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Note for the PDF version of these slides.

• The LIDAR demonstration videos are not in this PDF, but you may 
view them at: 

http://web.eecs.utk.edu/~jplank/2019-03-27-NICE-Video.mp4

• The video of the spiking convolutional layer may be viewed as part of 
my 2020 ICRC talk: 

https://www.youtube.com/watch?v=Q-7FJOS7dhI

• All of our publications may be accessed via:
http://neuromorphic.eecs.utk.edu/

http://web.eecs.utk.edu/~jplank/2019-03-27-NICE-Video.mp4
https://www.youtube.com/watch%3Fv=Q-7FJOS7dhI
http://neuromorphic.eecs.utk.edu/
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TENNLab Mission

Nanoelectronics,
Circuits, ASICs, FPGAs, 
Applications, Systems, 
Algorithms, Training.  

http://neuromorphic.eecs.utk.edu

To explore all facets of brain-based, Neuromorphic 
computing via recurrent, spiking neural networks.



In this talk

http://neuromorphic.eecs.utk.edu

• I’ll highlight the research of my colleagues
• And give you a deeper dive into some of my projects
• Software Framework
• Control applications
• Input Encoding
• Compressing convolutional layers



• Hafnium oxide based RRAM
• FEOL/BEOL compatible process
• 1 Transistor / 1 RRAM configuration for memory 

arrays and individual memory cells

CMOS/RRAM Hardware (RAVENS)
Fabrication / Integration Approach

M2

M1

V1

CA
Gate

Drain

RRAM

http://neuromorphic.eecs.utk.edu

• Integrated CMOS/RRAM neuronal learning circuits
• SUNY Poly’s 65nm CMOS + RRAM process design 

kit (PDK) successfully transferred to UT-Knoxville, 
UT-San Antonio, UT-Austin, and Arizona State.

J. Hazra, M. Liehr, K. Beckmann, M. Abedin, S. Rafiq, N.C. Cady. Optimization of Switching 
Metrics for CMOS Integrated HfO2 based Bipolar RRAM Devices on 300 mm Wafer 
Platform. Submitted to IEEE International Memory Workshop – February 2021. 



http://neuromorphic.eecs.utk.edu
S. Sayyaparaju, M. M. Adnan, S. Amer and G. S. Rose "Device-aware Circuit Design for Robust 
Memristive Neuromorphic Systems with STDP-based Learning", ACM Journal on Emerging 
Technologies in Computing Systems, 16(3), May, 2020.
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Neuromorphic Engine Control for Fuel Efficiency

Internal 
Combustion 

Engine

EONS 
Training on 

Summit

Closed Loop 
Control

SNN to 
evaluate

Fitness
Score

Trained SNN for 
Deployment

Observations

Action

• Developed a complete workflow to train a spiking neural network 
(SNN) to deploy to an FPGA-based neuromorphic hardware system 
for internal combustion engine control.   

• SNN-based approach outperforms fixed control strategies in terms of 
fuel efficiency in simulation while still meeting acceptable 
performance metrics.

• Currently deploying SNN trained on Summit to neuromorphic 
hardware in-the-loop with engine at National Transportation Research 
Center.

Catherine D. Schuman, Steven R. Young, J. Parker Mitchell, J. Travis Johnston, Derek Rose, Bryan P. 
Maldonado, Brian C. Kaul. “Low Size, Weight, and Power Neuromorphic Computing to Improve 
Combustion Engine Efficiency.” International Conference on Green and Sustainable Computing 2020.  
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Project #1

TENNLab Neuromorphic Computing Framework, V6

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2019.
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TENNLab Neuromorphic Computing Framework, V6

Applications

Software Core with Common Interfaces and Input/Output Coding

Architectures/Devices

Algorithms

This picture has looked pretty much the same for years.
The difference is interoperability.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.
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TENNLab Neuromorphic Computing Framework, V6

Software Core with Common Interfaces and Input/Output Coding

Architectures/Devices

Algorithms

Static Data 
Classification

Temporal Data 
Classification Event Detection Control

Applications

• Through 2019, our team wrote all of the applications in C++.
• With V6, we interoperate with Scikit Learn, Scikit, Optimize, OpenAI Gym (ALE)
• Workflow in C++ and in Python

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.
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TENNLab Neuromorphic Computing Framework, V6

Software Core with Common Interfaces and Input/Output Coding

Architectures/Devices

Whetstone, EONS, LEAP, Decision Trees, Bayesian HO, Reservoir.

Applications

• Through 2019, EONS was it.
• Interoperation with python enables other ML techniques.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.



http://neuromorphic.eecs.utk.edu

TENNLab Neuromorphic Computing Framework, V6

Software Core with Common Interfaces and Input/Output Coding
Objects for coding, generic network objects, processor interface

All C++ but with python bindings & JSON serialization

Architectures/Devices

Algorithms

Applications

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.
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TENNLab Neuromorphic Computing Framework, V6

Applications

Software Core with Common Interfaces and Input/Output Coding

Architectures/Devices

Algorithms

mrDANNA DANNA2 Biom SOENS Caspian

Written by us or with our help. Written by others.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.



http://neuromorphic.eecs.utk.edu

TENNLab Neuromorphic Computing Framework, V6

Applications

Software Core with Common Interfaces and Input/Output Coding

Architectures/Devices

Algorithms

If you’re interested in trying it out, please let me know.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean and G. S. Rose, The TENNLab
Exploratory Neuromorphic Computing Framework, IEEE Letters of the Computer 
Society, 1 (2), 2018.
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Project #2

LIDAR-based control applications

J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.
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LIDAR-based control applications
Real-Time Application Equipped with LIDAR Sensors

LIDAR Readings
Converted to spikes

Recurrent, Spiking 
Neuromorphic System

Decision
Rotate, Thrust, Fire

At periodic intervals
Trained with EONS
(genetic algorithm)

J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#1: Front-Facing Sense-and-Avoid (FFSA) - Navigation

• Vessel with a 5X5 array of LIDAR Sensors
• Boost in 6 directions

Distance attained to goal
Distance to goal

0.6 penalty
for crash

( )
)

Objective:

* ( Vessel

Goal Obstacles

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#1: Front-Facing Sense-and-Avoid on mrDANNA (memristive)

25 Lidar

BiasHLAngle

L - R D - U F - B

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.





#1: Front-Facing Sense-and-Avoid on mrDANNA (memristive)
Interesting Thing #1:
Bias links directly to 

the “Go Forward” neuron.

Bias

Forward

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#1: Front-Facing Sense-and-Avoid on mrDANNA (memristive)

Interesting Thing #2:
Angle left goes directly to 
the “Rotate Left” neuron.

Rotate Left

Angle Left

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#1: Front-Facing Sense-and-Avoid on mrDANNA (memristive)

Interesting Thing #3:
Sometimes you have

conflicting goals.

The goal is to my left

There’s trouble to my left

Left Up Back!

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#2: Bowman - Targeting

• Bow & arrow with 7 LIDAR sensors, equally spaced.
• Rotate left, rotate right, shoot (with cool down)

birds shot
birds spawned

birds shot
arrows shot( )( )

Objective:

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#2: Bowman on DANNA 2 (FPGA/ASIC)

Fire when LIDARs are Off

Rotate
Left/Right Fire

Don’t Fire

Fire when LIDARs are On

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#2: Bowman on DANNA 2 (FPGA/ASIC)

10 Second Clip 
of the network 

in action.

http://neuromorphic.eecs.utk.edu



#3: Space Invaders – Movement Planning

• Robot with upward-firing missiles, 
11 LIDAR sensors, plus a cooldown.

• Move left, move right, fire

aliens shot
missiles fired

survival time
mission time( )( )

Objective:

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#3: Space Invaders on NIDA (Analog, 3D)

Move left

Low LIDAR Readings

Don’t Fire Fire

Move right

Stay put

High LIDAR Readings

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#3: Space Invaders on NIDA (Analog, 3D)

Move left

Low LIDAR Readings

Don’t Fire Fire

Move right

Stay put

High LIDAR Readings

10 Second Clip 
of the network in 

action.

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#4: Asteroids – Targeting & Avoidance

• Spaceship with 30 LIDAR sensors in 360 degree field of vision.
• Rotate left, rotate right, thrust, fire.

asteroids shot
max shots

survival time
mission time( )( )

Objective:

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#4: Asteroids on DANNA 2 (FPGA/ASIC)

Input
LIDARs

Rotate Thrust Fire

http://neuromorphic.eecs.utk.edu
J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.



#4: Asteroids on DANNA 2 (FPGA/ASIC)
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Control Applications - Takeaways

• LIDAR input simple, effective.
• Evolved networks are small.
• EONS paradigm is a natural fit for training.
• Can give insights into network design.
• Would like to compare better with RL algorithms.

J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. 
Schuman et al, “The TENNLab Suite of LIDAR-Based Control Applications for 
Recurrent, Spiking, Neuromorphic Systems” GOMACTech, 2019.
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Project #3

Evaluating Input Encodings

C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019
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Explore the ramifications of variants of population coding
on the training success of classification and control 

applications.

Evaluating Input Encodings

Value

Neuron

Neuron

Neuron

NeuronStep 1: Select 
neuron(s) from value.

Step 2: Generate spikes and values 
within the neuron(s)

C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019
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To convert input values to spikes, partition the domain into 
bins, and use one input neuron per bin.

Once the bin is determined, the value is converted to a 
second value between 0 and 1, which is the input into the bin.

Evaluating Input Encodings

C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019



Evaluating Input Encodings

The second value’s determination can vary: Simple, Flip-flop, Triangle.

Flip-Flop

Triangle

http://neuromorphic.eecs.utk.edu
C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019



Evaluating Input Encodings

And within the bin, there are multiple ways to enter the second value:

• Vary minimum spike value
• Vary maximum spike value
• Number of spikes

http://neuromorphic.eecs.utk.edu
C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019



Experiment

• Two classification applications (Radio, 3-MNIST)
• Two control applications (Pole balance, Robonav)
• Four neuroprocessors
• Training with genetic algorithm (EONS)
• TENNLab Software Framework
• 230 Hyperparameter combinations per test

http://neuromorphic.eecs.utk.edu
C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019



Sample Results (Pole Balancing)

http://neuromorphic.eecs.utk.edu
C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj, Non-Traditional Input 
Encoding Schemes for Spiking Neuromorphic Systems, IJCNN: The International Joint 
Conference on Neural Networks, 2019



Input Encoding: Conclusions

C. D. Schuman, J. S. Plank, G. Bruer and J. Anantharaj,
“Non-Traditional Input Encoding Schemes in Spiking Neuromorphic Systems,” IJCNN, 2019.

M. Parsa, P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok and K. Roy
“Bayesian-Based Hyperparameter Optimization for Spiking Neuromorphic Systems,”  IEEE 
Conference on Big Data, 2019.

• Encoding technique has a profound effect on training success.
• Of course, there’s no “one-size-fits all”.
• Can use Bayesian optimization to reach same conclusions with 

far fewer tests (2nd paper).
• Gives us a starting point for new applications.

We call it Fred: { “spikes”: { “flip_flop”: 2, “ov_interval”: 8 }

• Could use some better theory.

http://neuromorphic.eecs.utk.edu



http://neuromorphic.eecs.utk.edu

Project #4:

Compressing convolutional layers in spiking Deep networks.

J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The Whetstone Approach

• Train in Keras

• Port to your favorite SNN.

W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi and J. B. Aimone, "Training Deep Neural 
Networks for Binary Communication with the Whetstone Method", Nature Machine 
Intelligence, January, 2019, pp. 86-95.

http://neuromorphic.eecs.utk.edu



The Whetstone Approach

Let’s take a look at the convolution operation.

In a standard ANN, there is one of these 
used for all inputs/outputs in a layer.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The Whetstone Approach

When you convert this to a SNN, each multiplication becomes a synapse.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The Whetstone Approach

And these 
synapses 
add up!

Largest MNIST Network

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The High Level Picture

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The High Level Picture

At time 0, all of the non-zero inputs spike.

And then the SCS gets to work.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The High Level Picture

The OSN spikes (roughly) at time 2i if output i is 1.

The ODS routes those spikes to the correct outputs.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The High Level Picture

At the final timestep, the proper outputs fire.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



The details are beyond this talk, but look at this example:

http://neuromorphic.eecs.utk.edu



Experiment: Keras -> Whetstone -> DANNA2

Nearly 20x 
fewer 

synapses.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



Status

• Training module in TENNLab Software Framework

• Verified with DANNA 2 and “GNP” neuroprocessors

• Nice target application for SNN neuroprocessors.

http://neuromorphic.eecs.utk.edu
J. S. Plank, J. Zhao and B. Hurst, Reducing the Size of Spiking Convolutional Neural Networks 
by Trading Time for Space, IEEE International Conference on Rebooting Computing (ICRC), 
December, 2020.



Recap

http://neuromorphic.eecs.utk.edu

• Nate Cady: Fabricating CMOS/RRAM Hardware
• Garrett Rose: Memristor modeling, circuits and systems
• Katie Schuman: Neuromorphic fuel efficiency
• Sampling of my projects
• Software Framework
• Control applications
• Input Encoding
• Compressing convolutional layers


