CS360 Midterm Exam. March 13, 2012. James S. Plank

Put your answers on the answer sheets provided. Do not answer on this exam.

Question 0

Write a procedure atos() which takes a NULL-terminated array
of strings as its parameter and returns a string. What it should do
is allocate, construct and return a single string composed of each
string in the array separated by a space. The procedure should
run in O(n) time, where 7 is the total number of characters in the
string that you return.

Question 1

In your jtar program, you called Istat(), and it filled in a data
structure of type struct stat. List for me all of the ways in which
that data structure was used by your jtar program. There may be
parts of the data structure that were used for multiple purposes --
list each of these separately.

Question 2

Suppose rv, fd and sz are integers and buf is a pointer; and suppose I have the following line in my program:

EE

read(fd, buf, sz);

Below are 25 potential outcomes of the read() call. For each outcome, label it either "P" for "Possible" or "I'" for "Impossible." In other
words, if it is possible for the outcome to occur, label it "P". If there is no way for the outcome to occur, label it "I". I don't want

explanation. I just want P's and I's.

buf is pointing into the void and the read call returns -1.

A bus error occurs because buf is not a multiple of four.

pointing.
Zero bytes are read from any file, and rv is set to 0.

sz bytes are read from a file to buf, and rv is set to sz.

buf is pointing.

~NX T < Q NLINTOZTET N RS~TTQUNmUDA®®

fd is not an open file, and the read call returns -1 as a result.

Fewer than sz bytes are read from a file to buf, and rv is set to the number of bytes that were read.

sbrk(0)-buf is less than sz, and as a result, the read generates a segmentation violation

fd is not an open file, and the read call generates a segmentation violation.

fd is a file opened for writing only, and the read call returns -1 as a result.

buf is pointing to a chunk of memory that is fewer than sz bytes, and the read call generates a segmentation violation.
buf is pointing to the stack segment and sz bytes are read successfully.

Fewer than sz bytes are read from a file to buf, and rv is set to -1.

buf is pointing to a chunk of memory that is fewer than sz bytes, and the read call corrupts memory in the process.

buf is pointing to a region of sz bytes in the globals segment,and the read call returns -1 because of where buf is pointing

buf is pointing to sz bytes in the code segment, and the read call generates a segmentation violation because of where buf is

buf is pointing to the code segment and sz bytes are read successfully.
sbrk(0)-buf is less than sz, and as a result, the read call returns -1

fd is a file opened for writing only, and the read call generates a segmentation violation.

buf is pointing to the stack segment and a segmentation violation occurs because of where buf is pointing
A buffer overflow attack occurs as a result of the read statement.

buf is pointing to a region of more than sz bytes in the globals segment and sz bytes are read successfully.

buf is pointing to a region of more than sz bytes in the globals segment and a segmentation violation occurs because of where

buf is pointing to the stack segment and the read call returns -1 because of where buf is pointing
buf is pointing to sz bytes in the code segment, and the read call returns -1 because of where buf is pointing.

buf is pointing into the void and the read call generates a segmentation violation.

Question 3

When the procedure messy_proc(), is called, the state of memory from addresses Oxbfffdb30 to Oxbfffdb87 is pictured below. In the
picture, I show the value of every four bytes in three ways -- I show the value as an integer, in hexadecimal, and as four characters. If

the character is not a printable character or the NULL character, I show that with "--".

For example, the four bytes starting at address 0xbfffdb30 are equal to -1073751220 when represented as an integer. They are equal to
0xbfffdb4c when represented as hexadecimal. The byte at 0xbfffdb30 is equal to the 'L' character. The bytes at Oxbfffdb31, Oxbfffdb32
and Oxbfffdb33 are all non-printable characters.

Here is messy_proc():

Address Integer value Hex value Value as four chars
0xbfffdb30 | -1073751220 0xbfffdbdc 'L = | == | --
Oxbfffdb34 | -1073751212 0xbfffdb54 T | = | = | --
0xbfffdb38 | -1073751200 0xbff£db60] =] =] --
Oxbfffdb3c | -1073751200 0xbf£f£db60 T =T =T -
Oxbfffdb40 | -1073751192 0xbfffdb68 "M [= [=] --
Oxbfffdb44 | -1073751186 O0xbfffdb6e m" [= [= | --
Oxbfffdb48 | -1073751180 0xbfffdb74 "t | = | = | --
Oxbfffdb4c | -1073751176 0xbfffdb78 'x' | = | == | --
0xbf££db50 1611 0x64b 'K' | == ['\0'['\O"
Oxbfffdb54 7683 0x1e03 - | == |'\o"|"'\O"
0xbfffdb58 42335 0xa55f] ==]"\No"["\O"
Oxbfffdb5c 60605 Oxecbd -— [=-=T"\o"["\o"
0xbf££db60 31844 0x7c64 dt [T [TNo"["\O"
0xbfffdb64 40554 0x9e6a "3 == |"\No"|"\O"
0xbfffdb68 1802398018 0x6b6e6942 'B' ['i' ['n' |'k’
0xbfffdbéc 1967915129 0x754c0079 'y' ['\NO'['L" |'u’
0xbf£f£db70 6907753 0x696769 it g ['i' |'\O"
0xbfffdb74 1684369990 0x64657246 'F' |'r' |'e' |'ad’
0xbfffdb78 1953394500 0x746e6£44 D' ['o' ['n' |'t’
0xbfffdb7c 1869180527 0x6£696e6£ ‘o' |'n' |'i' |'o'
0xbff£db80 351212032 0x14e£1200 "NO'| —= | == | --
Oxbfffdb84 341603450 0x145c747a 'z' 't | - | --

{

int i, j;

void messy proc(int **a, int *b, char **c)

}

for (b = a[0]; b <
printf("%12d\n",

(int *) a[0][0]; b += 2) {
*b);

char *s, *t; printf("\n");
printf("a: 0x%x\n", (unsigned int) a); /* Make this the last thing you do on the test.
printf("b: 0x%x\n", (unsigned int) b); Don't burn time on it if you don't have the
printf("c: 0x%x\n", (unsigned int) c); time to burn. */
printf("\n");

s = c[0];
for (i = 0; i < 5; i++) printf("%l2d ", b[i]); t = s+1;
printf("\n"); for (i = 0; 1 < 6; i++) {
printf("\n"); s[i] = *t;

t += 7;

for (i = 0; i < 5; i++) printf("%s\n", c[i]); }
printf("\n"); b = (int *) s;

printf("%s 0x%x\n", s, *b);
for (i = 0; 1 < 3; it++) { }

for (j = 0; j < 3; j++) {
printf("%12d ", a[i][]j]);
}
printf("\n");
}
printf("\n");

The first three lines printed by messy_proc() are "a: 0xbfffdb30", "b: Oxbfffdb48" and "c: Oxbfffdb3c". Tell me what the rest of the
output is. There are no segmentation violations or bus errors in this program (I have compiled and run it).

Question 4

Suppose your heap is composed
of 384 bytes starting at address
0x1c230, pictured on the right.
You are given the following
assumptions:

e Memory is allocated as
described in class, where
the size of an allocated
block is stored eight
bytes before the pointer.

e The free list starts at
0x1¢280.

e Free list nodes contain
size, flink and blink.

¢ Pointers are four bytes.

Part A: Tell me all of the nodes
on the free list, in order. For
each node, tell me the address
of the node and its size.

Part B: Tell me all of the
allocated chunks of memory.
For each chunk, tell me the
value that was returned from
malloc(), and the total size of
the chunk.

Part C: What would sbrk(0)
return?

Part D: Suppose I have an
integer pointer j whose value is
0x1c3c4. If I execute "*j = 55",
will the operation complete
successfully, cause a
segmentation violation or cause
a bus error? Explain why.

0x1c230
0x1lc234
0x1c238
0xlc23c
0x1c240
0Oxlc244
0x1c248
0Oxlc24c
0x1c250
0x1lc254
0x1c258
0xlc25c¢c
0x1c260
0x1lc264
0x1c268
0xlc26c
0x1c270
0x1lc274
0x1c278
0xlc27c
0x1c280
0x1lc284
0x1c288
0xlc28c
0x1c290
0x1c294
0x1c298
0x1lc29c
Oxlc2a0l
Oxlc2a4
Oxlc2a8
Oxlc2ac
0x1lc2b0
0xlc2b4
0xlc2b8
0xlc2bc
0xlc2c0
Oxlc2c4
0xlc2c8
Oxlc2cc
0x1lc2d0
0xlc2d4
0xlc2ds
Oxlc2dc
0x1lc2e0
Oxlc2e4
Oxlc2e8
Oxlc2ec

Value as int Value as hex
40 0x28
115496 0x1c328
0 0x0
115328 0x1c280
115560 0x1c368

-1 OxfEffEfff
115512 0x1lc338
8 0x8
8192 0x2000
115560 0x1c368
16 0x10
115448 Ox1lc2f8
0 0x0
115248 0x1c230
24 0x18
115448 Ox1lc2f8
115528 0x1c348
115448 Oxlc2f8
40 0x28
115576 0x1c378
32 0x20
115528 0Ox1lc348
0 0x0
115248 0x1c230
115512 0x1lc338
0 0x0
56 0x38
115464 0x1c308
48 0x30
115584 0x1c380
115496 0x1c328
24 0x18
115560 0x1c368
115248 0x1c230
48 0x30
115448 Oxlc2f8

-1 OxfEffffff
0 0x0
115576 0x1c378
115576 0x1c378
16 0x10
115248 0x1c230
8 0x8
115512 0x1c338
24 0x18
115328 0x1c280
0 0x0
115560 0x1c368

0x1c2£f0
Oxlc2f4
Oxlc2f8
Oxlc2fc
0x1c300
0x1c304
0x1c308
0x1c30c
0x1c310
0x1lc314
0x1lc318
Oxlc3lc
0x1c320
0x1lc324
0x1c328
0xlc32c
0x1c330
0x1lc334
0x1c338
0x1lc33c
0x1c340
0x1lc344
0x1c348
Ox1lc34c
0x1c350
0x1lc354
0x1c358
0x1lc35¢c
0x1c360
0x1lc364
0x1c368
0xlc36c
0x1c370
0x1c374
0x1c378
0x1lc37c
0x1c380
0x1lc384
0x1c388
0x1lc38c
0x1c390
0x1c394
0x1c398
0x1lc39c
0xlc3a0
Oxlc3a4
Oxlc3a8
Oxlc3ac

Value as int Value as hex
115328 0x1c280
32 0x20
48 0x30
115560 0x1c368
115304 0x1c268
115448 0xlc2£8
32 0x20
8 0x8
115328 0x1c280
16 0x10

-1 OXfEEfffff
115248 0x1c230
40 0x28
115576 0x1c378
32 0x20
115360 0Oxlc2a0l
115248 0x1c230
0 0x0
16 0x10
8192 0x2000
115448 0x1lc2f8
115248 0x1c230
16 0x10
115304 0x1c268
115328 0x1c280
16 0x10
16 0x10
115464 0x1c308
16 0x10
115328 0x1c280
24 0x18
0 0x0
115448 0Ox1lc2f8
48 0x30
24 0x18
8 0x8
48 0x30
0 0x0
115360 0Oxlc2al
115448 Ox1lc2f8
16 0x10

-1 OxXfEffffff
115248 0x1c230

0 0x0
115328 0x1c280
115360 0x1lc2a0l
115560 0x1c368
8192 0x2000

Some useful prototypes

int strlen(char *s); - Returns the length of a string

char *strcpy(char *dest, char *src); - Copies the string in src to memory pointed to by dest.
- Returns its first argument.

char *strdup(char *s); - Allocates room for a copy of s, copies it and returns it.

char *strcat(char *dest, char *src); - Assumes that dest is a string, and appends src to it.
char *strchr(char *s, char c) - Returns a pointer to the first occurrence of c¢ in s, or NULL.
char *strrchr(char *s, char c) - Returns a pointer to the last occurrence of c¢ in s, or NULL.
char *strstr(char *s, char *st) - Returns a pointer to the first occurrence of st in s, or NULL.

int read(int fd, char *buf, int size);

