electric or natural gas heating coil. To assist assessment of maximum technical adoption potential, 

the prototype ÉÜÐÓËÐÕÎɀÚɯËÌÍÈÜÓÛɯÞÈÛÌÙɯÏÌÈÛÐÕÎɯÚàÚÛÌÔɯÐÚɯÍÐÙÚÛɯÊÖÕÝÌÙÛÌËɯÛÖɯÈÓÓ-electric coils with 

awareness that these savings may overestimate actual savings. To assess savings, the measure 

converts from the electric resistance water heater to natural gas. The natural gas water heater is 

changed to an 80% efficient natural gas heating coil, which is the efficiency prescribed by IECC 2012. 

This measure may or may not result in energy savings, but always results in a reduction in peak 

electricity demand.  

In addition to the eight measures previously described and summarized in Table 2, other 

measures can and have been addressed including photovoltaic potential (PV) at each building using 

$ÕÌÙÎà/ÓÜÚɀɯ/56ÈÛÛÚɯÐÕÛÌÎÙÈÛÐÖÕȮɯpartially -managed scenarios for Electrical Vehicle (EV) charging, 

islandable microgrid formulation, future load shifts with climate change scenarios, and other use 

cases beyond the scope of the current publication. The existing models and software framework allow 

flexible energy, demand, emissions, and cost assessments for large numbers of buildings. The only 

technical gap for any specific technology is to ensure that the measure is developed flexibly and 

accurately applies to all building types, locations, and vintages ɭespecially the different HVAC 

system types and layouts. Analysis of other equipment options has also been evaluated. Equipment 

has included conversion of an electric resistance water heater to one with an air to water heat pump. 

This type of system can be more efficient than electric resistance since it is moving heat from the 

thermal zone or outside into the water heater. A COP of 2.2 is used for the heat pump water heater 

where the heat is exchanged with the outdoor air instead of inside a thermal zone. This example is 

shared as a way that flexible measure code can be simplified and made more easily generalizable to 

all building types.  

2.5. Customer Empowerment 

While utilities necessarily collect energy use data, and building owners having billing or energy 

use data for their own home or building, homeowners necessarily lack the data necessary to gauge 

whether they are an energy saver or energy waster compared to similar buildings in the area. Even 

ut ilities lack the data to determine the impact of specific building technologies or packages in shaping 

the demand on their electrical network , or a means to assign building types/vintages (beyond land 

ÜÚÌɯÊÖÔÔÖÕɯÐÕɯÛÈßɯÈÚÚÌÚÚÖÙɀÚɯËÈÛÈȺɯÍÖÙɯ×ÙÖÎÙÈÔɯÍÖÙÔÜÓÈÛion. In a time when energy use data are 

more regularly being reported or analyzed for better decision-making, the utility was interested in 

quantifying the percent each building is contributing to monthly  peaks not just for the current year 

but in typical weather conditions and for each of the measures listed in Table 2. For building owners, 

ÛÏÌÙÌɯÞÈÚɯÐÕÛÌÙÌÚÛɯÐÕɯ×ÜÉÓÐÊÓàɯÚÏÈÙÐÕÎɯÌÈÊÏɯÉÜÐÓËÐÕÎɀÚɯenergy percentile, or percentage of buildings 

that fall below their energy use.  
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For this analysis, we ranked the contribution of each building to the total service area as a 

percentile ranking , effectively breaking the sum of monthly demand from buildings into a pie chart 

with 178,337 slices. This was performed for the baseline buildings  using the Actual Meteorologic al 

Year (AMY) , or Meteorological Year (MY),  weather file for calendar year 2015 and compared to actual 

demand use measured during that time . Since results were comparable, we simulated all buildings 

using the Typical Meteorological Year (TMY) weather file for Chattanooga (USA_TN_Chattanooga - 

Lovell.Field.AP.723240_TMY3.epw) to generate expected building contributions to demand in a 

typical year for the utility, and (electrical) Energy Use Intensity (kWh/m 2) for each building.  EUI was 

used to normalize for building size and the percentile calculation compares each building only 

against buildings with the same building type and vintage. The same was simulated for each measure 

under a typical weather scenario to quantify best buildin g + technology targets for saving systemwide 

demand or emissions for the utility, and total savings of each technology for building owners . 

A web-based visualization pl atform was created to publicly share and quickly identify specific 

energy, demand, and emission reduction opportunities for each building. The resulting database of 

simulation scenarios was ÐÕÛÌÎÙÈÛÌËɯÞÐÛÏɯ$/!ɀÚɯÖ×ÌÙÈÛÐÖÕÈÓɯÚàÚÛÌÔÚɯÛÖɯÎÌÕÌÙÈÛÌɯÉÜÚÐÕÌÚÚɯintelligence 

including Return on Investment (ROI) when considering programmatic deployment cost of 

individual technologies (e.g. , smart thermostats); roll up actual cost savings to the customer and 

ÜÛÐÓÐÛàɯÉÈÚÌËɯÖÕɯÛÏÌɯÉÜÐÓËÐÕÎɀÚɯÙÈÛÌɤÛÈÙÐÍÍɯÚÛÙÜÊÛÜÙÌ; and aggregate these simulation-based projection 

of savings up to critically -loaded feeders, substations, or the entire service territory. 

3. Urban -Scale Modeling Approach  

To create a digital twin of the ÜÛÐÓÐÛàɀÚɯservice area, a building energy model had to be created 

for each of the 178,337 premises. The team developed a method for accomplishing this task called 

Automatic Building detection and Energy Model creation (AutoBEM) [ 28,29]. While a full description 

of the data sources and algorithms used to develop these models is beyond the scope of this 

publication, we attempt to provide a brief description for context, references for the interested reader, 

and a public location where resul ts can be viewed. A 2D building footprint was extracted using 

multiple sources (satellite, LiDAR, and other data sources) and compared to available data (tax-

assessor data). The build ing geometry was defined by extruding this 2D building footprint to a hei ght 

defined by LiDAR  and partially by street -view imagery . This study assigned only one thermal zone 

per floor , and it is a matter of potential future work to apply perimeter -core techniques for better 

assignment of both thermal zones and space types. One thermal zone per floor allows loads, solar 

gains, and thermal mass effects which  may cancel each other out. Therefore, our approach tends to 

under -predict demand savings, and is therefore, conservative in this respect [30,31]. 

The physical structure was associated with  the location (latitude, longitude)  of the premiseɀÚɯ

electrical meter ÉàɯÊÓÖÚÌÚÛɯ$ÜÊÓÐËÌÈÕɯËÐÚÛÈÕÊÌɯÉÌÛÞÌÌÕɯÌÈÊÏɯÉÜÐÓËÐÕÎɀÚɯcentroid and utility -provided 

electrical meter locations, noting many complications of the one -to-many or many -to-one challenges 

of mapping buildings -to-meters. Building type and vintage were assigned to these models using 

several data sources. First, utility rate classes were used to group buildings into residential or 

ÊÖÔÔÌÙÊÐÈÓɯÉÜÐÓËÐÕÎɯÛà×ÌÚȭɯ2ÌÊÖÕËȮɯÛÈßɯÈÚÚÌÚÚÖÙɯËÈÛÈɯÍÖÙɯÛÏÌɯÉÜÐÓËÐÕÎɯ×ÈÙÊÌÓɀÚɯÓÈÕËɯÜÚÌɯwere used to 

map to building type where possible. Third, and relevant for most buildings, the type and vintage 

were assigned by comparing actual annual 15 min  electrical use intensity (EUI-15) of each building  

to 97 prototype buildings and vintage combinations . To obtain prototype building EUI -15, the 

prototype building and vintage combinations were simulated with  the (actual) Meteorological Year 

(MY) for calendar year 2015, corresponding to the time period that whole -building electricity use was 

collected for this study.  The building type and vintage combination was assigned by minimizing 

Euclidean distance between the actual building and the prototype. The building characte ristics from 

the prototype building and vintage model were then assigned to each building  [32]. This can result 

in a vintage and building type assignment that may  not match a human-defined building type, but 

has the advantage of most closely matching the energy signature between the actual and simulated 

building. Once building type and vintage were assigned, the DOE prototypes were used to set 

insulation levels, HVAC efficiency, lighting power density, and all internal characteristics required 
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for simulation. Savings for each building technology were simulated using TMY weather for this 

climate region (ASHRAE -169-2006-4A) [9]. 

A ll buildings were converted to all -electric HVAC and water heating  to define an upper-bound 

of maximum technical adoption potential . AutoBEM was used to create a unique baseline model for 

each of the 178,337 buildings captured in this study. Complicated measures (e.g., smart thermostat 

and smart water heater) leveraged OpenStudio measures to modify the models. For simpler measures 

(e.g., lighting and insulation ), a C++ executable using faster text matching and string replacement was 

created and used to modify the model parameters. Simulation -based results including EUI, CO2 

emissions, annual energy, annual demand, and energy/demand/cost savings for each building 

technology (individually and in aggregat e) is provided publicly for each building in an updatable 

web platform  (Figure 1). 

 

Figure 1. All 178,337 buildings and simulation results can be searched, selected, and visualized using 

flexible regular expressions that can query and combine any number of data fields (bit.ly/virtual_epb ). 

4. Simulation and Analysis  

There is a relatively broad and mature field of study which extends and leverages building 

energy modeling software to enable performance simulation for energy efficient technologies in the 

context of whole-building operation. Even prior to the increasing proliferation of urban -scale energy 

modeling studies, scalable application of technology measures in different building types, locations, 

and vintages for the purposes of building codes and standards was, and remains, a well -established 

use case that significantly impacts long -term energy use of the building stock  [2-5]. Such use cases 

typically involve hundreds to thousands of individual models. Extending this to the hundreds of 

thousands of individual models used in this study, both for application of the measures and 

simulation, was non-trivial and required d eveloping new technologies for world -class high 

performance computing (HPC) resources. 

The models were originally simulated using .ÈÒɯ1ÐËÎÌɯ-ÈÛÐÖÕÈÓɯ+ÈÉÖÙÈÛÖÙàɀÚɯTitanȮɯÛÏÌɯÞÖÙÓËɀÚɯ

fastest supercomputer at the time of this project. A licensable software was created to handle the 

distribution and simulation of the models on High Performance Computing ( HPC) resources called 

AutoSIM . This software demonstrated scalability for performing 524,288 annual simulations using 

131,072 compute cores and writing 45 TB of data to permanent storage in 68 min . With the stated 

HPC resource and software pipeline constructed, the 178,337 models can be created, modified, 

simulated, transferred, analyzed, and summarized with interactive visualization tools  online in less 

than 6.5 h. 3ÏÐÚɯ ÚÖÍÛÞÈÙÌɯ ÞÈÚɯ ÛÏÌÕɯ ËÌ×ÓÖàÌËɯ ÖÕɯ  ÙÎÖÕÕÌɯ -ÈÛÐÖÕÈÓɯ +ÈÉÖÙÈÛÖÙàɀÚɯ 3ÏÌÛÈɯ

ÚÜ×ÌÙÊÖÔ×ÜÛÌÙȭɯ3ÏÌÛÈȮɯÛÏÌɯÞÖÙÓËɀÚɯƗƘth fastest supercomputer at the time of this writing, is focused 

primarily on  Central Processing Units (CPU) rather than GraphicÈÓɯ/ÙÖÊÌÚÚÐÕÎɯ4ÕÐÛÚɯȹ&/4ÚȺȭɯ#.$ɀÚɯ

EnergyPlus simulation engine also primarily leverages CPUs rather than GPUs. As such, AutoSIM 

leveraged 114,688 compute cores to simulate 458,752 buildings (the equivalent of this utility for 2.5 



Energies 2020, 12, x 10 of 22 

 

technologies) and write 880 GB of results to disk in 28 min . Such HPC resources are publicly funded 

and can be acquired by anyone, anywhere, if an application is made detailing a sufficiently 

compelling scientific problem  and computational readiness for such a resource. The baseline 

simulation results with AMY weather from 2015 were compared to ÌÈÊÏɯÉÜÐÓËÐÕÎɀÚ 15 min  electricity 

data from that year to ensure the models were of sufficient quality [ 32]. 

5. Results 

Urban-scale building energy modeling is growing quickly and offering increasingly compelling 

capabilities for assessing demand-savings opportunities or evaluation of new business models for 

utilities, independent energy savings estimates for building owners, or actionable roadmaps for 

ÊÐÛÐÌÚɀɯÚustainability plans. In this study, we start ed by simply summarizing the number of buildings 

that could benefit from the technologies discussed. For each measure, there were a number of 

building s in which the measure resulted in an increase in energy or demand. These buildings were 

omitted from the measure-aggregated results reported. The number of positive energy and demand 

savings observations for the reported distri butions are summarized in Table 6. 

Table 6. Number of buildings/observations of  positive energy or demand savings. 

Number  Description  
Number of Buildings  

with Energy Savings 

Number of Buildings  

with Demand Savings  

1 Insulate Roof 177,781 (99.7%) 163,485 (91.7%) 

2 Reduce Space Infiltration 177,779 (99.7%) 158,306 (88.8%) 

3 Smart Thermostat (2.2 °F) 177,401 (99.5%) 101,082 (56.7%) 

4 Smart Thermostat (4.4 °F) 172,136 (96.5%) 100,225 (56.2%) 

5 Change Electric HVAC COP 177,781 (99.7%) 163,485 (91.7%) 

6 Change Lighting Power Density  177,781 (99.7%) 167,284 (93.8%) 

7 Change to Gas Water Heater 177,781 (99.7%) 135,647 (76.1%) 

8 Change to Gas HVAC 174,862 (98.0%) 126,764 (71.1%) 

5.1. Peak Contribution 

As previously described regarding customer empowerment, there was interest by the utility in 

breaking down contributions of each building to the peak hours of generation and provide some 

ÊÖÔ×ÈÙÐÚÖÕɯÖÍɯÌÈÊÏɯÉÜÐÓËÐÕÎɀÚɯ$4(ɯÛÖɯÚÐÔÐÓÈÙɯÉÜÐÓËÐÕÎÚɯȹÐȭÌȭ, same type and vintage). Breaking down 

the peak demand contribution by building type and vintage  can allow a utilit y to better formulate an 

energy efficiency program to target buildings and vintages that are disproportionate contribut ors to 

the dirtiest and most expensive hour of generation. As one might expect, larger buildings such as 

hospital, large hotel, and large office have the highest average peak demand reduction potential per 

building  (result not shown for brevity) . However, when accounting for the number of buildings, more 

common buildings with high energy intensity use such as restaurants, apartments, and me dium 

offices become the primary contributors.  

In Figure 2, box-and-whisker plots are used where the line in the middle indicates the median, 

the bottom and top of the rectangle are the lower/25th quartile and upper/75th quartile (meaning 25% 

and 75% of the data points lie below those values, respectively), and then the solid line indicates min 

and max while not accounting for outliers (individual dots). Since this study involves  178,377 

premises, if every building contributed equally to demand, all data would lie on a line with y-axis of 

0.000005607%. However, with a unit of 0.0001%, buildings at this level would contribute 18x more  

toward peak than such an average building. In this figure, in an attempt to make the distributions  

visible, some outliers are not represented even though those buildings have the best technical 

adoption potential for demand management.  Likewise, flat lines indicate building type -vintage 
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combinations where there was not a significant number of buildings (e.g. , PrimarySchool). There are 

more buildings of these types within the region , but are not assigned as such since their energy use 

profile more closely matches another building type and vintage combination.  

 

Figure 2. Box-and-ÞÏÐÚÒÌÙɯ×ÓÖÛɯÐÕËÐÊÈÛÌÚɯÚÛÈÛÐÚÛÐÊÈÓɯËÐÚÛÙÐÉÜÛÐÖÕɯÖÍɯÌÈÊÏɯÉÜÐÓËÐÕÎɀÚɯÊÖÕÛÙÐÉÜÛÐÖÕɯÛÖɯÛÏÌɯ

utilit yɀs twelve monthly peak hours added together, broken down by building type and vintage.  

While utility programs may target specific building types, there is also a temporal dimension to 

consider (Figure 3) where peak management may not be the same in summer and winter months, 

that is, the most cost-effective demand management technique may vary by building type, vintage, 

technology, and monthly weather.  

 

Figure 3. Distribution  of potential demand contribution by building type for each month.  

5.2. Demand Side Management 

Smart thermostats, for pre-conditioning buildings as thermal batteries prior to peak hour 

demand, is among the traditional demand management technologies that ma y be cost effective for 

utility programs to implement . While utility -managed thermostats can lower energy, demand, 



Energies 2020, 12, x 12 of 22 

 

emissions, and costs for the utility, these are often passed on, either directly or indirectly, to the 

program participant  or rate payer. Add itionally , technologies such as smart thermostat settings that 

could affect comfort always allow setpoint override so as not to participate at that time. Figure 4 

shows the wide range of potential demand savings for over 100,000 buildings under a maximum 

tÌÊÏÕÐÊÈÓɯÈËÖ×ÛÐÖÕɯÚÊÌÕÈÙÐÖɯÞÏÌÙÌɯÛÏÌɯ×ÌÙÊÌÕÛÈÎÌɯÙÌ×ÖÙÛÌËɯÐÚɯÛÏÌɯ×ÌÙÊÌÕÛɯÖÍɯÒ6ɯËÜÙÐÕÎɯÛÏÌɯÉÜÐÓËÐÕÎɀÚɯ

peak that could be reduced through pre -conditioning.  

 

Figure 4. Smart thermostats with utility -signaled 2.2 °C of building pre -conditioning 2 hours before 

×ÌÈÒɯÏÖÜÙɯÏÈÚɯÛÏÌɯ×ÖÛÌÕÛÐÈÓɯÛÖɯÚÈÝÌɯÈÕɯÈÝÌÙÈÎÌɯÖÍɯƖƛǔɯÖÍɯÈɯÉÜÐÓËÐÕÎɀÚɯËÌÔÈÕËȮɯÉÜÛɯÛÏÐÚɯÚÈÔ×ÓÌɯÖÍɯ

101,082 buildings varies from 0ɬ93% by individual building and time of year.  

Figures 5 and 6 demonstrate the power of building -specific, bottom-up aggregation to allow 

visual analytics of demand savings by vintage or building type.  In these figures, demand reduction 

is instead a percentage of kW reduction for the entire service territory. As an example, March and 

November  with vintages of  90.1-2010 and 90.1-2013 are relatively high due to the lower energy 

demand during those shoulder months combined with the fact that those are the two most popular 

vintages of buildings in ÛÏÌɯÜÛÐÓÐÛàɀÚɯservice territory.  

 

Figure 5. Potential demand reduction achievable with 2 .2 °C pre-conditioning by building vintage.  
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Figure 6. Potential monthly demand reduction achievable with 2.2°C pre-conditioning by building 

type. 

Smart thermostat savings opportunities  grouped  by building type explain the aggregate results 

even more thoroughly . Again March and November have significantly more savings opportunities 

in the medium office of which there are many in the EPB service area. The other building type with 

significant demand savings potenti al is the retail stripmall.  

Switching ÈɯÉÜÐÓËÐÕÎɀÚ water heater from electric to natural gas or other fuel type  is another 

strategy that could reduce peak electric demand. This study indicates the greatest savings 

opportunit ies (Figure 7) in ÛÏÌɯÜÛÐÓÐÛàɀÚ service territory  for such a strategy in April and October.   

 

Figure 7. Changing water heaters from electricity to natural gas can relieve peak electric demand. 

This study found that a ÉÜÐÓËÐÕÎɀÚɯËÌÔÈÕËɯÊÖÜÓËɯbe reduced as much as 80% but averages 

approximately 5% of building peak.  

HVAC systems can also be changed from electricity to natural gas for heating. In fact, there are 

dual -fuel systems that offer additional resilience with the potential for a utility -controlled signal to 

request the equipment dynamically swap between electricity or  natural gas for heating. Such a 

demand management strategy will be most effective in the winter months.  Results, shown in Figure 

8, indicate that older buildings have the greatest average savings potential throughout the winter and 
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even have some savings opportunity in the summer. Newer buildings have close to zero savings 

opportunity in the summer and much lower savings opportunit ies in the winter months with greater 

savings potential from older commercial vintages (90.1-2004). While not shown here, the study found 

Quickservice restaurants to be the only building type that consistently showed potential demand 

savings from this strategy during summer months.  

 

Figure 8. Distributions of potential demand reduction  for a building, broken down by month and 

building vintage, achievable with swapping HVAC  equipment from electricity to natural gas or dual -

fuel equipment with a utility signal to reduce electricity use during peak  hour.  

5.3. Energy Efficiency 

6ÏÐÓÌɯËÌÔÈÕËɯÔÈÕÈÎÌÔÌÕÛɯÙÌÔÈÐÕÚɯÖÕÌɯÖÍɯÛÏÌɯÉÐÎÎÌÚÛɯÖ××ÖÙÛÜÕÐÛÐÌÚɯÍÖÙɯÛÖËÈàɀÚɯÜÛÐÓÐÛÐÌÚȮɯ

traditional energy efficiency remains one of the most cost-effective opportunit ies for long -term 

savings for building owners. In ÛÏÌɯÜÛÐÓÐÛàɀÚɯterritory, if the system -wide annual bill was shared 

equally among all buildings and cost USD 5 per year, USD 1 would be for demand and USD 4 for 

energy. 

Technologies 1ɬ6, presented initially in Table 2, are among the most common and cost-effective 

building energy efficiency measures considered. Annual electricity savings by vintage are shown in 

Figure 9. It should be noted that swapping the water heater or HVAC (two columns on the left) result s 

in higher electricity energy savings by shifting  related costs to other fuel types. This study shows that 

the oldest buildings have the most electricity savings potential.  While not shown here, preliminary 

results from the study indicate  that annual electricity savings are greatest for newer vintages when 

considering only commercial buildings.  
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Figure 9. Distribution of potential annual electricity savings for two fuel -switching technologies 

(water heater and HVAC), and four traditional energy efficiency measures.  

From a total energy and cost perspective, the traditional energy efficiency measures of a more 

efficient HVAC (typically at end -of-life), reducing infiltration (sealing leaks between the indoors and 

outdoors), adding insultation (further reducing conductive heat transfer), and swapping to mo re 

efficient lighting technologies , often are at the top of most building efficiency discussions.  

5.4. Emissions 

Long-term environmental impact of the building stock may be better considered via greenhouse 

gas emissions required for the creation and operation of a building. Many activities relevant to urban -

scale energy modeling are in service of individual cities defining sustainability plans with activities 

for curbing emissions of buildings and vehicles. In this study, a nnual emissions savings were 

calculated directly from annual electricity savings ÜÚÐÕÎɯ$/ ɀÚɯÌ&1(#ɯȻ27] and thus identical except 

for lbs/MWh scaling factor and resulting emissions unit.  In reality, peak demand electricity 

generation often has higher emissions than typical generation so peak demand shaving would result 

in higher values of emissions savings. This is not accounted for in this analysis. Changing from 

electric to gas ECMs is also not shown in the emissions figure, as the total savings from reducing 

electricity savings w ould not be realized as gas would entail emissions as well. As all emission plots 

are similar in  shape with a different scale, only CO2 emissions are shown in Figure 10. 
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Figure 10. Distribution  across buildings ÐÕɯÛÏÌɯÜÛÐÓÐÛàɀÚɯÚÌÙÝÐÊÌɯÈÙÌÈ of operational emissions savings 

for four traditional energy efficiency measures.  

5.5. Cost Savings 

While demand, energy, and emissions vary considerably in relative importance by stakeholder, 

almost all stakeholders consider potential cost savings. In these results, retail -rate electricity cost 

savings were calculated using the US national average for 2015 of USD 0.1041/kWh and USD 10.5/kW. 

Since residential buildings largely do not elect a demand -sensitive (e.g., time-of-use) pricing 

structure, these results show limited cost savings for demand response compared to annual electricity 

savings. The utility -wide total potential retail cost savings for both electricity and demand of each 

technology is shown in Figure 11. It should be noted that not all saving s could be realized for the 

switch from electricity to gas as the additional cost of gas, and concomitant potential loss of revenue 

for the utility,  is not considered here. 

 

Figure 11. Combined utility -scale energy and demand annual retail -rate electricity cost savings. 

While Figures 11ɬ13 constitute business intelligence that can lead to long-term program 

formulation and utility activities, the domination of individual building types at utility -scale can 
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obfuscate the short-term, per-building c ost effectiveness for deployment. Figures 14 and 15 normalize 

the demand and energy potential cost savings, respectively, while normalizing for number of 

buildings to achieve the savings that could be seen at an individual building.  In these results, it may 

be interesting to note reversal of trends from the totals. For example, switching to a gas water heater 

is actually a more effective cost reduction than switching to gas HVAC , while the totals indicated  the 

opposite. High-rise apartments appear to be excellent candidates for demand -related cost savings for 

several measures. When considering energy-related cost savings, switching to a gas water heater has 

a significant amount of savings in large hotel buildings as well as hospitals. Lighting efficiency  is 

estimated to have the greatest average potential savings opportunity for quick -service restaurants, 

outpatients, and full -service restaurants. However, since there are particular building types that lack 

a significant number of actual buildings in the ÜÛÐÓÐÛàɀÚɯservice area, these averages may be biased. 

 

Figure 12. Medium office buildings, the most prevalent commercial building type, account for the 

majority of total, utility -scale, demand-related cost savings. Smart thermostats have very little or 

negative annual electricity savings. 

 

Figure 13. Residential and medium office commercial buildings, due to number of buildings, 

dominate utility -scale potential electricity cost savings. 
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Figure 14. Average demand-related electricity cost savings by building type can indicate cost -

conscious opportunities for short -term wins in demand management . 

 

Figure 15. Average energy-related electricity cost savings by building type are on average 4x higher 

than demand-related savings and typically offer the best cost savings for building owners . 

In addition to demand - and energy-related cost savings, many older buildings may be reaching 

end-of-life for existing equipment or ready for a retrofit to modernize/upgrade the building, further 

increasing the timeliness and likelihood of deployment for energy efficient building technologies. 

Figures 16 and 17 show similar average per-building potential cost savings for demand and energy, 

respectively, broken down by vintage.  Generally, and perhaps counter-intuitively, older buildings 

are estimated to have lower demand savings potential for most technologies other than gas HVAC 

swapout for DOE-Ref-Pre-1980. In contrast to previous results, there are some cost savings for the 

smart water heater ECM, the DOE-Ref-1980-2004 vintage in particular had savings . 
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Figure 16. Average demand-related electricity cost savings by building vintage can indicate cost-

conscious opportunities for short -term wins in demand management.  

 

Figure 17. Average energy-related electricity cost savings potential by build ing vintage indicates 

significant savings opportunities. By combining building type and v intage for energy and demand, 

an initial estimate of cost savings can be used to determine if purchase and installation of these 

technologies may be cost-effective. 

6. Summary  

While there are currently a plethora of data sources, algorithms, software packages, and capable 

people behind the scientific and technological advancements, urban-scale energy modeling still has 

much to gain from cross-study comparative analysis as well as empirical validation against measured 

energy sources and building details before maturing toward the establishment of best practices and 

guidelines. In this study, a  ÜÛÐÓÐÛàɀÚɯÛÖ×ɯÍÐÝÌɯÜÚÌɯÊÈÚÌÚɯand nine monetization scenarios for a digital 

twin of build ings were reported. OpenStudio and EnergyPlus empirically validated building energy 

models of 178,337 buildings were constructed and used to assess the maximum technical adoption 

potential for distribution s of energy, demand, emissions, and cost savings of several building 

technologies. For brevity, only eight measures and a limited set of results summarizing distributions 








