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Abstract—Partial MDS (PMDS) codes are erasure codes com-  We label the codes wittwz; s), and illustrate the difference
bining local (row) correction with global additional correction  petween PMDS and SD in Figuié 1. The figure depicts five
of entries, while Sector-Disk (SD) codes are erasure codelsat failure scenarios in & x 5 array, encoded with &1;2) code
address the mixed failure mode of current RAID systems. It h d el t h ded i Th, left ! .
has been an open problem to construct general codes that haveWN€re erasea eiements are shaded in gray. 1he e. scenario
the PMDS and the SD properties, and previous work has relied May be tolerated by both PMDS and SD codes, since each
on Monte-Carlo searches. In this paper, we present a general row is an independeri6, 4,2] MDS code. The second two
construction that addresses the case of any number of failed scenarios are also tolerated by both PMDS and SD codes,

disks and in addition, two erased sectors. The construction yacq,se four erasures are co-located in the same column.
requires a modest field size. This result generalizes previs

constructions extending RAID 5 and RAID 6. The last of these is an important case, as it is not tolerated
by RAID-6, even though RAID-6 devotes two full columns
I. INTRODUCTION to coding. The two right scenarios are PMDS only, as there

Consider arv x n array whose entries are elements in & one erasure per row, plus two additional erasures.
finite field GF(2%) [8] (in general, we could consider a field

GF(p™), p a prime number, but for simplicity, we constrain
ourselves to binary fields). The array may correspond to ¢
stripe on a disk system, where elements co-located in th [ ] [

same column reside on the same disk, or the elements may PMDS and SD PMDS only
correspond to disk or SSD blocks on a large storage system. Fig. 1. Five failure scenarios ondax 5 array of elements.
Recent work has explored two types of erasure codes tailored

for these scenarios: Partial-MDS (PMDS) codes and Sector- . .
Disk (SD) codes[[2],[[B]. The challenge of the current work is to define PMDS and

Both follow the same methodology -+ entire columns SD codes for general parameters. The casgrofl ) PMDS

of elements are devoted to coding, and each row compoggges was solved ii]2]. In this paper, we address the case
an independenits, n — m, m + 1] MDS code. In the remain- of (m;2) F_)MD_S and SD code_s._ .
ing n — m columns of the arrays more elements are also We _bggm with a formal dgf|n|t|on of the two codes.
devoted to coding. The erasure protection that they provideDef'mFIon 1.1: LetC be a linear(rn, r(n —m) —s] code .
differentiates PMDS and SD codes. SD codes tolerate (" 2 field such that when codewords are taken row-wise
erasure of anyn columns of elements, plus any additioral asr x n arrays, each row belongs in am, n — m,m + 1]
elements in the array. PMDS codes tolerate a broader clMRS cgde. Then, . )
of erasures — any: elements per row may be erased, plus 1) C is an (m;s) partial-MDS (PMDS) codet iffor any
any additionak elements. (s1,82,.-.,5t) such that eachy; > 1 and};_; sj =s,

As their name implies, SD codes address the combination ~a@nd foranyiy, iz, ..., i such thal) <i; <ip <--- <
of disk and sector failures that occurs in modern disk system it <r—1,C can correct up te; +m erasures in each
Column failures occur when entire disks break, and sector 'OW i, 1 <j < t, of an array inC.
failures can accumulate over time, typically unnoticedilunt 2) C is an (m;s) sector-disk (SD) code if, for any
an entire disk breaks, and the failed sector is required for  [1/12,-- -, Im such that0 < ) <l < -+ < Iy <
recovery. PMDS codes are maximally recoverable for codes 7 — 1, for any (sy,s,...,s:) such that eachs; > 1
laid out in the manner described abové [2]. Maximally  and Z]t:] sj=s, and for anyiy,i,... i such that
recoverable codes have been applied to cloud storage system 0 < i; <i» < --- < i < r—1, C can correct up
where each element resides on a different storage rdde [6]. 10 s; +m erasures in each row;, 1 < j < ¢, of an
The rows of the array correspond to collections of storage  array in C provided that locations,, I, . .. I, in each
nodes that can decode together with good performance, while  of the rowsi; have been erased.
the extras elements allow the system to tolerate broader In the next section we give a general construction for
classes of failures. (m;2) PMDS and SD codes. Constructions of (1;2) SD codes
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were given in[[1] and of (2;2) codes inl[3], so our resultby
generalize those constructions.

From now on, when we say PMDS or SD codes, we refer
to (m;2) PMDS or SD codes.

II. CoODE CONSTRUCTION

Consider the fieldGF(2%) and leta be an element in
GF(2"). The (multiplicative) order oft, denotedO(«), is

11 11 1]100000|0000°0
la a2a3a*| 0000000000
00 0 0 0] 1 1111100000
00 0 0 0| 1 aa?2a®a*| 00000
00 0 0 0] 000OO0OO|1TT1TT1TII1
00 0 0 0| 00000 /|1 aa?a’at
1 a2 ot ab 48 1 a?2a%a®a® | 1 a2a%abad
10(140613 alztx“ a10a9a8[x7a6 tx51x4tx30¢2a

the minimum¢ > 0 such thaw! =1. If « is a primitive ele-
ment [8], thenO(a) =2% — 1. To each element € GF(2%),

Let us point out that the construction of this type of

there is an associated (irreducible) minimal polynoniig! [0des is valid also over the ring of polynomials modulo

that we denotefy (x).

Leta € GF(2%) andrn < O(a). We want to construct an
SD-code consisting of x n arrays overGF(2¥), such that
m of the columns correspond to parity (in RAID B, =1,
while in RAID 6, m=2). In addition, two extra symbols

also correspond to parity. When read row-wise, the cod®

words belong in arrn, r(n — m) — 2] code overGF(2%).
Specifically, letC(r, n, m,2; fa(x)) be the[rn, r(n —m) — 2]
code whosgmr + 2) x rn parity-check matrix is given by

My(x)=1+x+---+xP~1, p a prime number, as done
with the Blaum-Roth (BR) code5|[4]. In that cas®(«) = p,
wherea? 1 =1+a + - - - 4+ aP~2. The construction proceeds
similarly, and we denote i€ (r,n,m,2; M,(x)). Utilizing
the ring moduloM),(x) allows for XOR operations at the
ncoding and the decoding without look-up tables in a finite
field, which is advantageous in erasure decodidg [4]. It is
well known that M, (x) is irreducible if and only if 2 is
primitive in GF(p) [8].

Next we give a lemma that is key to proving the conditions

Hy| 0 0 under which code€§ (r,n,m,2) are PMDS or SD.
0 | Hy 0 Lemma 2.1: Let € GF(2"),rn < O(a),1 < £ <r—1,
_ : . ; I1<sand,ifl <m<n—2letd <iyg<ip <ip <
H = : : (@) , . . ;
- . < iy <n—1land0 < jop < 1 < fp < -+ <
010 Hy jm < n —1. Consider the(2m 4 2) x (2m + 2) matrix
Hy | Hy Hy M(io, i1, - - im; jos jus - - -, jmi 715 ) given by
where 1 1 1 0 0 0
' ah alm 0 0 0
1 1 1 1 ; i i
|1 2 4 2(n—1) : : . : : : :
Ho= 7 & ° " @ o g v v | 0 0 L o
: : : 0 0 0 1 1 o1
1 am-1 420m-1) a(m=1)(n—1) 0 0 0 o at aim
0 0 0 W20 g2 2
and, forl <j<r, : : - .

o ( 1 o a2m o m(n=1) ) @) 0 (3 0 : am=Djo o (m=1)j1 ,X(m—ll)]'m
=\ i I _ i o . Mo L] oM amjo amn . wMm
I\ (=Dng (=Dn=1g(-Dn=2 = F(-n—(1-1) o g min | ont—go gt afnk'fj,)

We will show under which conditions codes |t

C(r,n,m,2; fa(x)) are PMDS or SD. Unless stated
g;hgr(vrvie;ﬂfc;r) simplicity, let us denoté(r,n,m,2; fa(x)) Alio,it, -+ im; o j1, - - - jus 13185 €)
We start by giving some examples. = det M(io, i1, - i for i - - i 1571, ).
Example 2.1: Consider the finite fie@F (16) and leta be  Then
a primitive element, i.e.Q(«) =15. Then, the parity-check
matrix of C(3,5,1,2) is given by Ao, i1, -« ims Jos Jis e - - s Jms 131555 €)
11 1 1 1 0 000O0J]0OO0O0O0O
00 0 0 0|1 1111]00000 _ iy z)( iu jv)(_zyzoiu —nZ—ZZ;Oju) 4
00 00 0][00000 11111 <O<LKHU£1@““@“ ! o - @)
Ta a2 a? |1 aa?a®a? |1 aaZa’a? h h
1al* w13 a12 411 | 010 4% 48 47 a6 | 4% % 03 a2 Proof: For simplicity, let us denote

Similarly, the parity-check matrix af(3,5,2,2) is given

A=A(io, 11, im; jo, J1, - -, Jms 15115 €).



Consider then x (m + 1) matrices then from the next to bottom row, we obtain

m
0}0 0}1 o DC:!:m (@ lelu Miv det (X(ll,v))
@

u=0 v=0

2i 2i 2i
_ a2 a2 2hm vu
M= . m ) 2m+1 ( )
: : . : P P lxm]vmldet( uv)
Dé(m_l)io lx(m—l)l'] . a(m—l)im u=0 v=m-+1
2m+1
and B a 1@ oMo det( u, v))
1 1 .1 umm o
afo ah ol 2m+1 . 2mil
y 2o 2 o2in D ot @ oot det (X))
— u=m+1 v=m+1

WmDio @m-Vii  gm—Djn

m m
=(Pa @ a"le det(M,,) det(M'))

u=0

<é a ég o det(M,) det( M, ))

u=0 v=0

m m .

= P a " det(M, ) <@ e det(M{,))

u=0 u=0

m m .

P « —=ju det(M) ) (@ oM det(Mu)> .

m x m Vandermonde matrices obtained from deleting column
u from M and M’ respectively. Also, fol) < u,v < 2m +

1, u # v, let X(4?) be the (2m) x (2m) matrix obtained
from removing columng: andv and the last two rows from
M(io, il/ e ,im;jo,jl, . .,jm; r,n, 6)

&)
For eachu, 0 < u < m, let M, and M/, denote the ®
If 0 <u,v<m u#o, @

u=0 u=0 ( )
5
xtwo) — (L Q/ ’ Let
0O M
I
where P denotes anm x (m — 1) matrix and(Q are zero a0 'l ol
matrices. Notice thakK (%) has rank smaller thaivn, since o w2t g2
the firstm rows have rank smaller than. Thus, Wo =
am=1)io  p(m=1)ir 4 (m=1)in
det (X(“'”)) =0 forO<u,v<m u#o. Mo i M
1 1 1
fFOo<u<mandm+1<ov<2m+1, o Al ain
2ig 20y 2im
o o «
x(wo) = ( M 7 : ) . W =
“(mfl)zg “(mfl)zl o lx(mfl)zm
By properties of determinants, a~io i S
det (xw'w) = (det(M,)) (det(M,_,, 1)) 1 11
oo all olm
2Zjo 2j1 2jm
for0<u<m m+1<ov<2m+ 1. Similarly, W, = & & e 0
det (X(”'v)) (det< u—m— 1)) (det<MU)) zx(m_l)fo a(m—l)h . a(m—l)jm
a™mio L
form+1<u<2m+1,0<v<m and 1 1 1
oo a1 alm
(u,v)) _ a2fo a2 - w2m
det (X 0, W= _ o _
form+1<u,0v<2m+1, u+#vo. alm=Djo pm=1)j  y(m=1)jm

Expanding the determinamt from the bottom row, and amjo  gmml=j o gl



Notice that, by properties of determinants and of Vander-  IlI.

monde determinants,

det(Wy) = @ o det(My) = [T (a @a)
U= 0 0<u<ov<m
det(W;) = @ o det(M,,) = a~ Luolu [T (¢ @a®)
u=0 0<u<o<m
m
det(Wp) = P o™i det(M)) = 1] (@ aa)
u=0 0<u<o<m
det(W;) = @ oI det(M!) = 7"1(72‘""4]“1_[(06]‘“@ o).

So, [B) becomes

u=0 O<u<o<m
A det(Wy) det(Wp)
—\ det(W;) det(W)

_ ( T (arear) (w @an)>

ou<o<m

d : :
aet| v i eml-X g

and [3) follows.

CONSTRUCTION OFSD AND PMDS CODES

Let us start with our main result for SD codes.
Theorem 3.1: The codes C(r,n,m,2; fx(x)) and
C(r,n,m,2; My(x)) are SD.

Proof: Assume thatn columns have been erased and
in addition we have two random erasures. Assume first that
these two random erasures occurred in the same/rafathe
stripe. The rows that are different frofmare corrected since
each one of them hag erasures, which are handled by the
horizontal code, that is, each horizontal code is given ley th
parity-check matrixHy, which is the parity-check matrix of
a RS code that can correct up #o erasures[[8]. Thus, we
have to solve a linear system withh+ 2 unknowns. Without
loss of generality, assume that the erasures info@ecurred
in locationsiy, iy, . . ., im, iyma1, Where0 <ip <ip < -+ <
im < ime1 < n. According to the parity-check matrix of the
code as given by[{1)[12), anfll(3), there will be a unique
solution if and only if the(m +2) x (m + 2) matrix

Lemmal[Z.1 is valid also over the ring of polynomials

modulo M, (x), p prime, wherern < p. Let us illustrate

it with an example forn =1 andm =2.
Example 2.2: Letn =1, then

M(io, ir; jo, j1; 75 1; )
1 1 0 0
- 0 0 1 1
olo a1 /o a1
a~ o g | gml=jo g nl—h

and
Ao, in; jo, j1; 7 m55;€)
- (aio@,xil) (am@ajl) (a—z‘o—il @Dfnffjrh).
If m=2, LemmdZl gives

M(ip, i1, 12; jo, j1, jos 75 15 £)

1 1 1 0 0 0
alo gt pf2 0 0 0
0 0 O 1 1 1
= 0 0 0 gch lle lsz
“210 “211 “212 /o a1 )2
a—lo g g2 | g—nl—jo g —nl—j1 y—nl=j>

and

Al(ig, 1,125 jo, j1, jo; 1511585 4)

- (aio @ lxil) (aio o aiz) (lxil D aiz) (leo @ tle)

(ajo ® ajz) (th ® a/’z) (lx—io—iriz @ aM—jo—n —/'2).

In the next section we study cod@sér, n, m, 2; fa(x)) and

C(r,n,m,2; M,(x)) as SD and PMDS codes.

1 1 . 1 1
alo alt e alm alm+1
w2io w2i a2im o2im+1
lxmig zxmil DCMim “ml‘-m+1
lX—nZ—iO lX—nZ—il Dc—nf—im “—ng—im+1

is invertible. By takinga—"’ in the last row as a common
factor, and by multiplying each column0 < j < m +1, by
«'i, this matrix is transformed into a Vandermonde matrix,
which is always invertible in a field and also in the ring of
polynomials modulaM, (x) [4].

Consider now the case in which the two random failures
occur in different rows. Specifically, assume that columns
ig,11,...,u—1 were erased, where < iy < i1 < ... <
im—1 < n—1,and in addition, entrie&/, t) and (¢, ') were
erased, where, t’ & {ip,i1,...,im_1} and0 < £ < ¢/ <
r — 1. Again, using the parity-check matrix of the code as
given by 1), [2), and{3), there will be a unique solution if
and only if the(2m +2) x (2m + 2) matrix

1 1 o1 0 0

. 0
o av o ad 0 0o ... 0
a2l a2 a2t 0 0o ... 0
a(m=")io o (m=1)ir 5 (m=1)t 0 0o ... 0
0 0 - 0 1 1 o 1
0 0 ... 0 a'o L al
0 0o ... 0 2o a2 g2t
0 0 ... 0 alm=Dio g (m=1)ir 5 (m=1)¢
lxmig Démil gt Démio amil . lxmt’
\g—rtl—io y—nl—is  y=nl—t |gonb'—io yonl'—i  -nl'~t,

is invertible. Takingx "¢ as a common factor in the last row,

we obtain the matrix
M(ig, i1,1, . ..

. PRI . / 12
s lm—1, t/ 0,11,12,- -+, 11’!1711t e T’l,g - 6)



as defined in Lemma 2.1, whose determinant[By (4), is given

by

. . . . . . . . / /
A(IO/ 1,12,y lip—1, t; 10,11,12,- -+, lmfl/t e Tl;f _6)
. S\ 2
1 (o)

<0§u<v<m1
. H zxi” @at zxi“ @at’ )
<O<u<ml ( ) ( )
. “722’1:—01 iy (067t @ lx*ﬂ(f’*f)*f’) .
For simplicity, redefine/<—¢' — ¢, hence,1 < ¢ < r — 1.
Each binomial(a’s & a*), (a's & at) and (ociu ® zxt') above
is invertible, so it remains to be proven that— ¢ a "¢’
is invertible. If it is not,n¢ +t —t =0 (mod O(«)). But
O<nl+t —t<nr—1)+t —t
=nr—(n—(t' —t)) <nr—1<O(w),
so,nl+t' —t #0 (modO(a). ]

Theorem 3.2: The codes C'(r,n,m,2; fx(x)) and
C'(r,n,m,2; Mp(x)) are PMDS.
Theorem[3R is proven similarly to Theoredm13.1. For

reasons of space, we omit the proof here.

IV. CONCLUSION

We have described a construction for SD codes and PMDS
codes where the number of additional sectersquals two.
The minimal field size required by the construction for SD
codes is only the total number of sectors in the array, and in
the case of PMDS codes, at most of quadratic order in the
total number of sectors.

Further results, not described in detail due to the space
limit, are a construction for(m;s) SD codes restricted to
not having two of thes erased sectors in the same disk,
and a construction fofm;s)-like PMDS codes with extra
redundancy of orde®(slogs).

As related work, let us mention a recent pager [5] that
gives constructions ofl; s) PMDS codes trying to minimize
the size of the field. In fact/1;s) PMDS, called Maximally

Next, let us prove a similar result for PMDS codes. In facRecoverable codes ifl[5], satisfy also the requirements of

codesC(r,n,m,2; fu(x)) and C(r,n,m,2; My(x)) are not

Locally Repairable codes][9], [12]. Additionally, the retly-

PMDS, but we will obtain PMDS codes with a modificatiordefined STAIR codes relax the failure-coverage of SD codes

that requires a larger field or ring. Let

N = m+1)(n—m—1)+1 ©6)

in order to allow for general constructiors [7].
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over GF(2%), such thatm of the columns correspond to
parity and in addition, two extra symbols also correspond
to parity. When read row-wise, the codewords belong irh]
an [rn,r(n — m) — 2] code overGF(2%). Specifically, let
C'(r,n,m,2; fx(x)) be the[rn,r(n —m) — 2] code whose [2]
(mr +2) x rn parity-check matrix is given byd’, which is
identical toH in (), except the bottommost two rows are(s
defined as:

(Hi[Hy |- [H) “

where, forl <j <,

o 1 oM a2m ‘xm(nfl)
I \qg= (=N 4=(=D)N=1,=(-1)N=2 ,=([-1)N=(n-1)

(5]

(6]

As before, the construction is also valid over the ring of
polynomialsM, (x), p prime, in which case we denote the Y
codesC'(r,n,m,?2; My(x)). Let us give an example.

Example 3.1: Letn=5, m=1 and r=3. According
to (€), N=(2)(3) + 1=7. Thus, we needO(a) >
rN =21. For instance we may consider the fie(@F(32)
and a primitive in GF(32), i.e.,, O(a) =31 > 21 (we can
also handler =4 in this example). Thus, the parity-checlllo]
matrix of C'(3,5,1,2; fa(x)) is given by

(8]
El

11 1 1 1 0O 0 00 0|0 0 O0 O0O0 (11
oo o o0 01 1 1 1 1|0 0 O0 0O

oo o o0 o0jJjo 0 O0O0O0OT| 1T 1T 1 1 1].

Ta a2 a® a1 a a2 a8 a1 a a2 a3 a2 [12]
1 0630 0629 “28 IXZ “24 0623 “22 lel IXZO le “16 “15 0614 “13
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