

Topcoder SRM 639, D1, 500-Pointer
"BoardFolding"

James S. Plank
EECS Department

University of Tennessee

CS494/594 Class
January 30, 2024

The problem
● You are given a rectangular grid with N rows and M

columns.
● Each entry of the grid is either 0 (white) or 1 (black).
● You may "fold" the grid along the seam between rows or

columns as long as the smaller portion goes on top of the
larger portion, and the two portions match exactly.

Fold along
this seam

Fold along
this seam

Fold along
this seam

Fold along
this seam

The problem (continued)
● If the two portions are of equal size, then either

portion may go on top of the other.

This grid may be folded in half
in either way.

● Another way to visualize folding is to simply delete
the part of the rectangle that goes on top.

The problem (continued)
Suppose we label the result of zero or more folds by:
– x: Starting x position of upper-left cell.
– y: Starting y position of upper-left cell (0 at top).
– w: Width of the resulting grid.
– h: Height of the resulting grid.
– Label it [x,y,w,h]

[0,0,4,4]
[0,0,4,2]

[0,2,4,2]

The problem (continued)

Given a starting
grid, how many

unique labelings
can result from

zero or more folds?

[0,0,4,4]

[0,0,4,2]

[0,2,4,2]

[0,0,2,4]

[2,0,2,4]

[0,0,2,2]

[2,0,2,2]

[2,2,2,2]

[0,2,2,2]

Example 2

Answer = 9

Prototype and Constraints
● Class name: BoardFolding
● Method: howMany()
● Parameters:

● Return Value: int
● Constraints: N and M are between 0 and 250.

– (which is roughly 28)

N int Number of rows
M int Number of columns

Grid vector <string> The grid (in compressed format)

Thought #1: Enumeration

How many potential [x,y,w,h] are there?

Σ
i =1

M
i ≈ (28*28) = 216

That's too slow!

x & w:

● C columns with width 1
● (C-1) columns with width 2
● (C-2) columns with width 3

(x & w) * (y & h) = 232

Σ
i =1

N
i ≈ (28*28) = 216

y & h:

● R rows with height 1
● (R-1) rows with height 2
● (R-2) rows with height 3

In total:

Thought #2

The horizontal and vertical folds are independent!

You can make horizontal folds
here, regardless of when you make

the vertical folds.

You can make vertical
folds here, regardless of

when you make the
horizontal folds.

● Count the horizontal folds
● Count the vertical folds
● Multiply the results

Back to this slide

How many potential [x,y,w,h] are there?

Σ
i =1

M
i ≈ (28*28) = 216

That's fast enough!

x & w:

● C columns with width 1
● (C-1) columns with width 2
● (C-2) columns with width 3

(x & w) + (y & h) = 217

Σ
i =1

N
i ≈ (28*28) = 216

y & h:

● R rows with height 1
● (R-1) rows with height 2
● (R-2) rows with height 3

In total:

Details: A fundamental procedure
● Let's count the [y,h] combinations.

vector <int> starting_places(vector <string> &Grid);

● Return vector has (R+1) zero or one entries.
● rv[i] = 1 iff row i can be a starting row

– i.e. i can equal y in some labeling.

rv = { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

1
0
1
0
1
0
1
0
0

Yes

Yes
No
Yes
No
Yes
No
No

No

Details: A fundamental procedure
● Let's count the [y,h] combinations.

vector <int> starting_places(vector <string> &Grid);

● Reverse the grid, call again and reverse the return value to
get the ending places:

● rv[i] = 1 iff i = y+h in some labeling

rv = { 0, 0, 1, 0, 1, 0, 1, 0, 1 }

0
1
0
1
0
1
0

0

Yes
No
Yes
No
Yes
No

No
No

1Yes

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

S E

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

S E

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

S E

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

S E

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

S E

And So On.

Details: A fundamental procedure
● Now, count all combinations of valid starting & ending rows

E: { 0, 0, 1, 0, 1, 0, 1, 0, 1}

S: { 1, 0, 1, 0, 1, 0, 1, 0, 0 }

In this example, there are ten combinations.

S E

Details: A fundamental procedure
● Do the same for starting and ending columns
● (You can transpose / reverse the grid for this)

E: { 0, 0, 0, 0, 0, 1, 1, 1 }

S: { 1, 0, 1, 0, 0, 0, 0, 0 }

6 combinations
S

E

S

Multiply
the answers
and you're

done!

(6*10 = 60)

Implementing starting_places
● Given an index j, how do we determine that rv[j] = 1?

– Start with rv[0] = 1.
– There must be a rectangle of height w such that:

● Row (j-w) is a starting row - rv[j-w] = 1
● The rectangle of height w starting at (j-w) is the mirror

image of the rectangle starting at (j).

S

j =2 w =2

Implementing starting_places
● Given an index j, how do we determine that rv[j] = 1?

– Start with rv[0] = 1.
– There must be a rectangle of height w such that:

● Row (j-w) is a starting row - rv[j-w] = 1
● The rectangle of height w starting at (j-w) is the mirror

image of the rectangle starting at (j).

S

j =4 w =2

Implementing starting_places
● My initial realization of this was O(n3)

– Iterate i from 0 to n.
– If i is a starting row, then for each j > i.

● See if the rectangle from i to j matches the rectangle
from j to j+(j-i)

● If so, then j is a starting row.

S

j =2 w =2
i =0

O(n)

It was fast enough
for Topcoder.

Assumes that comparing
w-row rectangles is O(w).

Implementing starting_places
● We can make this O(n2)

– Iterate j from 0 to n.
– Calculate the maximum w for each j and store it.

– Now repeat the previous algorithm.

S

j =2 w =2
i =0

O(n)

O(n2)

Implementing starting_places
● Another way to make this O(n2)

– Iterate j from 0 to n.
● Iterate w from 1 to j

– If the rectangles of height w above and below j
match, and if (j-w) is a starting row, then so is j.

S

j =2 w =2

O(n)
O(1)

Running Time Summarized

● Setting up the Grid for starting_places(): O(n2).
● Calling starting_places()four times: O(n2).
● Calculating the combinations: O(n2).
● That's O(n2) overall.

● Yes – you can remove the string comparison by
turning each string into an integer:

0
1
1
0
0
1
1
0

0 1 1 0 2 2 2

0

1

0 1 2

Can you make it faster?

Experiment
● MacBook Pro 2.4 GHz
● Difficult Grid.

How did the Topcoders Do?

● By and large, those who submitted did well:
– 476 (of 534) Topcoders opened the problem.
– 130 (27%) submitted a solution.
– 83 (64%) of the submissions were correct.
– Best time was 12:23
– Average correct time was 39:07.

Topcoder SRM 639, D1, 500-Pointer
"BoardFolding"

James S. Plank
EECS Department

University of Tennessee

CS494/594 Class
January 30, 2024

