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Abstract

Parallel coordinates has proven to be a scalable navigation framework for multivariate data. In parallel coordi-

nate visualizations, human perception leverages spatial locality to determine the existence of multivariate patterns.

However, when data with thousands of variables are at hand, we do not have a comprehensive solution to algorith-

mically select the right set of variables and order them to best uncover important or potentially insightful patterns.

To further complicate the matter, important patterns may be dependent upon domain-specific properties. In this

paper, we present a set of algorithms to rank axes based upon the importance of bivariate relationships among the

variables. We showcase the efficacy of the proposed system by demonstrating autonomous detection of patterns.

We demonstrate our approach using a modern large-scale dataset of time-varying climate simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-

niques. G.1.6 [Optimization]: Global Optimization. I.2.8 [Artificial Intelligence]: Problem Solving, Control Meth-

ods, and Search. J.2 [Computer Applications]: Physical Sciences and Engineering.

1. Introduction

Visualization and computational tools are necessary for the

analysis of large multivariate data. Parallel coordinates ren-

dering has proven very useful in this area as it allows in-

tuitive visualization of a multidimensional attribute space.

It is very natural to visually “chain together” a sequence of

variables in a layout that scales linearly with data dimen-

sion. Ideally, a parallel coordinate rendering should provide

a view containing sufficient information to guide users to the

most interesting parts of the underlying data. There are nu-

merous challenges addressed to varying degrees by current

literature relating to proper axis ordering, axis scaling, axis

shape, number of axes, rendering technique, clutter reduc-

tion, interactivity, etc. In this paper, we aim to address the

problem of automatically selecting the proper order of axes

by ranking them based upon an underlying system of metrics

which specifies relationships between each of the variables.

The traditional approach for axis ordering is to rely on the

user to drag axes into positions to discover and elucidate a

desired pattern. This goal is quite achievable when the data

at hand is manageably small in terms of the total number

of data points and variables that must be considered at any

particular time. However, without sufficient computational

tools, this task is quite daunting as we increasingly need to

handle datasets with hundreds or thousands of variables. Our

goal is to systematically address the axis ordering problem

with scalable algorithmic methods.

A parallel coordinates plot (PCP) can only show a handful

of axes on most screens without cognitively overloading the

user or obscuring patterns due to visual clutter. Therefore,

the task of selecting a relatively small subset of increasingly

large multivariate datasets becomes ever more complex. In-

deed, the ability to choose the “right” handful of multivari-

ate relationships can be highly context-specific. To approach

this, we note that users innately leverage spatial locality and

relate a given attribute to at most two (the axes before and

after) other attributes in a PCP. By doing so, we reduce the

problem space of multivariate relationships down to the se-

quence of bivariate relationships which PCPs innately repre-

sent. We provide a pair of algorithms to optimally or near-

optimally rank the variables of an N-variable dataset based

upon its O(N2) bivariate relationship while abstracting the

concept of “right” to a user-specifiable metric (correlation,

positive skew, etc.).
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The novelty of our work stems from our taking an opti-

mization driven perspective to explore the full potential of

using parallel coordinates to visualize datasets with a large

number of concurrent variables. We provide a pair of algo-

rithms to autonomously find the most interesting patterns.

We also devise a PCP rendering method to better reveal pat-

terns based upon underlying bivariate relationships visually

in parallel coordinates. We demonstrate our system on IPCC

climate simulation data. In total, we show parallel coordinate

renderings with axes selected from thousands of variables.

In the remainder of this paper, we first give a summary of

related works in Section 2. In Section 3 we introduce our

metrics for characterizing patterns. Section 4 introduces the

general optimization framework and how the metrics can be

used to detect specific patterns. Our depth-based PCP ren-

derer is introduced in Section 5. Finally, our results and dis-

cussion are provided in Section 6, and then concluded in

Section 7.

2. Background

Parallel coordinates, popularized in large part by [Ins85],

have become increasingly popular as a scalable technique

for visualization and interaction with large multivariate data.

A parallel coordinate plot (PCP) is a generalization of a

Cartesian scatterplot in which axes are drawn parallel to

one another. This type of diagram highlights the more com-

mon case of parallelism, rather than orthogonality, present

in higher-dimensional geometry. PCPs also allow an arbi-

trarily large number of dimensions to scale intuitively within

the plane, whereas human perception degrades quickly as di-

mensions higher than three are projected to a 2D display.

PCPs developed as a way to accurately visualize and

thereby gain insights from multidimensional geometry.

From their onset, several mathematical properties were

proven which enhanced their interpretation by defining

analogues between parallel coordinate space and two-

dimensional Cartesian scatterplots [MW02]. These included

the point-line, translation-rotation, and cusp-inflection point

dualities [Ins85,ID94]. This technique quickly found its way

into Vis [ID90].

There has been much research to alleviate some of the in-

herent weaknesses of PCPs such as visual clutter when deal-

ing with large data. Techniques for clutter reduction include

clustering, subsampling, and axis redirection. In [FWR99],

the authors use a clustering algorithm to create a hierarchi-

cal representation for PCPs and render a graduated band to

visually encode variance within a cluster. In [JLJC05], the

authors use K-means clustering, a high precision texture to

reveal specific types of clusters, multiple transfer functions,

and an animation of cluster variance to accurately convey

the clustered data while minimizing clutter. In [ED06], the

authors provide a sampling lens and demonstrate that ran-

dom sampling of lines within the lens is the optimum choice

in the tradeoff between their accuracy metric and perfor-

mance. In [WL96], the authors use the grand tour algorithm

to generate a d-space general rigid rotation of coordinate

axes which can be used to confirm separability of clusters.

Perceptual properties such as the importance of

axis orderings were considered as early as [Weg90].

While [Weg90] gives equations for selecting an order from

a set of axes, he in no way addresses optimality criteria. The

work most similar to this paper is the work of [PWR04]

in which a dataspace clutter metric was introduced in

combination with heuristic algorithms for determining axis

ordering. However, we more systematically address the axis

ordering problem with our introduction of customizable

metrics, globally optimal ranking, and near-optimal ranking

algorithms with lower theoretical complexity.

PCP implementations often operate on binned data and

even uncluttered PCPs often demonstrate data ambiguities.

The traditional straight-line rendering can be augmented

by using energy-minimization to render curved lines as

in [ZYCQ07]. Likewise, the authors in [GK03] used Gestalt

principles of good continuation in order to address ambi-

guities from line crossovers and shared values. Binning can

cause outliers to dominate data expression or be filtered out

altogether which has lead [Nov06] to more thoroughly an-

alyze the preservation of outliers while capturing the major

patterns in PCPs.

In additional to use solely as a visualization tech-

nique, PCPs can be used as an intuitive navigation and

query methodology. Recent research has demonstrated the

ability to interactively alter axis ordering, interactively

brush range queries, and use axis scaling to refine those

queries [SFJKY07]. The introduction of a navigation ele-

ment to the visualization leads naturally to more complex

data mining techniques. In [FL03], the authors use paral-

lel coordinates, and its circular variant, as multidimensional

visualization elements in a taxonomy of other techniques.

They also highlight user interface and analysis concerns,

highlighting the strengths and weaknesses of PCPs in the

context of other visualization methods.

There are also several variants of the traditional paral-

lel coordinates rendering. These include the circular vari-

ant in which axes are drawn as spokes of a wheel [FL03].

This approach was extended by [JCJ05] who created three-

dimensional parallel coordinate renderings by placing axes

like tent pegs in a circle around a central axis. PCPs were

also extruded into three-dimensional renderings by treat-

ing each line as a plane that could arbitrarily be trans-

formed [WLG97].

Closely related to our rendering technique is the line den-

sity plot of Miller and Wegman [MW91]. The authors sug-

gest that in crowded plots, visualizing the density of lines—

rather than the lines themselves—may be more informative.

They investigate the line density of normally and uniformly
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distributed random variable pairs. We apply a similar con-

cept to empirical datasets and use line density plots to per-

form bump mapping.

3. Metrics

When attempting to determine an optimized axis layout, the

criteria that makes such a layout desirable may vary depend-

ing upon the task at hand. For example, it is often the case

that users want layouts which minimize the amount of visual

clutter so that patterns can be easily detected; on the other

hand, researchers testing their own clutter reduction meth-

ods may be interested in testing on only the most cluttered

layouts.

We propose that the proper level of abstraction necessary

for this type of problem is to optimize based on the level

of some user-defined metric which should be designed to

capture the property of interest. In this way, we propose a

general set of algorithms which can be applied for truly op-

timal axis layout in whichever manner is deemed relevant by

the user, codified by a matrix of normalized metric values.

To relate parallel coordinates using the common spreadsheet

metaphor, each data item corresponds to a row and each col-

umn to an axis in the PCP. The final metric value thus en-

codes the information of interest in how one such dimen-

sional axis relates to all other dimensions for the given data.

The problem then becomes, which metric captures the

properties of potential interest for my type of data and the

question I want to investigate? While listing all possibili-

ties is innately intractable, we find that a surprising few sat-

isfy most needs along with mechanisms for creating variants

suited for a particular purpose. In this section, we focus on

a single pair of variables to develop quantitatively defined

metrics which capture distinctive patterns in data space. In

this paper, we provide the general mechanism to use any

given metric to autonomously reveal meaningful patterns in

large data. This capability facilitates the user’s first need of

quickly previewing the most unique pattern in a real-world

dataset containing thousands of variables.

Data space is the traditional environment for metric calcu-

lation since a metric is mathematically defined as a measure

of distance. Metrics used by our system are square matri-

ces with the number of rows and columns equal to the num-

ber of data dimensions. As such, there is a plethora of ap-

plicable mathematical metric definitions, frequently involv-

ing calculation of trans-dimensional variance over all data

points. The art of the system is to sufficiently constrain the

possible metric space to a measure appropriate for the cur-

rent investigation. However, beginning users should not be

expected to know or to care about individually defining their

own golden standard metric. In that regard we provide sev-

eral useful ones with widespread applicability while leading

into possibilities for the more sophisticated user.

One of the most commonly-used data space metrics is cor-

relation. While this is typically measured using Pearson’s

correlation, we have found that other measures of correla-

tion such as entropy-based mutual information or even liter-

ature keyword correlation are better than Pearson’s in certain

domain-specific contexts. While correlation does not neces-

sarily translate into causation, it is often used as an indica-

tor that can direct an analyst’s attention to potentially novel

knowledge discovery or warrant further investigation to de-

termine the active mechanism of causation.

More complex non-linear relationships are useful in con-

texts that warrant increased specificity. For example, general

modeling techniques such as Bayes’ rule for estimating risk

or physics-based models for estimating a property of inter-

est. Once the metric has been calculated and used to extract

a dimensional ranking, other dimensions which are highly

related to the computed metric are immediately visible and

can in turn be used to increase or decrease the complexity of

the current model.

4. Ranking Algorithms

Our goal is to develop a general system which autonomously

generates a near-optimal axis ordering by ranking variables

to obviate key bivariate relationships for a given dataset. The

only required data is a matrix containing values for each axis

pair which roughly denote the importance or strength of a re-

lationship between two attributes based upon a user-selected

or computationally defined metric. Here we present a pair of

algorithms which provide an optimality/time tradeoff based

upon a user’s given data size, computational resources, and

time constraints.

4.1. Optimal Ranking

Once given an N×N matrix corresponding to all pairwise

attribute metrics, the problem can be solved in the domain

of graph algorithms by treating it as an adjacency matrix. In

this scheme, there is a graph of N vertices and N2 edges from

which we want to extract what we shall refer to as an “opti-

mized k-walk” where k is the number of axes desired in the

parallel coordinate plot. This can be seen as a generalization

of the Traveling Salesman Problem in which the salesperson

must make an optimized visit to k ≤ N cities and reduces to

the classical problem for k = N.

The brute force method for solving an “optimized k-walk”

is to simply take every possible N choose k subset and per-

mute every subset’s k variables to find the maximum sum

of edge weights between consecutive pairs. This method is

O((N choose k)∗ k!) or O( n!
(n−k)!

) and can be used to find a

subset of k values which maximizes the fitness of the result-

ing ranking derived from this simple optimization equation:

∑
i=1,k−1

Weight(i, i−1) (1)
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While this method is guaranteed to find a globally opti-

mum axis ranking, it is NP-complete and therefore compu-

tationally intractable for all but the smallest datasets. Even

for a dataset with only N = 63 variables and k = 7 axes, if

calculating the optimum layout from 7! axis arrangements

took only 1 millisecond, the entire calculation would still

take approximately 6.5 days (our result using a 2.1Ghz Intel

Core 2). We stopped the global search algorithm for N = 126

variables using k = 7 axes after running 3 months. This al-

gorithm is embarrassingly parallel in that each N choose k

set of axes could be passed to a core, permutation tested,

and respond back with a fitness which hashes into a sorted

data struct. However, we felt that this was unnecessary as

approximate algorithms would suffice. For this reason, we

implemented some simple alternatives to this brute force ap-

proach that typically calculate a layout so near to optimal

that the difference is negligible.

4.2. Greedy Pairs Algorithm

Due to the NP-complete nature of the true optimization prob-

lem, we developed several approximation algorithms which

make various degrees of fitness/time tradeoffs. We include

only one such algorithm here as a simple example upon

which other algorithms could be based.

When we calculate an axis layout, it would make sense to

keep the pairs with the strongest relationship next to one an-

other rather than adding single axes greedily. In this greedy-

based algorithm, shown in figure 1, we begin by finding the

k largest weights in the graph using the naive selection algo-

rithm in O(k|V |2) time, where |V | is the number of vertices

in the graph (dimensions in the dataset) and k is the number

of axes to be shown in the final PCP. While this results in the

highest pairwise values, order matters since we would like

to string these pairs together in a way that maximizes the to-

tal fitness. We choose k pairs, resulting in 2k axes, despite

only needing k axes because we may have perfect pair over-

lap. Since each weight has two associated axes, each pair

is permuted to find the pairwise sequence which maximizes

the sum of weights from the first k consecutive axes (thus se-

lecting those axes discarding any additional axes). This algo-

rithm runs on the order of k|V |2 + k! and typically performs

negligibly close to the pure optimal algorithm. This algo-

rithm stably sorted 734 axes in 3.6 milliseconds on a 2.1Ghz

Intel Core 2.

5. Depth-Enhanced PCP Rendering

Traditional rendering of parallel coordinates involves ren-

dering the multidimensional data as a series of polylines.

The intersections between the polylines and the parallel axes

spatially indicate the values for each observation. Ideally,

the viewer’s visual cognition system will identify patterns

in the lines indicating relationships between variables. How-

ever, such a simple display easily becomes cluttered for even

small datasets and trends are difficult to discern.

The goal of our research is to automatically make trends

highly visible to the user. Accordingly, we have devel-

oped a novel method of parallel coordinate rendering that

emphasizes variable relationships with easily perceived 3-

dimensional cues. Instead of treating each line separately,

we render the series of lines as a planar surface and shade

each point on the surface according to the number of lines

that intersect at the point. Our 3-D approach enables the hu-

man perceptual system to quickly parse the display to find

interesting trends, which may emerge as ridges or valleys.

Our renderer first rasterizes all polylines and calculates

the depth complexity, or the number of times each pixel is

drawn into. Pixels of high complexity represent locations

where many lines intersect. We then use this depth complex-

ity image to calculate a normal map. The lines are cleared

and a single bump-mapped quadrilateral is drawn in their

place. Each fragment’s normal is retrieved from the normal

map texture, and its depth complexity is used to index into

an RGBA transfer function. The normal and color are used

to perform traditional Phong lighting.

Example renderings of our method for two artificial

datasets are shown in figure 2. Occlusion in traditional line

renderings often masks or subdues trends. By enhancing the

parallel coordinate display with a normal map derived from

the depth complexity image, these trends are strongly em-

phasized through color and specular and diffuse lighting.

For the uncorrelated dataset in (a), the depth complexity im-

age has nearly constant slope, yielding slow color changes

and flat surfaces in the enhanced rendering. The correlated

dataset in (b), however, contains a strong ridge where many

observations overlap.

The resulting heightfield can be scanned quickly for

prominent features or manipulated by the user. The light

source can be translated interactively in three dimensions to

investigate the surface cues through shading changes. The

opacity of regions of low or high complexity can be mod-

ulated with a transfer function widget. Since our approach

uses color to denote depth complexity, individual lines are

not colored separately. To support this, we allow the user to

further modulate opacity with a second transfer function in-

dexed by each line’s value on the selected axis.

6. Results and Discussions

We have tried many metrics but will use Pearon’s correlation

in results for this section as it is the easiest to visually verify.

Since our optimization framework maximizes the metric un-

der various constraints, a target of 1 or -1 will yield highly

correlated or inversely correlated results. If you set the target

to [−0.2,0.2], then the system will instead show things that

are mostly uncorrelated, very dissimilar from [-1,1]. We will

showcase some of our results in sections 6.2- 6.3 after first

describing a dataset currently undergoing active exploration

in section 6.1.
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6.1. Climate Simulation Data

We use the greedy pair algorithm to determine an optimal

ordering of axes based upon correlation in the following ex-

amples. The proposed system is compatible with any multi-

variate data and the examples presented in this section will

utilize climate data. The climate data used here contains 63

physical variables recorded on a monthly basis for 10 years

(2000-2009) of IPCC climate simulation. In total, we con-

sider 63× 12× 10 = 7560 attribute dimensions by treat-

ing time steps independently. Moreover, the simulation grid

corresponding to land points constitutes 7,311 polylines for

each axis layout. Most systems will not contain so many di-

mensions, but we wanted to demonstrate the speed and flex-

ibility of our system on such a large, real-world dataset. Due

to this large datasize, we use a greedy pairs algorithm for the

most timely performance unless otherwise noted. Through-

out this paper, we typically use 7 axes based upon the limits

of human cognition to 7 units of information for short-term

memory [Mil56].

6.2. Ostentatious Patterns

When we use the Pearson’s correlation metric on the climate

data, the system returns the most highly correlated variables.

In this example we begin with only 63 climate variables for

January of 2000 and compute the truly globally optimum

layout using the correlation metric. As shown in figure 3, the

system has detected several variables which are highly cor-

related. This type of plot verifies the system is working cor-

rectly since all these variables are differing measures of tem-

perature that should be roughly correlated; left to right these

are: TREFMXAV-maximum average temperature at two me-

ters, ZBOT-temperature and humidity at two meters, TBOT-

atmospheric air temperature, THBOT-atmospheric air poten-

tial temperature, TV-vegetation temperature, TSA-air tem-

perature at two meters, and TG-ground temperature.

In this example, we add the temporal dimension for an

order of magnitude more variables. Since we treat variables

from separate timesteps independently, the system has se-

lected a layout which shows the common-sense relation of

an attribute’s self-correlation across disparate timesteps. As

shown in figure 4, snowfall during the summer months of

2000-2009 is somewhat consistent. This example was cho-

sen for a few reasons. First, it highlights the fact that the sys-

tem can detect patterns which may be surprising and unex-

pected, prompting the user to create metric variants through

constraints. Second, while repeating axes are not allowed in

this example, additional removal of correlation with other

variables throughout time can be a desirable property and is

supported by our system. Third, the years for the layout axes

are unordered and a constraint which has time increasing to

the right may be more intuitive.

6.3. Constraints for Innate Patterns

By taking the above constraints into account, a user may now

be interested in seeing inversely correlated variables (by sub-

tracting the constrained matrix from a matrix of ones). The

result can be seen in figure 5. RSSUN/RSSHA are measures

of leaf stomatal resistance which is dependent upon the in-

cident photosynthetically active radiation. In this PCP, the

system has selected axes which are inversely proportional

in equidistant months (alternating April/October) in which

the direct rays of the sun are at their maximal relative dif-

ference. This example shows that the system can display

patterns which are novel and interesting to naive users but

which make complete sense to domain-specific experts.

Global warming is a common concern that scientists at-

tempt to verify and understand when looking at climate data.

One of many ways to gauge global warming is in the vari-

ance of snow depth throughout many years. By using cor-

relation, our system produced the PCP shown in figure 6

which shows a strong correlation in snow depth through-

out the years. As may be expected, there are many locations

which have no snow (red line at bottom), a few that have a

little snow (blue area), and more that are typically covered

in snow (green area). However, there are some highlighted

ridges in our rendering corresponding to grid points whose

snow depth have varied significantly and should be checked

for location of important polar ice caps.

7. Conclusion and Future Work

In conclusion, we have provided a general mechanism for

the optimized ranking for axis ordering in parallel coordi-

nates visualizations along with algorithms to manage sub-

optimal ranking tradeoff for time depending upon data size.

We have developed a depth-enhanced parallel coordinate

renderer that uses surface cues to more effectively display

trends over traditional line drawings. The results demon-

strated clearly show the automatic ranking and selection of

meaningful patterns in PCP axes for large, time-dependent,

multivariate, climate data.

There are several partially completed items that we con-

sider as potential future work. First, formalize work on defin-

ing constraints on the bivariate matrix to provide intuitive

control for users while pruning the search space. Second, we

have already coded up a learning system to help users de-

termine which metrics are important for a specific pattern of

interest and now analyzing the results. Third, there are sev-

eral other graph-based algorithms which could be used for

determining an axis ordering such as pairwise shortest path

between two specific variables of interest. Fourth, the opti-

mization framework presented here optimizes on the basis of

bivariate relationships but a more general multivariate trend

detection mechanism would allow the detection of nonlinear

(sinusoidal) patterns.
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int getFitness(int numAxes,

int* layout, graph* g) {

int i, v1,v2, fitness=0;

for(i=1; i<numAxes; i++) {

v1=layout[i-1]; v2=layout[i];

fitness += g->adjmat[v1][v2];

}

return fitness;

}

int getHighestEdges(int numAxes, graph* g,

int** tX, int** tY, int allowRepeats) {

int i,j,k, val,max, axis,got;

int tarX[numAxes], tarY[numAxes];

for(axis=0; axis<numAxes; axis++) {

max=SHRT_MIN; // find k best pairs

for(i=0;i<g->numVerts;i++)

for(j=0;j<i;j++) { //entire matrix

got=check(tarX,tarY,i,j,allowRepeats);

val = g->adjmat[i][j]; //new max?

if (val!=INAN && got==0 && max<val) {

max=val; tarX[axis]=j; tarY[axis]=i;

}//end max check

}//end O(V^2)

}//end naive k best pairs O(kV^2)

*tX = tarX; *tY = tarY; return 0;

}

int* maxPermPairs(int num, int* tarX, int* tarY,

graph* g) {

int i,k, max, fitness = -1;

int a[num], layout[num+1],bestLayout[num+1];

for(i=0; i<num; i++) a[i]=i;

for_all_permutations_of_a[i] {

for(k=0;k<(num+1)/2;k++) { //best perm?

layout[2*k ] = tarX[a[k]];

layout[2*k+1] = tarY[a[k]];

}

if((num+1)%2==1)

layout[num]=tarX[a[(num+1)/2]];

fitness=getFitness(num+1,layout,g);

if(fitness>max) {

max = fitness;

memcpy(bestLayout,layout);

}

} // End O(num!)

return bestLayout;

}

int* greedyPairs(int numAxes=7, graph* g) {

int *tarX, *tarY;

getHighestEdges(numAxes, g, &tarX, &tarY, 0);

return maxPermPairs(numAxes, tarX, tarY, g);

}

Figure 1: Pseudocode for the quick, near-optimal greedy

pairs algorithm.

(a) Uncorrelated (b) Highly Correlated

Figure 2: Detecting trends in parallel coordinate displays

made easier with 3-D surface cues. (top) Traditional line

rendering of two generated datasets. Column (a) represents

an extremely uncorrelated dataset where every data item on

the first axis is connected to every data item on the second.

Column (b) is a dataset where half of the observations are

randomly generated and half are randomly offset from an in-

verse relationship. (middle) Depth complexity images of the

line renderings in which white indicates a high number of

intersecting lines. (bottom) Our method of PCP rendering

with surface cues. The line rendering is bump-mapped using

the depth complexity image.
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Figure 3: The system finds a strong correlation between var-

ious measures of temperature in Jan’00.

Figure 4: Constraints are included to keep the system from

finding repeated results of self-correlation through time.

Figure 5: Inverse correlation with consistent time con-

straints which relates the variance of radiation intensity on

leaves as a function of the earth’s tilt throughout the seasons.

Figure 6: One way of measuring global warming showing

strong correlation of snow depth between years. Our render-

ing technique also shows V-shaped highlights corresponding

to grid locations that my warrant further investigation for

snow/ice melting.
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