XOR’s, Lower Bounds and MDS Codes for Storage
James S. Plank

plank@cs.utk.edu

Technical Report CS-11-672

Department of Electrical Engineering and Computer Science
University of Tennessee

May, 2011.

This paper has been submitted for publication.
See the web link below for current publication status.

http://www.cs.utk.edu/~plank/plank/papers/CS-11-672.html

XOR’s, Lower Bounds and
MDS Codes for Storage

James S. Plank
Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville, TN 37919
Email: plank@cs.utk.edu

Abstract—MDS erasure codes are ubiquitous in storage sys-
tems that must tolerate failures. While classic Reed-Solomon
codes can provide a general-purpose MDS code for any situation,
systems that require high performance rely on special-purpose
codes that employ the bitwise exclusive-or (XOR) operation, and
may be expressed in terms of a binary generator matrix. There
are known lower bounds on the density of the generator matrix;
however the number of XOR operations required to encode the
generator matrix, while related to the density of the matrix, has
not been explored.

This paper presents a stunning and counter-intuitive result —
that the encoding of & message symbols in an MDS code may
require fewer than k£ —1 XOR operations per coding symbol. The
result brings into question the lower bounds on the performance
of encoding and decoding MDS erasure codes.

I. INTRODUCTION

From the rise of RAID in the 1990’s, storage systems have
relied on MDS erasure codes to tolerate failures. The typical
configuration is an extrapolation of RAID-4, as depicted in
Figure 1. A system of n disks is partitioned into k disks that
hold data, and m disks whose contents are calculated from the
data using an erasure code. If the erasure code is a Maximum
Distance Separable (MDS) code, then the system can tolerate
the loss of any m disks through failures without data loss.

Sl

k disks of Data

Encoding

oot) I

m disks of Coding

Fig. 1. An example of an n-disk RAID system that uses an MDS erasure
code to encode k disks of data onto m = n — k disks of coding. Because
the code is MDS, the system can tolerate the failure of any m disks without
losing data.

RAID-4 and RAID-5 systems arose in the early 1990’s and
have enjoyed considerable commercial success in providing
the framework for large-scale storage systems [6]. With RAID-
4 and RAID-5, there is only one coding disk (i.e. m = 1),
whose contents are calculated as the bitwise exclusive-or
(XOR) of the data disks. In the early 2000’s, storage systems
grew to the point where RAID-4 and RAID-5 did not provide
enough protection from failures. In particular, latent sector
failures that accumulated unnoticed over time exposed the
storage system to data loss upon failure of a disk drive [7], [8],
motivating the need for higher RAID levels. RAID-6 systems

employ two coding disks (i.e. m = 2), and are currently sold
commercially by all major disk vendors.

As storage systems have grown further, both in size and
scope, larger amounts of fault-tolerance have become nec-
essary. For example, commercial vendors such as AllMy-
Data.com and Cleversafe sell solutions for large-scale and
archival storage that employ MDS codes to tolerate four and
six failures respectively [13], [16]. Cloud storage providers
such as Microsoft, Amazon and Google all employ MDS
erasure codes beyond RAID-6 to prevent data loss. Clearly,
the trend for the next decades is for storage systems to employ
larger and larger amounts of fault-tolerance.

While there are many factors that impact the performance
of an erasure-coded storage system, the CPU performance of
encoding and decoding can have major impact [13], [16].
Consider the example of RAID-4, where m = 1 and the
coding disk is calculated as the parity of the data disks. The
CPU performance of RAID-4 is £ — 1 XOR operations per
machine word of the coding disk. This is a lower bound on
the number of XOR operations for RAID-4 encoding, and
subsequent work on RAID-6 and beyond has assumed that
it is a lower bound for all storage systems that employ MDS
erasure codes for fault-tolerance [7], [13]. There is good reason
for this assumption — theoretical work on MDS codes has
proven lower bounds on the density of generator matrices for
these codes [4], and intuitively, the density of the generator
matrices has a direct relationship on the number of XOR
operations required for encoding and decoding.

In this paper, we demonstrate that k—1 XOR operations per
coding word is not a lower bound for encoding with an MDS
code. We find this result both counter-intuitive and stunning;
yet we demonstrate how it arises in codes with (n,k) values as
small as (6,3). We explore the phenomenon with other small
codes, and we challenge the Information Theory community
to explore its theoretical underpinnings.

II. PROBLEM STATEMENT

We are exploring systematic (n,k) MDS erasure codes
whose sole encoding and decoding operation is the bitwise
exclusive-or (XOR). Our code takes a vector D of k message
symbols, dy,...,dik_1, each of which is w bits in length. It
outputs a vector C of m = n—k coding symbols cg, ..., Cm—1,
each of which is also w bits. The vector (C|D) composes the

codeword of size n. If any m of the n symbols in the codeword
are erased, then the original message may be restored from the
surviving symbols.

When an erasure code is implemented in a disk-based
storage system, the bits that compose each symbol are each
stored on a separate sector of the disk. The only operation
allowed is the XOR operation, which means that when bits
are XOR’d in the erasure code, whole sectors are XOR’d
on disk. This is an efficient operation. As such, we refer to
the individual bits of each word, d; or ¢; as d;,...,d;w—1
or as ¢jo,.-..,Cjw—1. Morover, we can equivalently view D
and C as bit vectors of size kw and mw respectively. In fault-
tolerant storage systems, disks typically hold “data” rather than
“messages.” However, to keep consistent with standard coding
theory nomenclature, we will call D the “message.”

A systematic erasure code is defined by a kw x nw generator
matrix G = (I|P). Each element of G is a bit, and the
vector-matrix product DG over GF'(2) equals the codeword.
Thus DP = C'. When erasures occur, we decode by forming
a square decoding matrix from G that corresponds to k of the
surviving words in the codeword, inverting it and multiplying
it by the survivors. A generator matrix G defines an MDS
code if every decoding matrix that can be made in this way
is invertible.

The acts of encoding and decoding, therefore, may be
viewed as calculating vector-matrix products over GF'(2). We
provide a concrete example in Figure 2. This is the (6,4) RDP
code for RAID-6 [7]. Each disk holds a 4-bit symbol, one bit
on each of four sectors.

Fig. 2. The (6,4) RDP RAID-6 erasure code, defined as DP = C' over 4-bit
words. Thus, D is a vector of four 4-bit words, or equivalently a bit vector
of size 16. Similarly, C' is a vector of two 4-bit words, or a bit vector of size
eight.

The straightforward way to calculate this vector-matrix
product is to calculate each bit of C' independently. For
example, cg 1 and c1 o may be calculated as:

do1 +di1+do +ds
= do1+dop+dig+diz+dai+dso+dsn

Co,1

C1,0

Since arithmetic is over GF'(2), addition is equal to XOR.
When the bits of C' are calculated independently, the number
of XOR operations is determined by the density of P. In

particular, if a column has o ones, then its corresponding
coding bit may be calculated with o — 1 XOR’s. The example
in Figure 2 requires 33 XORs, or 4.125 XORs per coding bit,
when encoded in this manner.

However, RDP has been designed so that its generator has
a particular stucture. In particular, each sum c;; for 0 <1 <
w—1 contains cg ;—1 as a subexpression. In the example above:

c1,0 =co,1 +do2+diz+dsp.

Therefore, if the bits of ¢ are calculated before the bits of ¢,
then they may be used to calculate c; with far fewer XOR
operations. In the example of Figure 2, this leads to 24 total
XOR’s, or exactly three XOR’s per coding bit.

Given this backdrop, the question we address is the follow-
ing:

What is the lower bound on the number of XOR
operations required to encode and/or decode a sys-
tematic (n, k) MDS erasure code?

When m = 1, it is trivial to show that RAID-4, which
requires k—1 XORs to encode and decode, is the lower bound.
For m = 2, RDP and its supersets [18] also require k — 1
XOR’s per coding or decoded bit, and this is claimed to
be optimal without proof [7]. Blaum gives constructions that
achieve this bound for higher values of m [1], and these are
also claimed to be optimal. Given that the P portion of any
systematic MDS generator matrix must have at least kmw
non-zero entries [4], it is reasonable to assume that £ — 1
XOR’s per coding bit is the lower bound for encoding, and
that £ — 1 XOR’s per decoded bit is the lower bound for
decoding.

This paper demonstrates that for certain (n,k) combinations,
the lower bound is lower than £k — 1 XOR’s. We briefly
discuss the concept of scheduling bit matrix/vector products,
and show results of an exploration of performing scheduling
on Cauchy Reed-Solomon generator matrices. In many cases,
the performance of encoding is less than & — 1 XOR’s per
coding bit.

While our work is in some sense happenstance, in that we
made this discovery through experimentation, we believe that
the result is important, and bears exploration by the theoretical
community.

ITI. SCHEDULING MATRIX-VECTOR PRODUCTS IN GF(2)

Given a r X ¢ bit matrix P, we define a schedule S to be
an ordered set {sg, s1,...} of r-bit column vectors. We refer
to the bits of s; as s;0,...,5;r—1. To be a valid schedule, S
must have the following properties:

e For 0 < i < r, s; is defined such that s;; = 1 and for

all j 7é 7, Sij = 0.
o For ¢ > r, there must exist x < y < ¢ such that for all j,
Sij = Sej+ Sy

o For each column P; of P, P; € S.

Intuitively, the first r elements of S represent each bit of the
message, and each subsequent element represents a sum that

is generated by one XOR operation. Since each column of P
is an element of .S, S gives a schedule of XOR operations that
can generate P. The total number of XOR operations is |S|—7.
We may represent S as a matrix of column-vectors as in
Figure 3. This schedule is the optimal way of performing
encoding with the (6,4) RDP code from 2. The starred and
colored columns depict elements of .S that are also columns of
the generator matrix. Since the schedule contains 40 elements,
it requires 40 — 16 = 24 XOR’s, which is optimal for RDP.

L

Fig. 3. An optimal scheduling of the (6,4) RDP code of Figure 2. The starred
columns are columns of RDP’s generator matrix that are in the schedule.

It is an open problem to generate optimal schedules for
arbitrary matrices. Huang er al conjecture that it is NP-
Hard [10]. However, there have been three separate research
projects that develop heuristics for generating good schedules.
Hafner et al propose an algorithm called “Code-Specific Hy-
brid Reconstruction” (CSHR) which, as in the RDP example,
attempts to use previous product bits as starting points for
calculating subsequent product bits to reduce XOR’s [9].
Their technique generates optimal schedules for RDP and
is a necessary optimization for decoding Blaum-Roth and
Liberation codes [4], [13].

Huang et al propose a technique that uses Edmonds’ general
matching algorithm to identify common subexpressions within
the matrix for XOR reduction [10]. Like CSHR, their tech-
nique generates optimal schedules for RDP, and additionally
it generates optimal schedules for EVENODD coding [2].

Our recent work has extrapolated upon these projects to
yield two new techniques, called “Uber-CSHR” and “X-Sets,’
which are the most effective at reducing XOR’s for arbitrary
matrices [14]. We have posted open-source implementations of
all three research projects [12], and it is these implementations
that we use to generate the results of this paper.

IV. WHENE <20RmMm <2

It is trivial to show that £ — 1 XOR’s is a lower bound
when k£ =1 or m = 1. When k£ = 1, replication provides an
MDS code with zero XOR’s. When m = 1, it is a necessity for
each input symbol to be touched once, and this can only occur
when k symbols are XOR’d as in RAID-4. This yields k — 1
XOR’s.

For a code to be MDS, each w x w panel of P must be
an invertible matrix [4]. Moreover, each column of P must be
unique; otherwise, a decoding matrix can be created from P
that has two identical columns and is therefore not invertible.

When k& = 2, each column of P must have at least two non-
zero bits; otherwise, its w X w panels are not invertible. More-
over, each column must be unique. Therefore any schedule
that generates P must have at least mw columns in addition
to the first kw identity columns. This means that the schedule
requires at least mw XOR’s. There are mw coding bits that
need to be generated, so the lower bound is one XOR per
coding bit. This equals k£ — 1.

When m = 2, we conjecture without proof that £—1 XOR’s
per coding bit is also the lower bound. This is achieved by
RDP, which claims its optimality [7].

1| 2(0) |3 ()
6 (a') | 4 (a?) |7 (o)
2(@) | 1 |5(a9

(a): In GF(23)

Fig. 4. The P portion of a systematic generator matrix fork = m = w = 3.
This is generated with a Cauchy Reed-Solomon code with X = {0, 2,3} (or
{0,a,a®}) and Y = {1, 5,6} (or {1,a5,a*}).

(b): In GF(2)

V. A (6,3) CODE WHOSE LOWER BOUND IS LESS THAN 2

In Figure 4, we present the P part of a generator matrix
for kK = m = w = 3. This is an MDS matrix generated using
the Cauchy Reed-Solomon coding technique [5] with X =
{0,2,3} (or {0,c,a3}) and Y = {1,5,6} (or {1,a5, a*}).
The 3 x 3 matrix in GF(2%) is shown in Figure 4(a). It is
calculated with P; ; equal to x}ry in GF(2%). In Figure 4(b),
we convert the matrix in GF(2°) to a 9 x 9 bit matrix as
specified in [5].

Fig. 5. A schedule that encodes using the generator matrix of Figure 4(b)
with fewer than £ — 1 XOR’s per encoded word.

We ran the “X-Sets” scheduling program from [12], using
the “Uber-XSet” selection parameter with a threshold of zero,
and L = 2. which yields the schedule depicted in Figure 5.
This schedule has 26 columns, which means that it requires
17 XOR operations, or 1.89 XOR’s per encoded word. This
is less than £k — 1 XOR’s, meaning that the lower bound for
encoding MDS codes in general is not k — 1 XOR’s.

We attained this result by enumerating all potential X and Y
sets for Cauchy Reed-Solomon coding, and then applying the

X-Sets heuristic to the results. Of the (§)(3) = 560 potential
sets that we tested, 18 of them could be scheduled with 17
XOR’s. We cannot claim that these are the only ones that can
be scheduled with 17 XOR’s, because our scheduler is based
on heuristics. Regardless, these are the smallest values of k,
m and w for which the number of XOR’s required is less
than k& — 1 per bit.

VI. ENUMERATION OF SMALL CODES WHEN w € {3,4}

To explore this phenomenon for small matrices, we consid-
ered all values of n = k4+m < 8 and w € {3,4}. For each set
of parameters, we enumerated all X and Y sets for Cauchy
Reed-Solomon coding and then applied the X-Sets heuristic
to the results to derive the schedules with the fewest XOR’s.
We tabulate the results in Tables I and II. In each table, we
plot the total number of XOR’s in the schedule, and compare
it against (k — 1)mw, which is the number of XOR’s that
corresponds to k — 1 XOR’s per word. We plot the average
XOR’s per word, plus the number of matrices tested and found.

k m | (k—1mw XOR’s Diff | Avg | Tested Found
3 2 12 13 1 2.17 560 22
4 2 18 19 1 3.17 420 25
5 2 24 25 1 417 168 11
6 2 30 32 2 5.33 28 8
3 3 18 17 -1 1.89 560 14
4 3 27 25 -2 2.78 280 4
5 3 36 33 -3 3.67 56 2
3 4 24 22 -2 1.83 280 18
4 4 36 32 -4 2.67 70 7
3 5 30 26 -4 1.73 56 16
TABLE I

THE BEST SCHEDULES FOR CAUCHY REED-SOLOMON CODING MATRICES
FORN =k +m < 8 WHEN w = 3.

We omit values when £ < 2 and m = 1, since those
have a provable lower bound of £ — 1 XOR’s per word. It
is significant that for each test where m > 2, the number
of XOR’s in the best schedule is less than £ — 1 XOR’s per
word, the previously assumed lower bound. Additionally, the
data suggests that as k& and m increase, the distance from k—1
also increases. When m = 2, we conjecture that (k—1) XOR’s
per word is a lower bound, and the data does not refute the
conjecture.

When £ = 4, m = 3 and w = 4, the schedules discovered
encode with fewer XOR’s than generalized RDP for the same
set of parameters [1]. This is true for k =4, m =4 and w = 4
as well. This is notable, since generalized RDP is the best
known code for these parameters. We show the P portion of
this latter generator matrix, plus a schedule that encodes it
with 44 XOR’s in Figure 6.

VII. OF MATRIX DENSITY AND XOR’S

When one encodes without scheduling, the density of the
generator matrix dictates the number of XOR’s. For this
reason, numerous works have sought to design codes with
low density [4], [13], [15]. Moreover, some lower bounds
have been derived on the density of MDS generator matrices.

k m | (k—1mw XOR’s Diff | Avg | Tested Found
3 2 16 16 0 2.00 43,680 16
4 2 24 24 0 300 | 120,120 34
5 2 32 33 1 4.12 | 240,240 8
6 2 40 42 2 525 | 360,360 49
3 3 24 23 -1 1.92 53,936 4
4 3 36 35 -1 292 | 400,400 6
5 3 48 47 -1 392 | 720,720 8
3 4 32 31 -1 1.94 | 400,400 88
4 4 48 44 -4 2.75 | 900,900 2
3 5 40 36 -4 1.80 | 720,720 4
TABLE II

THE BEST SCHEDULES FOR CAUCHY REED-SOLOMON CODING MATRICES
FORN =k +m < 8 WHEN w = 4.

Fig. 6. The P portion for a generator matrix for Kk = m = w = 4, and a
schedule that encodes it in 44 XOR’s

The most specific is that the P portion of any MDS RAID-6
generator matrix must have at least kmw + (kK — 1)(m — 1)
non-zero entries [4]. The generator matrix for any MDS
code where m > 2 must contain multiple RAID-6 codes as
submatrices; therefore the lower bound for RAID-6 applies to
all codes where m > 2.

Unfortunately, when scheduling is applied, the density of
the matrix does not have a direct effect on the number
of XOR’s. For example, the P portion of RDP’s generator
matrix has k(3w — 1) non-zero entries, yet it encodes with
exactly k — 1 XOR’s per word. This is superior to, for
example, the Blaum-Roth code, which attains the lower bound
on density, yet encodes with (k —1) + ’“2—;1 XOR’s per word.

To gain a feeling for the density of the matrices that encode
with fewer than (k — 1) XOR’s per word, in Table III we plot
the density of the sparsest and densist matrices that generate
the best schedules for each value of k and m greater than two
in our tests. We plot the densities normalized by kmw, so that
the densities are independent of matrix size. Additionally, for
each value of k£, m and w we plot the lower bound for matrix
density (kmw + (k — 1)(m — 1)) [4], and for w = 4, we
plot the density of the generalized RDP matrix (kw + k(m —
1)(2w — 1)) [11.

In all cases, the density of the matrix generating the best
schedule is significantly higher than the lower bound. In all
cases but one, it is also higher than the generalized RDP
matrix.

VIII. INCOMPLETENESS

Even in the very small parameter space that we have
explored, we acknowledge that our work is quite incomplete.
First, we have only explored MDS matrices that result from
Cauchy Reed-Solomon constructions [5]. Even within the

w =3 w=4
k m | Min Max LB Min Max LB RDP
3 3 159 159 115|172 172 1.11 144
4 3 1.61 164 1.17 | 165 175 1.12 144
5 3 160 182 1.18 | 1.67 187 1.13 144
3 4 1.61 175 1.7 | 144 208 1.12 1.50
4 4 162 167 119 | 1.88 188 1.14 150
3 5 160 182 1.18 | 203 203 1.13 1.53

TABLE III
THE NORMALIZED MINIMUM AND MAXIMUM DENSITIES OF THE
MATRICES THAT GENERATE THE BEST SCHEDULES IN TABLES I AND II.

realm of MDS generator matrices for GF'(2"), there are many
more constructions. For example, the jerasure open-source
erasure coding library implements a heuristic that massages
the rows and columns of the generator matrix in an attempt
to minimize matrix density [13]. None of these constructions
have been considered. Additionally, there are numerous MDS
generator matrices that do not correspond to Reed-Solomon
codes. Examples are the generator matrices that correspond
to EVENODD [2], RDP [7], Liberation [13] and Blaum-
Roth [4] codes for RAID-6, and STAR [11], generalized
EVENODD [3] and generalized RDP [1] for higher values
of m. Clearly the space of MDS codes to explore is huge;
however for smaller values of k, m and w, there may be insight
to be gained by considering all possible MDS codes.

Similarly, we have only addressed scheduling experimen-
tally, using heuristics that attempt to optimize the number of
XOR operations for a given generator matrix [9], [10], [14].
The XOR numbers presented in Tables I and II may well not
be the minima for each value of k&, m and w. As with MDS
matrix generation, when k, m and w are sufficiently small,
determining optimality is computationally feasible [17] and
may be illustrative.

IX. CONCLUSION

We have unearthed a counter-intuitive result concerning
MDS erasure codes for storage — that the lower bound on
XOR operations to encode an (n, k) MDS erasure code is
in some circumstances less than (kK — 1) XOR operations
per encoded word. In Tables I and II, we have identified 12
sets of [k, m,w)| parameters where we can encode with fewer
than k£ — 1 XOR operations per word. This is smaller than any
known erasure code.

The nature of this work is more experimental than theo-
retical, but we believe the results bear theoretical scrutiny. In
particular, it raises the following open questions:

o What is the lower bound on XOR’s for an MDS code?
o Can we design codes that achieve it?
o What is the impact on decoding?

It is our hope that the community of Information Theory
researchers will be spurred to attack these questions. We will
be happy to provide any of the results, codes and/or schedules
produced in this paper to those who contact us.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants CNS-0615221 and CSR-
1016636, and a research award from Google. The author would
like to thank Jim Hafner, Mario Blaum, Cheng Huang, and Jin
Li for valuable discussions on this topic.

REFERENCES

[1] BLAUM, M. A family of MDS array codes with minimal number of
encoding operations. In IEEE International Symposium on Information
Theory (Seattle, September 2006).

[2] BLAUM, M., BRADY, J., BRUCK,J., AND MENON, J. EVENODD: An
efficient scheme for tolerating double disk failures in RAID architec-
tures. IEEE Transactions on Computing 44, 2 (February 1995), 192—
202.

[3] BLAUM, M., BRUCK, J., AND VARDY, A. MDS array codes with
independent parity symbols. IEEE Transactions on Information Theory
42,2 (February 1996), 529- 542.

[4] BLAUM, M., AND ROTH, R. M. On lowest density MDS codes. IEEE
Transactions on Information Theory 45, 1 (January 1999), 46-59.

[5] BLOMER, J., KALFANE, M., KARPINSKI, M., KARP, R., LUBY, M.,
AND ZUCKERMAN, D. An XOR-based erasure-resilient coding scheme.
Tech. Rep. TR-95-048, International Computer Science Institute, August
1995.

[6] CHEN,P.M.,LEE,E. K., GIBSON,G. A.,KATZ,R. H., AND PATTER-
SON, D. A. RAID: High-performance, reliable secondary storage. ACM
Computing Surveys 26, 2 (June 1994), 145-185.

[71 CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T., KLEIMAN, S.,
LEONG, J., AND SANKAR, S. Row diagonal parity for double disk
failure correction. In 3rd Usenix Conference on File and Storage
Technologies (San Francisco, CA, March 2004).

[8] ELERATH, J. G., AND PECHT, M. Enhanced reliability modeling of
RAID storage systems. In DSN 2007: International Conference on
Dependable Systems and Networks (Edinburgh, UK, 2007), IEEE.

[9] HAFNER,J. L., DEENADHAYALAN, V.,RA0, K. K., AND TOMLIN, A.
Matrix methods for lost data reconstruction in erasure codes. In FAST-
2005: 4th Usenix Conference on File and Storage Technologies (San
Francisco, December 2005), pp. 183-196.

[10] HUANG, C.,LI1,J., AND CHEN, M. On optimizing XOR-based codes
for fault-tolerant storage applications. In ITW’07, Information Theory
Workshop (Tahoe City, CA, September 2007), IEEE, pp. 218-223.

[11] HUANG, C., AND XU, L. Decoding STAR code for tolerating simul-
taneous disk failure and silent errors. In DSN-2010: The International
Conference on Dependable Systems and Networks (Chicago, June 2010),
IEEE.

[12] PLANK,J.S. Uber-CSHR and X-Sets: C++ programs for optimizing
matrix-based erasure codes for fault-tolerant storage systems. Tech. Rep.
CS-10-665, University of Tennessee, December 2010.

[13] PLANK, J. S., Luo, J., SCHUMAN, C. D., Xu, L., AND WILCOX-
O’HEARN, Z. A performance evaluation and examination of open-
source erasure coding libraries for storage. In FAST-2009: 7th Usenix
Conference on File and Storage Technologies (February 2009), pp. 253—
265.

[14] PLANK,J.S.,SCHUMAN, C. D., AND ROBISON, B. D. Heuristics for
optimizing matrix-based erasure codes for fault-tolerant storage systems.
Tech. Rep. CS-10-664, University of Tennessee, December 2010.

[15] PLANK,J.S.,AND XU, L. Optimizing Cauchy Reed-Solomon codes for
fault-tolerant network storage applications. In NCA-06: 5th IEEE Inter-
national Symposium on Network Computing Applications (Cambridge,
MA, July 2006).

[16] RESCH, J. K., AND PLANK, J. S. AONT-RS: blending security and
performance in dispersed storage systems. In FAST-2011: 9th Usenix
Conference on File and Storage Technologies (February 2011).

[17] SCHUMAN, C. D. An exploration of optimization algorithms and
heuristics for the creation of encoding and decoding schedules in erasure
coding. Pursuit - The Journal of Undergraduate Research at the
University of Tennessee 2 (2010).

[18] WANG,G.,L1u,X.,LIN,S., XIE, G., AND L1U, J. Generalizing RDP
codes using the combintorial method. In NCA-08: 7th IEEE Inter-
national Symposium on Network Computing Applications (Cambridge,
MA, 2008).

