
CS302 Final Exam -- December 6, 2010

Answer all Questions

Question 1

Specify the big-O running time of the following operations. For each, please specify the worst case running time. You may assume:

A vector has n elements.

A disjoint set instance has n elements, and you are implementing union by rank with path compression.

A graph has V nodes and E edges.

Part A: Finding fib(n) using dynamic programming with memoization. 

Part B: Determining the connected components in a graph. 

Part C: Finding an augmenting path through a residual graph using the modified Dijkstra's algorithm. 

Part D: Performing union() in disjoint sets. 

Part E: Performing find() in disjoint sets. 

Part F: Using Prim's algorithm to find a minimum spanning tree of a graph. 

Part G: Sorting a vector using merge sort. 

Part H: Sorting a vector using quicksort. 

Part I: Finding the shortest path from node a to node b in an undirected, unweighted graph. 

Part J: Doing the "coins" dynamic program with memoization. You have c denominations of coins, and you want to determine a

collection of coins whose values sum to n, which is composed of the minimum number of coins.

Question 2

Behold the following prototype to quicksort:

void quick_sort(vector <double> &v, int start, int size);

The procedure will use quicksort to sort the size doubles in v, starting with element start. It assumes that v has at least start+size

elements. It does not default to insertion sort below a certain size.

Below are three calls to quick_sort(). For each, show me exactly what recursive calls quick_sort() makes. You don't have to show

additional recursive calls -- just the ones made by that call to quick_sort(). Use the median-based pivot selection algorithm.

Specify the recursive calls just as I do -- specifying v, start and size.

Call #1: v = { 58, 25, 85, 10, 60, 1, 77 }, start = 0, size = 7.

Call #2: v = { 46, 71, 12, 41, 18, 23, 93, 65, 19, 62, 55 }, start = 2, size = 5.

Call #3: v = { 41, 28, 0, 77, 72, 12, 91, 65, 39, 99, 30, 75, 51, 13 }, start = 1, size = 11.

Question 3

Explain the classes P, NP and NP-complete. How do you prove that a problem is NP-complete?

Question 4

Explain Dijkstra's algorithm. What problem does it solve? Exactly how does it work? What is the running time of each step? Give a

small example of how it works on the graph with:

V = { A, B, C, D }

E = { (A,B,8), (A,C,20), (B,D,30), (C,D,6) }

Starting node A. Ending node D.


