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Abstract—Partial MDS (PMDS) codes are erasure codes com-
bining local (row) correction with global additional corre ction
of entries, while Sector-Disk (SD) codes are erasure codes that
address the mixed failure mode of current RAID systems. It
has been an open problem to construct general codes that have
the PMDS and the SD properties, and previous work has relied
on Monte-Carlo searches. In this paper, we present a general
construction that addresses the case of any number of failed
disks and in addition, two erased sectors. The construction
requires a modest field size. This result generalizes previous
constructions extending RAID 5 and RAID 6.

I. I NTRODUCTION

Consider anr × n array whose entries are elements in a
finite field GF(2w) [8] (in general, we could consider a field
GF(pw), p a prime number, but for simplicity, we constrain
ourselves to binary fields). The array may correspond to a
stripe on a disk system, where elements co-located in the
same column reside on the same disk, or the elements may
correspond to disk or SSD blocks on a large storage system.
Recent work has explored two types of erasure codes tailored
for these scenarios: Partial-MDS (PMDS) codes and Sector-
Disk (SD) codes [2], [3].

Both follow the same methodology —m entire columns
of elements are devoted to coding, and each row composes
an independent[n, n−m, m + 1] MDS code. In the remain-
ing n − m columns of the array,s more elements are also
devoted to coding. The erasure protection that they provide
differentiates PMDS and SD codes. SD codes tolerate the
erasure of anym columns of elements, plus any additionals
elements in the array. PMDS codes tolerate a broader class
of erasures — anym elements per row may be erased, plus
any additionals elements.

As their name implies, SD codes address the combination
of disk and sector failures that occurs in modern disk systems.
Column failures occur when entire disks break, and sector
failures can accumulate over time, typically unnoticed until
an entire disk breaks, and the failed sector is required for
recovery. PMDS codes are maximally recoverable for codes
laid out in the manner described above [2]. Maximally
recoverable codes have been applied to cloud storage systems
where each element resides on a different storage node [6].
The rows of the array correspond to collections of storage
nodes that can decode together with good performance, while
the extras elements allow the system to tolerate broader
classes of failures.

We label the codes with(m; s), and illustrate the difference
between PMDS and SD in Figure 1. The figure depicts five
failure scenarios in a4× 5 array, encoded with a(1; 2) code,
where erased elements are shaded in gray. The left scenario
may be tolerated by both PMDS and SD codes, since each
row is an independent[5, 4, 2] MDS code. The second two
scenarios are also tolerated by both PMDS and SD codes,
because four erasures are co-located in the same column.
The last of these is an important case, as it is not tolerated
by RAID-6, even though RAID-6 devotes two full columns
to coding. The two right scenarios are PMDS only, as there
is one erasure per row, plus two additional erasures.

PMDS and SD PMDS only

Fig. 1. Five failure scenarios on a4× 5 array of elements.

The challenge of the current work is to define PMDS and
SD codes for general parameters. The case of(m; 1) PMDS
codes was solved in [2]. In this paper, we address the case
of (m; 2) PMDS and SD codes.

We begin with a formal definition of the two codes.
Definition 1.1: LetC be a linear[rn, r(n−m)− s] code

over a field such that when codewords are taken row-wise
as r × n arrays, each row belongs in an[n, n− m, m + 1]
MDS code. Then,

1) C is an (m; s) partial-MDS (PMDS) code if,for any
(s1, s2, . . . , st) such that eachsj > 1 and ∑

t
j=1 sj = s,

and for anyi1, i2, . . . , it such that0 6 i1 < i2 < · · · <
it 6 r− 1, C can correct up tosj +m erasures in each
row ij, 1 6 j 6 t, of an array inC.

2) C is an (m; s) sector-disk (SD) code if, for any
l1, l2, . . . , lm such that0 6 l1 < l2 < · · · < lm 6

n − 1, for any (s1, s2, . . . , st) such that eachsj > 1

and ∑
t
j=1 sj = s, and for any i1, i2, . . . , it such that

0 6 i1 < i2 < · · · < it 6 r − 1, C can correct up
to sj + m erasures in each rowij, 1 6 j 6 t, of an
array in C provided that locationsl1, l2, . . . lm in each
of the rowsij have been erased.

In the next section we give a general construction for
(m; 2) PMDS and SD codes. Constructions of (1;2) SD codes
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were given in [1] and of (2;2) codes in [3], so our results
generalize those constructions.

From now on, when we say PMDS or SD codes, we refer
to (m; 2) PMDS or SD codes.

II. CODE CONSTRUCTION

Consider the fieldGF(2w) and let α be an element in
GF(2w). The (multiplicative) order ofα, denotedO(α), is
the minimumℓ > 0 such thatαℓ = 1. If α is a primitive ele-
ment [8], thenO(α) = 2w− 1. To each elementα ∈ GF(2w),
there is an associated (irreducible) minimal polynomial [8]
that we denotefα(x).

Let α ∈ GF(2w) andrn 6 O(α). We want to construct an
SD-code consisting ofr× n arrays overGF(2w), such that
m of the columns correspond to parity (in RAID 5,m = 1,
while in RAID 6, m = 2). In addition, two extra symbols
also correspond to parity. When read row-wise, the code-
words belong in an[rn, r(n− m)− 2] code overGF(2w).
Specifically, letC(r, n, m, 2; fα(x)) be the[rn, r(n−m)− 2]
code whose(mr + 2)× rn parity-check matrix is given by

H =















H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H1 H2 . . . Hr















(1)

where

H0 =















1 1 1 . . . 1
1 α α

2 . . . α
n−1

1 α
2

α
4 . . . α

2(n−1)

...
...

...
. . .

...
1 α

m−1
α

2(m−1) . . . α
(m−1)(n−1)















(2)

and, for1 6 j 6 r,

Hj=

(

1 α
m

α
2m . . . α

m(n−1)

α
−(j−1)n

α
−(j−1)n−1

α
−(j−1)n−2. . . α

−(j−1)n−(n−1)

)

. (3)

We will show under which conditions codes
C(r, n, m, 2; fα(x)) are PMDS or SD. Unless stated
otherwise, for simplicity, let us denoteC(r, n, m, 2; fα(x))
by C(r, n, m, 2).

We start by giving some examples.
Example 2.1: Consider the finite fieldGF(16) and letα be

a primitive element, i.e.,O(α) = 15. Then, the parity-check
matrix of C(3, 5, 1, 2) is given by










1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 α α
2

α
3

α
4 1 α α

2
α

3
α

4 1 α α
2

α
3

α
4

1 α
14

α
13

α
12

α
11

α
10

α
9

α
8

α
7

α
6

α
5

α
4

α
3

α
2

α











.

Similarly, the parity-check matrix ofC(3, 5, 2, 2) is given

by




















1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α

2
α

3
α

4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 α α

2
α

3
α

4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 α α

2
α

3
α

4

1 α
2

α
4

α
6

α
8 1 α

2
α

4
α

6
α

8 1 α
2

α
4

α
6

α
8

1 α
14

α
13

α
12

α
11

α
10

α
9

α
8

α
7

α
6

α
5

α
4

α
3

α
2

α





















.

Let us point out that the construction of this type of
codes is valid also over the ring of polynomials modulo
Mp(x) = 1 + x + · · · + xp−1, p a prime number, as done
with the Blaum-Roth (BR) codes [4]. In that case,O(α) = p,
whereα

p−1 = 1+ α+ · · ·+ α
p−2. The construction proceeds

similarly, and we denote itC(r, n, m, 2; Mp(x)). Utilizing
the ring moduloMp(x) allows for XOR operations at the
encoding and the decoding without look-up tables in a finite
field, which is advantageous in erasure decoding [4]. It is
well known that Mp(x) is irreducible if and only if 2 is
primitive in GF(p) [8].

Next we give a lemma that is key to proving the conditions
under which codesC(r, n, m, 2) are PMDS or SD.

Lemma 2.1: Letα ∈ GF(2w), rn 6 O(α), 1 6 ℓ 6 r− 1,
1 6 s and, if 1 6 m 6 n − 2, let 0 6 i0 < i1 < i2 <

· · · < im 6 n − 1 and 0 6 j0 < j1 < j2 < · · · <
jm 6 n − 1. Consider the(2m + 2) × (2m + 2) matrix
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; ℓ) given by









































1 1 . . . 1 0 0 . . . 0
α

i0 α
i1 . . . α

im 0 0 . . . 0
α

2i0 α
2i1 . . . α

2im 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
α
(m−1)i0 α

(m−1)i1 . . . α
(m−1)im 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1
0 0 . . . 0 α

j0 α
j1 . . . α

jm

0 0 . . . 0 α
2j0

α
2j1 . . . α

2jm

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . α
(m−1)j0 α

(m−1)j1 . . . α
(m−1)jm

α
mi0 α

mi1 . . . α
mim α

mj0 α
mj1 . . . α

mjm

α
−i0 α

−i1 . . . α
−im α

−nℓ−j0 α
−nℓ−j1 . . . α

−nℓ−jm









































Let

∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; ℓ)

= det M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; ℓ).

Then,

∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; s; ℓ)

=

(

∏
06u<v6m

(

α
iu⊕α

iv

)(

α
ju⊕α

jv
)

)

(

α
−∑

m
u=0 iu⊕α

−nℓ−∑
m
u=0 ju

)

. (4)

Proof: For simplicity, let us denote

∆=∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; ℓ).



Consider them× (m + 1) matrices

M =















1 1 . . . 1
α

i0 α
i1 . . . α

im

α
2i0 α

2i1 . . . α
2im

...
...

. . .
...

α
(m−1)i0 α

(m−1)i1 . . . α
(m−1)im















and

M′ =















1 1 . . . 1

α
j0 α

j1 . . . α
jm

α
2j0 α

2j1 . . . α
2jm

...
...

. . .
...

α
(m−1)j0 α

(m−1)j1 . . . α
(m−1)jm















.

For eachu, 0 6 u 6 m, let Mu and M′u denote the
m×m Vandermonde matrices obtained from deleting column
u from M and M′ respectively. Also, for0 6 u, v 6 2m +
1, u 6= v, let X(u,v) be the(2m)× (2m) matrix obtained
from removing columnsu andv and the last two rows from
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; ℓ).

If 0 6 u, v 6 m, u 6= v,

X(u,v) =

(

P 0
0 M′

)

,

where P denotes anm × (m − 1) matrix and 0 are zero
matrices. Notice thatX(u,v) has rank smaller than2m, since
the first m rows have rank smaller thanm. Thus,

det
(

X(u,v)
)

= 0 for 0 6 u, v 6 m, u 6= v.

If 0 6 u 6 m andm + 1 6 v 6 2m + 1,

X(u,v) =

(

Mu 0
0 M′v−m−1

)

.

By properties of determinants,

det
(

X(u,v)
)

= (det(Mu))
(

det(M′v−m−1)
)

for 0 6 u 6 m, m + 1 6 v 6 2m + 1. Similarly,

det
(

X(u,v)
)

=
(

det(M′u−m−1)
)

(det(Mv))

for m + 1 6 u 6 2m + 1, 0 6 v 6 m, and

det
(

X(u,v)
)

= 0,

for m + 1 6 u, v 6 2m + 1, u 6= v.
Expanding the determinant∆ from the bottom row, and

then from the next to bottom row, we obtain

∆ =







m
⊕

u=0

α
−iu

m
⊕

v=0
v 6=u

α
miv det

(

X(u,v)
)







⊕

(

m
⊕

u=0

α
−iu

2m+1
⊕

v=m+1

α
mjv−m−1 det

(

X(u,v)
)

)

⊕







2m+1
⊕

u=m+1

α
−nℓ−ju−m−1

m
⊕

v=0
v 6=u

α
miv det

(

X(u,v)
)







⊕

(

2m+1
⊕

u=m+1

α
−nℓ−ju−m−1

2m+1
⊕

v=m+1

α
mjv−m−1 det

(

X(u,v)
)

)

=

(

m
⊕

u=0

α
−iu

m
⊕

v=0

α
mjv det(Mu) det(M′v)

)

⊕

(

m
⊕

u=0

α
−nℓ−ju

m
⊕

v=0

α
miv det(Mv) det(M′u)

)

=

(

m
⊕

u=0

α
−iu det(Mu)

)(

m
⊕

u=0

α
mju det(M′u)

)

⊕

(

m
⊕

u=0

α
−nℓ−ju det(M′u)

)(

m
⊕

u=0

α
miu det(Mu)

)

.

(5)

Let

W0 =



















1 1 . . . 1

α
i0 α

i1 . . . α
im

α
2i0 α

2i1 . . . α
2im

...
...

. . .
...

α
(m−1)i0 α

(m−1)i1 . . . α
(m−1)im

α
mi0 α

mi1 . . . α
mim



















W1 =



















1 1 . . . 1

α
i0 α

i1 . . . α
im

α
2i0 α

2i1 . . . α
2im

...
...

. . .
...

α
(m−1)i0 α

(m−1)i1 . . . α
(m−1)im

α
−i0 α

−i1 . . . α
−im



















W ′0 =



















1 1 . . . 1

α
j0 α

j1 . . . α
jm

α
2j0 α

2j1 . . . α
2jm

...
...

. . .
...

α
(m−1)j0 α

(m−1)j1 . . . α
(m−1)jm

α
mj0 α

mj1 . . . α
mjm



















W ′1 =



















1 1 . . . 1

α
j0 α

j1 . . . α
jm

α
2j0 α

2j1 . . . α
2jm

...
...

. . .
...

α
(m−1)j0 α

(m−1)j1 . . . α
(m−1)jm

α
−mℓ−j0 α

−mℓ−j1 . . . α
−mℓ−jm





















Notice that, by properties of determinants and of Vander-
monde determinants,

det(W0) =
m
⊕

u=0

α
miu det(Mu) = ∏

06u<v6m

(αiu ⊕ α
iv)

det(W1) =
m
⊕

u=0

α
−iu det(Mu) = α

−∑
m
u=0 iu ∏

06u<v6m

(αiu ⊕ α
iv)

det(W ′0) =
m
⊕

u=0

α
mju det(M′u) = ∏

06u<v6m

(αju ⊕ α
jv)

det(W ′1) =
m
⊕

u=0

α
−mℓ−ju det(M′u)=α

−mℓ−∑
m
u=0ju ∏

06u<v6m

(αju⊕ α
jv).

So, (5) becomes

∆ =

(

det(W0) det(W ′0)
det(W1) det(W ′1)

)

=

(

∏
06u<v6m

(

α
iu ⊕ α

iv

) (

α
ju ⊕ α

jv
)

)

·det

(

1 1

α
−∑

m
u=0 iu

α
−mℓ−∑

m
u=0 ju

)

and (4) follows.
Lemma 2.1 is valid also over the ring of polynomials

modulo Mp(x), p prime, wherern < p. Let us illustrate
it with an example form = 1 andm = 2.

Example 2.2: Letm = 1, then

M(i0, i1; j0, j1; r; n; ℓ)

=









1 1 0 0
0 0 1 1

α
i0 α

i1 α
j0 α

j1

α
−i0 α

−i1 α
−nℓ−j0 α

−nℓ−j1









and

∆(i0, i1; j0, j1; r; n; s; ℓ)

=
(

α
i0 ⊕ α

i1
) (

α
j0 ⊕ α

j1
) (

α
−i0−i1 ⊕ α

−nℓ−j0−j1
)

.

If m = 2, Lemma 2.1 gives

M(i0, i1, i2; j0, j1, j2; r; n; ℓ)

=

















1 1 1 0 0 0

α
i0 α

i1 α
i2 0 0 0

0 0 0 1 1 1

0 0 0 α
j0 α

j1 α
j2

α
2i0 α

2i1 α
2i2 α

j0 α
j1 α

j2

α
−i0 α

−i1 α
−i2 α

−nℓ−j0 α
−nℓ−j1 α

−nℓ−j2

















and

∆(i0, i1, i2; j0, j1, j2; r; n; s; ℓ)

=
(

α
i0 ⊕ α

i1
) (

α
i0 ⊕ α

i2
) (

α
i1 ⊕ α

i2
) (

α
j0 ⊕ α

j1
)

(

α
j0 ⊕ α

j2
)(

α
j1 ⊕ α

j2
)(

α
−i0−i1−i2 ⊕ α

−nℓ−j0−j1−j2
)

.

In the next section we study codesC(r, n, m, 2; fα(x)) and
C(r, n, m, 2; Mp(x)) as SD and PMDS codes.

III. C ONSTRUCTION OFSD AND PMDS CODES

Let us start with our main result for SD codes.
Theorem 3.1: The codes C(r, n, m, 2; fα(x)) and
C(r, n, m, 2; Mp(x)) are SD.

Proof: Assume thatm columns have been erased and
in addition we have two random erasures. Assume first that
these two random erasures occurred in the same rowℓ of the
stripe. The rows that are different fromℓ are corrected since
each one of them hasm erasures, which are handled by the
horizontal code, that is, each horizontal code is given by the
parity-check matrixH0, which is the parity-check matrix of
a RS code that can correct up tom erasures [8]. Thus, we
have to solve a linear system withm + 2 unknowns. Without
loss of generality, assume that the erasures in rowℓ occurred
in locationsi0, i1, . . . , im, im+1, where0 6 i0 < i1 < · · · <
im < im+1 6 n. According to the parity-check matrix of the
code as given by (1), (2), and (3), there will be a unique
solution if and only if the(m + 2)× (m + 2) matrix


















1 1 . . . 1 1

α
i0 α

i1 . . . α
im

α
im+1

α
2i0 α

2i1 . . . α
2im

α
2im+1

...
...

. . .
...

...
α

mi0 α
mi1 . . . α

mim
α

mim+1

α
−nℓ−i0 α

−nℓ−i1 . . . α
−nℓ−im

α
−nℓ−im+1



















is invertible. By takingα
−nℓ in the last row as a common

factor, and by multiplying each columnj, 0 6 j 6 m+ 1, by
α

i j , this matrix is transformed into a Vandermonde matrix,
which is always invertible in a field and also in the ring of
polynomials moduloMp(x) [4].

Consider now the case in which the two random failures
occur in different rows. Specifically, assume that columns
i0, i1, . . . , im−1 were erased, where0 6 i0 < i1 < . . . <

im−1 6 n− 1, and in addition, entries(ℓ, t) and(ℓ′, t′) were
erased, wheret, t′ 6∈ {i0, i1, . . . , im−1} and 0 6 ℓ < ℓ′ 6

r − 1. Again, using the parity-check matrix of the code as
given by (1), (2), and (3), there will be a unique solution if
and only if the(2m + 2)× (2m + 2) matrix














































1 1 . . . 1 0 0 . . . 0
α

i0 α
i1 . . . α

t 0 0 . . . 0
α

2i0 α
2i1 . . . α

2t 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
α
(m−1)i0 α

(m−1)i1 . . . α
(m−1)t 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1

0 0 . . . 0 α
i0 α

i1 . . . α
t′

0 0 . . . 0 α
2i0 α

2i1 . . . α
2t′

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 α
(m−1)i0

α
(m−1)i1 . . . α

(m−1)t′

α
mi0 α

mi1 . . . α
mt

α
mi0 α

mi1 . . . α
mt′

α
−nℓ−i0 α

−nℓ−i1 . . . α
−nℓ−t

α
−nℓ′−i0 α

−nℓ′−i1 . . . α
−nℓ′−t′















































is invertible. Takingα
−nℓ as a common factor in the last row,

we obtain the matrix

M(i0, i1, i2, . . . , im−1, t; i0, i1, i2, . . . , im−1, t′; r; n; ℓ′ − ℓ)



as defined in Lemma 2.1, whose determinant, by (4), is given
by

∆(i0, i1, i2, . . . , im−1, t; i0, i1, i2, . . . , im−1, t′; r; n; ℓ′−ℓ)

=

(

∏
06u<v6m−1

(

α
iu ⊕ α

iv

)2
)

·

(

∏
06u6m−1

(

α
iu ⊕ α

t
) (

α
iu ⊕ α

t′
)

)

· α−∑
m−1
u=0 iu

(

α
−t⊕ α

−n(ℓ′−ℓ)−t′
)

.

For simplicity, redefineℓ←ℓ′ − ℓ, hence,1 6 ℓ 6 r − 1.
Each binomial

(

α
iu ⊕ α

iv
)

,
(

α
iu ⊕ α

t
)

and
(

α
iu ⊕ α

t′
)

above

is invertible, so it remains to be proven that
(

α
−t⊕ α

−nℓ−t′
)

is invertible. If it is not,nℓ+ t′ − t ≡ 0 (modO(α)). But

0 < nℓ+ t′ − t 6 n(r− 1) + t′ − t

= nr−
(

n− (t′ − t)
)

6 nr− 1 < O(α),

so, nℓ+ t′ − t 6≡ 0 (modO(α).
Next, let us prove a similar result for PMDS codes. In fact,

codesC(r, n, m, 2; fα(x)) and C(r, n, m, 2; Mp(x)) are not
PMDS, but we will obtain PMDS codes with a modification
that requires a larger field or ring. Let

N = (m + 1)(n−m− 1) + 1 (6)

α ∈ GF(2w) and rN 6 O(α). As in the case of SD
codes, we construct a PMDS code consisting ofr× n arrays
over GF(2w), such thatm of the columns correspond to
parity and in addition, two extra symbols also correspond
to parity. When read row-wise, the codewords belong in
an [rn, r(n − m) − 2] code overGF(2w). Specifically, let
C ′(r, n, m, 2; fα(x)) be the [rn, r(n − m) − 2] code whose
(mr + 2)× rn parity-check matrix is given byH′, which is
identical to H in (1), except the bottommost two rows are
defined as:

(

H′1 H′2 . . . H′r
)

where, for1 6 j 6 r,

H′j =

(

1 α
m

α
2m . . . α

m(n−1)

α
−(j−1)N

α
−(j−1)N−1

α
−(j−1)N−2. . . α

−(j−1)N−(n−1)

)

.

As before, the construction is also valid over the ring of
polynomialsMp(x), p prime, in which case we denote the
codesC ′(r, n, m, 2; Mp(x)). Let us give an example.

Example 3.1: Let n= 5, m = 1 and r = 3. According
to (6), N = (2)(3) + 1= 7. Thus, we needO(α) >

rN = 21. For instance we may consider the fieldGF(32)
and α primitive in GF(32), i.e., O(α) = 31 > 21 (we can
also handler = 4 in this example). Thus, the parity-check
matrix of C ′(3, 5, 1, 2; fα(x)) is given by












1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 α α
2

α
3

α
4 1 α α

2
α

3
α

4 1 α α
2

α
3

α
4

1 α
30

α
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α
28

α
27

α
24

α
23

α
22

α
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α
20

α
17

α
16

α
15

α
14

α
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.

Theorem 3.2: The codes C ′(r, n, m, 2; fα(x)) and
C ′(r, n, m, 2; Mp(x)) are PMDS.

Theorem 3.2 is proven similarly to Theorem 3.1. For
reasons of space, we omit the proof here.

IV. CONCLUSION

We have described a construction for SD codes and PMDS
codes where the number of additional sectors,s equals two.
The minimal field size required by the construction for SD
codes is only the total number of sectors in the array, and in
the case of PMDS codes, at most of quadratic order in the
total number of sectors.

Further results, not described in detail due to the space
limit, are a construction for(m; s) SD codes restricted to
not having two of thes erased sectors in the same disk,
and a construction for(m; s)-like PMDS codes with extra
redundancy of orderO(s log s).

As related work, let us mention a recent paper [5] that
gives constructions of(1; s) PMDS codes trying to minimize
the size of the field. In fact,(1; s) PMDS, called Maximally
Recoverable codes in [5], satisfy also the requirements of
Locally Repairable codes [9], [12]. Additionally, the recently-
defined STAIR codes relax the failure-coverage of SD codes
in order to allow for general constructions [7].
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