
CS302 Final Exam, December 5, 2016 - James S. Plank
Question 1
For each of the following algorithms/activities, tell me its running time with big-O notation. Use the answer
sheet, and simply circle the correct running time. If n is unspecified, assume the following:

If a vector or string is involved, assume that n is the number of elements.
If a graph is involved, assume that n is the number of nodes.
If the number of edges is not specified, then assume that the graph has O(n2) edges.

A: Sorting a vector of uniformly distributed random numbers with bucket sort.
B: In a graph with exactly one cycle, determining if a given node is on the cycle, or not on the cycle.
C: Determining the connected components of an undirected graph.
D: Sorting a vector of uniformly distributed random numbers with insertion sort.
E: Finding a minimum spanning tree of a graph using Prim's algorithm.
F: Sorting a vector of uniformly distributed random numbers with quicksort (average case).
G: Calculating Fib(n) using dynamic programming.
H: Performing a topological sort on a directed acyclic graph.
I: Finding a minimum spanning tree of a graph using Kruskal's algorithm.
J: Finding the minimum cut of a graph, after you have found the network flow.
K: Finding the first augmenting path in the Edmonds Karp implementation of network flow.
L: Processing the residual graph in the Ford Fulkerson algorithm, once you have found an augmenting path.

Question 2 Please answer the following statements as true or false.

A: Kruskal's algorithm requires a starting node.

B: The maximum flow of a graph is always a value that is the sum of the weights of some collection of edges
in the graph.

C: On a directed, acyclic graph, finding the shortest path from one node to another will be faster using
topological sort than Dijkstra's algorithm.

D: Quicksort requires more memory than mergesort.

E: Suppose we are running insertion sort on a large vector. If the starting index of each element is within 50
of its finishing index, then insertion sort will run in O(n) time.

F: The "median of three" pivot selection algorithm finds the best pivot for quicksort.

G: Memoization avoids making duplicate recursive calls in a dynamic program.

H: Heap sort requires more memory than quicksort.

I: Bucket sort always runs in linear time.

J: When determining network flow, if there exists an augmenting path, then you can find the one that has
maximal flow in O(|E| log |V|) time.

CS302 Final Exam, December 5, 2016 - Page 2

Question 3
Part A: You are performing Dijstra's shortest path algorithm on a
weighted, directed graph that has the adjacency matrix to the right.
You are at the point in Dijkstra's algorithm where you have processed
nodes 0 and 1. At this point, the multimap is as follows:

{ [5,2] [8,4] [14,6] [15,3] [17,5] [26,7] }

Your job is to show me what the multimap is after the next node is
processed in Dijkstra's algorithm. Use the same format as I used
above to show me what the multimap is.

Part B: Now, you are performing Prim's algorithm for minimum spanning tree, and again, you have
processed nodes 0 and 1. At this point, the multimap is:

{ [5,2] [5,4] [11,6] [14,5] [15,3] [26,7] }

Your job is to show me what the multimap is after the next node is processed.

Question 4
To the right is the class definition for a graph.

class Graph {
 public:
 vector < vector <int> > Adj;
 vector <long long> Paths;
 vector <int> Incident;
 long long Num_Paths(int from, int to);
};

Adj is a vector of adjacency lists for each node. In other words, Adj[i] is a vector of integers which is
the adjacency list for node i. It is an integer, so that if Adj[i][j] equals k, then there is an edge from
node i to node k.

Paths is a vector of long long's that you will use. Paths.size() is equal to Adj.size().
Incident is another integer array that you will use. Its size is the same as Paths.

Now, your job is to implement Num_Paths(), which needs to return the number of paths in the graph from
node from to node to. You should make the following assumptions (and pay attention to these, because they
are intended to make your life easier, and not harder):

The graph is a directed acyclic graph.
When Num_Paths() is called, Incident[i] will already be set to equal to the number of edges incident
to node i.
Incident[from] will be equal to zero.
Every node in the graph is reachable from node from.

CS302 Final Exam, December 5, 2016 - Page 3
Question 5
Suppose Alice and Bob are playing a game involving a pile of P stones. At each person's turn, he/she can remove
s stones, where s is an element of a vector S of integers. If the number of stones is less than the smallest element
of S, then that person loses.

Alice an Bob are going to play the game optimally. In other words, if Alice can win, she will make a move that
cause her to win. Same with Bob.

You are to write the method Stones of the class Game. It has the following prototype:

string Stones(int P, vector <int> &S);

This method should return "Win" if Alice will win the game, when it is her turn, and there are P stones on the
pile. If instead, Alice will lose the game, then this method should return "Lose".

I'll give you some Topcoder-like constraints:

P will be less than or equal to 1,000.
S will have at most 20 elements in it.
Each element of S will be between 1 and 1000 (inclusive).
Your program should run in under two seconds given these constraints.

Answer this on the answer sheet. I already have the class definition and the framework of the method filled in for
you. You may add data to the class if you want. Don't bother with any include or using statements.

Let me give you some hints in case you are having problems.

If Alice can remove s stones, and Bob has to lose when the pile has P-s stones, then Alice will win.
If there is no value of s ∈ S such that Bob loses when the pile has P-s stones, then Alice will lose.
It doesn't matter if it's Alice or Bob calling Stones(p, S). It will return "Win" if the caller wins, and "Lose"
if the caller loses.

