
CS360 Final Exam: May 6, 2004

Question 1
Suppose we have a program called ticker. You call it with no arguments.
Whenever it receives a newline on standard input, it writes a floating point
number between zero and one on standard output. That number will be written
with exactly 7 decimal places, and will be followed by a newline. If it receives
EOF on standard input, it quits. If it receives any other characters on standard
input, it ignores them.

Your job is to write a program called onesec. Onesec forks off a child process
that calls ticker, and sets up pipes so that it can both write to ticker's standard
input, and read from ticker's standard output. Then onesec does the following. It
iterates forever, doing the following steps:

It sleeps for one second.
Then it writes a newline to ticker's standard input.
Then it reads ticker's standard output, and prints the number with exactly
5 decimal places (and a newline) to standard output.

Write onesec. Note, it will not require threads, sockets, or signal handlers.

Question 2
Write either a program or a shell command that will fork off a process running
ticker that exits because it generates SIGPIPE. You may not use the system call
kill() or the program kill to do this!

Make sure that there is no way for ticker to write to an existing and open pipe
buffer (that will never be read), and then exit because it reads EOF.

Question 3
Behold the following program. Note, it does not have any typographical errors.
Yes, it is not a great program.

main()
{
 int *a, *b, *c;
 int i;

 a = (int *) malloc(16);
 b = (int *) malloc(12);
 c = (int *) malloc(20);
 for (i = 0; i < 4; i++) a[i] = 100+i;
 for (i = 0; i < 5; i++) b[i] = 200+i;
 for (i = 0; i < 5; i++) c[i] = 300+i;
 free(b);
 b = (int *) malloc(8);
 free(a);
}

Suppose malloc() works as described in class:

Its buffer size is 8192 bytes.
It manages a doubly-linked, null terminated free list with no header node.
It does not do coalescing or checksumming.
It stores the size of the allocated buffer 8 bytes before the pointer that is
returned.

Suppose that sbrk(8192) returns 0x6000.

Part A

Use the answer sheet to draw the values in memory between addresses 0x6000
and 0x6080 just before the first free() statement. You may assume that when
sbrk(8192) returns, all those memory values are zero. Draw every memory value.

Part B

Use the answer sheet to draw the values in memory between addresses 0x6000
and 0x6080 right after the last free() statement. You may assume that when
sbrk(8192) returns, all those memory values are zero. Draw every memory value.

Question 4
Circle the correct answer on the answer sheet:

Part A - True or False: In a non-preemptive thread system, you do not have to
worry about race conditions.

Part B - True or False: A thread cannot see the variables on another thread's
stack.

Part C - True or False: There are programs for which mutexes do not provide
flexible enough synchronization operations.

Part D - True or False: pthread_detach() allows you to have a thread exit and
have its resources be cleaned up without having any other thread call
pthread_join() on it.

Part E - True or False: A thread may only call pthread_join() on threads which
it has created with pthread_create().

Part F - True or False: On our machines, a non-preemptive thread may be
turned into a preemptive thread automatically by making a blocking system call.

Part G - True or False: With mutexes, you may have a thread execute
instructions atomically with respect to other threads that lock the mutex.

Part H - True or False: It is a programming mistake to call
pthread_cond_signal() on a condition variable that has no threads waiting on it.

Part I - True or False: There are programs that will work correctly in a
non-preemptive thread system that will not work correctly in a preemptive thread
system.

Part J - True or False: There are programs that will work correctly in a
preemptive thread system that will not work correctly in a non-preemptive thread
system.

Question 5
Suppose we write the following procedure to provide a more convenient
mechanism to use setjmp()/longjmp() to catch errors.

jmp_buf *set_up_exception(char *id_string)
{
 jmp_buf *buf;

 buf = (jmp_buf *) malloc(sizeof(jmp_buf));
 if (buf == NULL) { perror("set_up_exception"); exit(1); }
 if (setjmp(*buf) == 0) return buf;
 fprintf(stderr, "Exception caught: %s\n", id_string);
 free(buf);
 return NULL;
}

We will use it in code like the following:

 ...
 buf = set_up_exception("Activity #1");
 if (buf != NULL) {
 do_activity(buf,);
 } else {
 clean_up_exception(....);
 }

 ...

In this code, if do_activity() or any of its subprocedures detects an error, it will
call longjmp(*buf, 1) so that the error may be caught gracefully. The longjmp()
will go to set_up_exception(), which will return NULL, and any clean-up code
will be executed by clean_up_exception().

There is a serious problem with this way of doing things. State what the problem
is, and as precisely as you can what will happen when do_activity() or one of its
subprocedures calls longjmp().

