CS302 Final Exam, December 9, 2014 - James S. Plank

Question 2

Part 1: To the right is a directed acyclic graph. Suppose you run
Dijkstra's shortest path algorithm on this graph to find the shortest path
from A to P. When it completes, specify the nodes that are on the
multimap, in the order in which they are on the multimap. This is a
multiple choice question, so choose from the answers on the answer
sheet.

Part 2: Because this is a directed, acyclic graph, you can use
topological sort instead of Dijkstra's algorithm to find the shortest path
from A to P. Tell me which one will be faster (circle the answer on the
answer sheet).

Part 3: As discussed in class, there are times when Dijkstra's
algorithm will be faster than topological sort for finding the shortest
path through a graph, and there are times that topological sort will be
faster. Explain to me in detail why this is so.

Question 3

A Hamiltonian Circuit is a simple cycle in a graph that touches each node exactly once. Let me define the problem HC-K to be the
following: Given a weighted undirected graph and a number K, does the graph have a Hamiltonian Circuit whose edge weights sum to
less than K?

Part A: Now, suppose I want to prove that HC-K is an NP-Complete problem. The first step is to prove that HC-K is in NP. Do that
for me.

Part B: The second step involves a known NP Complete. Suppose I want to use 3-SAT as my known NP-Complete problem. Exactly
what do I have to do to finish proving that HC-K is NP-Complete? I don't want you to do the proof -- I just want you to tell me what it
is that you have to prove.

QlleSthIl 4 class Graph {
public:
. int N;
To the rl-ght is the definition of a class Graph. Each instance of one of these.ls an-undlrectjcd \J;thor <int> E1;
graph with n nodes numbered O to n-/. Each node has exactly two edges on its adjacency list. vector <int> E2;
For that reason, rather than having adjacency lists, the class has two vectors E1 and E2. E1[i] vector <int> Components;

void CompCon();

and E2[i] specify the two edges for node i. Edges are specified simply by the node number to
which the edge goes. So, if E1[1] = 3 and E2[1] = §, then the two edges coming from node 1
are to nodes 3 and 5.

}i

Write the method CompCon(). This method determines the connected components of the graph. When it's done, the vector
Components should be defined so that Components[i] is the component number for node i. If there are ¢ connected components in
the graph, then the component numbers should range from O to c-1.

If you want to define an additional method in Graph to help you write CompCon(), then please do so. Just implement it properly, and
I'll assume that its prototype is defined in the Class.

BTW, don't worry about how a Graph is created. Just write CompCon()

