Question 4

I am running an instance of a Disjoint data structure, which is to the right. I do a bunch of
operations on it, and when I call Print(), it prints the following:

Elts: 0o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
Links: -1 0-1 2 0 2 2 2 0 5 2 -1-117 17 11 17 2 17 17
Ranks: 2 1 3 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1

Answer the following questions:

A: How many disjoint sets did I start with when I first started running the program?
B: How many disjoint sets are there now?

C: How many times has Union() been called?

D: Union-by-size is most definitely not the implementation here. Why?

E: What are the sizes of each set?

F: Suppose I want to prove that the implementation uses path compression. I can do
that by calling either Union() or Find(), and then Print(). Tell me which call it is
(Union() or Find()), what the parameter(s) should be, and how the Print() statement
will prove whether path compression is being implemented. I want specifics here, not
vague junk like "call Union() on two sets and the ranks fields will tell you whether
path compression is being used." That answer is a zero.

Question 5

A: If anode is at index i in a heap, at what index is the node's parent?
B: If a node is at index i in a heap, at what indices are the node's children?

Question 6

#include <vector>
#include <iostream>
#include <cstdio>
using namespace std;

class Disjoint {

public:
Disjoint(int nelements);
int Union(int sl1, int s2);
int Find(int element);
void Print();

protected:
vector <int> links;
vector <int> ranks;

}i

C: Suppose a heap is in the vector {8, 27, 66,29, 58,93, 71,36,78,75}. What is the vector after you call Push(9)?
D: Suppose a heap is in the vector {8, 27, 66,29, 58,93,71, 36, 78, 75}. What is the vector after you call Pop()?

Write a program that reads words on standard input, and prints them sorted by the average of their ASCII character values (in
ascending order). Print one word per line. If two strings have the same averages, then print the one that you read in first before the
other one. You may not make any assumptions on the number or words or the maximum word size.

Examples:

UNIX> echo bbb abb aaa baa | a.out
aaa

baa

abb

bbb

UNIX> echo xxxx xx wy ww | a.out
ww

XXXX

XX

wy

UNIX> echo aaaa bb aa bbbb a b aaaaa
aaaa

aa

a

aaaaa

bb

bbbb

b

UNIX>

a.out




