
CS360 Midterm #2 – Spring, 2014 – James S. Plank – March 11
In all questions, assume that pointers are 4 bytes, and that the machine architecture is like jassem.

Suppose I have a C procedure called a(), whose first few lines are
depicted to the right. Those are the only variable declarations in a().
When it is called, the sp and fp have values of 0xffff440. Later during
its execution (but still in a()), the 28 bytes of memory starting at address
0xffff428 are depicted on the right.

Please answer the following questions – give all values in hex, except
for part F, which asks for an instruction).

A. What is the address of p? (have your compiler work as in class, with
 b, x and p being stored in successively higher addresses).
B. What is the address of x?
C. What is the address of b[0]?
D. What is the address of i?
E. What is the value of i?
F. What is the first assembly code instruction of "a:"?
G. What was the frame pointer of the procedure that called a()?
H. What is the memory address of the jsr instruction that called a()?
I. What is the address of s?
J. What is the value of p in hex?
K. What is the address of s[0] (in other words, what is &(s[1]))?
L. What is the address of s[1] (in other words, what is &(s[0]))?
M. What is *x?
N. If we have to spill r2, what is the address of the memory where it will be spilled?
O. If I do printf("0x%x\n", b[3]), what will it print?

typedef unsigned int UI;

void pm(double *p)
{
 char **s;
 char *x;
 int *ip;
 int i;

 s = (char **) p;
 p++;
 ip = (int *) p;

 printf("1. 0x%x\n", (UI) s);
 printf("2. %s\n", s[0]);
 printf("3. %s\n", s[4]);
 printf("4. %d\n", *ip);
 printf("5. %d\n", ip[1]);

 x = (char *) s;
 for (i = 0; i < 4; i++) {
 s[1][i] = *x;
 x += 4;
 }
 printf("6. %s\n", s[1]);
 printf("7. 0x%x\n", (0x7c54 >> 2));
 printf("8. 0x%x\n", (0xa45e << 2));
}

Address: Decimal Hex Chars
0x572b20 5712724 0x00572b54 'T' |'+' |'W' |'\0'
0x572b24 5712688 0x00572b30 '0' |'+' |'W' |'\0'
0x572b28 5712716 0x00572b4c 'L' |'+' |'W' |'\0'
0x572b2c 5712696 0x00572b38 '8' |'+' |'W' |'\0'
0x572b30 5712708 0x00572b44 'D' |'+' |'W' |'\0'
0x572b34 5712700 0x00572b3c '<' |'+' |'W' |'\0'
0x572b38 5712704 0x00572b40 '@' |'+' |'W' |'\0'
0x572b3c 5712676 0x00572b24 '$' |'+' |'W' |'\0'
0x572b40 5712680 0x00572b28 '(' |'+' |'W' |'\0'
0x572b44 5712712 0x00572b48 'H' |'+' |'W' |'\0'
0x572b48 5712692 0x00572b34 '4' |'+' |'W' |'\0'
0x572b4c 5712720 0x00572b50 'P' |'+' |'W' |'\0'
0x572b50 5712672 0x00572b20 ' ' |'+' |'W' |'\0'
0x572b54 5712728 0x00572b58 'X' |'+' |'W' |'\0'
0x572b58 5712684 0x00572b2c ',' |'+' |'W' |'\0'

p is 0x572b20.

Question 1

You know the drill. Tell me
the output of the procedure
given that state of memory.

int a(int i, char *s)
{
 int b[2];
 int *x;
 int p;

 ...

0xffff438 0xffff444

0xffff43c 0xffff44c

0xffff440 0x10400

0xffff444 0xffff460

0xffff448 0x10448

0xffff44c 0xffff450

0xffff450 0xffff45c

0xffff428 0xffff43c

0xffff430 0xffff428

0xffff434 0x10420

Question 2

Question 3:

Write a program that prints the filenames of all files and directories in the current directory. If
multiple file names are links to the same file, print only one of them. Print the filenames in any
order that you want. Don't worry about symbolic links. You may not call realpath() either,
because that is a revolting system call. If you ignore links, and just print out all of the files in the
current directory, you will only receive half credit.

Question 4 (which will be worth more points than question 3):

Question 4 pertains to the files r16.c and r16.h, which are on the next page.

Part A: Write cat (a program that prints standard input on standard output) using only printf()
and the procedures defined in r16.c and r16.h.

Part B: Suppose we changed SIZE to 64. Would you expect your cat to run faster or slower on
a large file? Explain the reason why.

Part C: Suppose we wrote cat as follows (assume all of the includes are correct):

main()
{
 char buf[16];
 int i;

 while (1) {
 i = fread(buf, 1, 15, stdin);
 if (i == 0) exit(0);
 buf[i] = '\0';
 printf("%s", buf);
 }
}

Would you expect this cat to be faster or slower than the cat in Part A? By a lot or a little?
Explain why.

Part D: Give me a specific example of an input file where the cat in Part A will not output the
exact contents of standard input.

Part E: Suppose you pass a bad file descriptor to R16_setup(), and then you call R16_read()
with a buffer that is larger than 17 chars. What is going to happen?

Helpful prototypes and typedefs

DIR *opendir(char *dir);
struct dirent readdir(DIR *d);
int stat(char *filename, struct stat *buf);
JRB make_jrb();
JRB jrb_insert_int(JRB t, int key, Jval val);
JRB jrb_insert_str(JRB t, char *key, Jval val);
JRB jrb_find_int(JRB t, int key);
JRB jrb_find_str(JRB t, char *key, Jval val);
Dllist new_dllist();
Dllist dll_append(Dllist d, Jval val);

 struct stat {
 dev_t st_dev;
 ino_t st_ino;
 mode_t st_mode;
 nlink_t st_nlink;
 uid_t st_uid;
 gid_t st_gid;
 dev_t st_rdev;
 struct timespec st_atimespec;
 struct timespec st_mtimespec;
 struct timespec st_ctimespec;
 off_t st_size;
 };

Don't bother with include statements in your code.

/* r16.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "r16.h"

#define SIZE 4096

typedef struct {
 char b[SIZE];
 int eof;
 int p;
 int fd;
} R16_t;

void *R16_setup(int fd)
{
 R16_t *r;

 r = (R16_t *) malloc(sizeof(R16_t));
 r->eof = -1;
 r->p = SIZE;
 r->fd = fd;
 return (void *) r;
}

void R16_read(void *r16, char *buf)
{
 R16_t *r;
 int bytes, i;

 r = (R16_t *) r16;

 if (r->p == SIZE) {
 r->eof = read(r->fd, r->b, SIZE);
 if (r->eof == SIZE) r->eof = -1;
 r->p = 0;
 }

 bytes = 16;
 if (r->eof != -1 && r->p+16 > r->eof) {
 bytes = r->eof - r->p;
 }
 for (i = 0; i < bytes; i++) {
 buf[i] = r->b[r->p+i];
 }
 buf[bytes] = '\0';
 r->p += bytes;
}

void R16_jettison(void *r16)
{
 R16_t *r;

 r = (R16_t *) r16;
 free(r);
}

/* r16.h */
extern void *R16_setup(int fd);
extern void R16_read(void *r16, char *buf);
extern void R16_jettison(void *r16);

