
CS302 Final Exam – Fall, 2009 – James S. Plank
Question 1

In each of the following parts, you will be given two algorithms, one labeled A and one labeled B. For each part, you need
to answer one of the following: “A is faster than B.” “B is faster than A”, “They are the same.” Use the answer sheet, and
unless it is specified, you are comparing big-O running time of the worst case. For sorting algorithm, the number of items is
n. For graph algorithms, the graph has n nodes and O(n) edges. For Union-Find, the number of items is 2n, and there have
been a variety of Union and Find operations that have been executed already. Assume the best implementation.

Algorithm A Algorithm B
Part 1: Merge Sort Quicksort
Part 2: Depth First Search Network Flow
Part 3: Shortest path from a to b on an unweighted graph Depth First Search
Part 4: Heap Sort Insertion Sort
Part 5: Heap Sort Merge Sort
Part 6: Bucket Sort Merge Sort
Part 7: Performing n Union operations Performing n Find operations
Part 8: Minimum spanning tree using Prim's algorithm Dijkstra's Algorithm.
Part 9: Minimum spanning tree using Kruskal's algorithm Performing n Union operations
Part A: Merge Sort Cycle detection
Part B: Shortest path from a to b on an unweighted graph Determining connected components
Part C: Performing n Find operations Doing matching on a bipartite graph
Part D: Bucket Sort Traversing a STL map with n elements.
Part E: Edmonds-Karp Dijkstra's Algorithm
Part F: The dice-or-no-dice lab, n-sided die, 10 throws Minimum spanning tree using Prim's algorithm

Question 2:

Given the graph on the right:

Suppose you run Dijkstra's algorithm on this graph starting
at node A. List the order in which the nodes are visited.

Question 3:

Give the order of the edges that are added to the minimum spanning
tree of the graph to the right using Prim's Algorithm and using
Kruskal's Algorithm. If the algorithm requires a starting node, use
node A.

Question 4:

class Node {
 public:
 vector <class Node *> edges;
 int tmp;
};
class Graph {
 public:
 vector <Node *> nodes;
 int Shortest_Path(Node *a, Node *b);
};

Given the class definitions above for an unweighted graph, implement Graph::Shortest_Path(a, b), which returns the
length of the shortest path from node a to node b, and returns -1 if there is no path.

A B C

FED

G H I

9.1 6.7

7.8

5.1

11.22.0

8.4

1.2
12.3

4.5

10.6

3.9

Question 5:

You are given the directed graph to the right with source
A and sink E.

What is the maximum flow through the graph?
What is the minimum cut of the graph?

We discussed three augmenting path algorithms in
class: Greedy DFS, Modified Dijkstra, and Edmonds-Karp.
For each of these algorithms, I want you to tell me three
things about the algorithm on this graph:

A. What is the first augmenting path and what is its flow?
B. What is the second augmenting path and what is its flow?
C. What is the residual graph after the first augmenting path is processed?

To be specific, your answer needs to have 11 components:

1. The maximum flow through the graph. This is a number.
2. The minimum cut through the graph. You should know how to specify a cut.
3. For Greedy DFS: The first augmenting path and its flow. You may specify a path as, for example, “ACBDE”.
4. For Greedy DFS: The second augmenting path and its flow.
5. For Greedy DFS: The residual graph after the first augmenting path is processed.
6. For Modified Dijkstra: The first augmenting path and its flow.
7. For Modified Dijkstra: The second augmenting path and its flow.
8. For Modified Dijkstra: The residual graph after the first augmenting path is processed.
9. For Edmonds-Karp: The first augmenting path and its flow.
10. For Edmonds-Karp: The second augmenting path and its flow.
11. For Edmonds-Karp: The residual graph after the first augmenting path is processed.

Put your answer on the answer sheet provided. Also, I have included some work sheets. DO ALL OF YOUR WORK ON
THE WORK SHEETS AND THEN GIVE ME NICE NEAT ANSWERS ON THE ANSWER SHEET. If your answer is
messy, get another answer sheet and redo it. Do not hand in the work sheet.

Question 6:

This is a dynamic programming problem. Suppose the functions F1(int x, int y) and F2(int x, int y) are all defined for
you, and they both return positive doubles. We define the function X(int x, int y) as follows:

– X(0,0) equals 1.
– X(x,y) is equal to negative infinity if either x or y is less than zero.
– Otherwise, X(x,y) equals the maximum of (F1(x,y)+X(x-1,y) and (F2(x,y)+X(x,y-1)).

Behold the class definition to the right.

Your job is to implement CalcX::X using a recursive
dynamic program with memoization.

Do a good job with this – try not to give me sloppy code.
You may not add anything to the class definition.

55
A

B
C

D
E

10

50

4520
25

35

typedef vector <double> Dvec;

class CalcX {
 protected:
 vector <Dvec> cache;
 public:
 double X(int x, int y);
};

Answer Sheet: Name & Preferred Email:

Question 1: Circle your answers:

Part 1: A is faster than B. B is faster than A. They are the same.
Part 2: A is faster than B. B is faster than A. They are the same.
Part 3: A is faster than B. B is faster than A. They are the same.
Part 4: A is faster than B. B is faster than A. They are the same.
Part 5: A is faster than B. B is faster than A. They are the same.
Part 6: A is faster than B. B is faster than A. They are the same.
Part 7: A is faster than B. B is faster than A. They are the same.
Part 8: A is faster than B. B is faster than A. They are the same.
Part 9: A is faster than B. B is faster than A. They are the same.
Part A: A is faster than B. B is faster than A. They are the same.
Part B: A is faster than B. B is faster than A. They are the same.
Part C: A is faster than B. B is faster than A. They are the same.
Part D: A is faster than B. B is faster than A. They are the same.
Part E: A is faster than B. B is faster than A. They are the same.
Part F: A is faster than B. B is faster than A. They are the same.

Question 2: ______

Question 3: Order of edges in Prim's Algorithm: ___

Question 3: Order of edges in Kruskal's Algorithm: __

Question 5:

Max Flow:___________ Minimum Cut: _____________________________

Greedy DFS: Modified Dijkstra Edmonds-Karp

1st Path & Flow: ______________ 1st Path & Flow: _______________ 1st Path & Flow: _________________

2nd Path & Flow: ______________ 2nd Path & Flow: _______________ 2nd Path & Flow: _________________

Residual after 1st Path Below: Residual after 1st Path Below: Residual after 1st Path Below:

A

B
C

D
E

A

B
C

D
E

A

B
C

D
E

Answer Sheet, Page 2: Name & Preferred Email:

Question 4:

int Graph::Shortest_Path(Node *a, Node *b)
{

}

Question 6:

double CalcX::X(int x, int y)
{

}

