
A Practical Analysis of Low-Density Parity-Check Erasure Codes for Wide-Area
Storage Applications

James S. Plank and Michael G. Thomason

Department of Computer Science
University of Tennessee

plank@cs.utk.edu, thomason@cs.utk.edu

Appearing in:
DSN-2004: The International Conference on Dependable Systems and Networks,

IEEE, Florence, Italy, June, 2004.
http://www.cs.utk.edu/˜plank/plank/papers/DSN-2004. html

If you are interested in the material in this paper, please look at the expanded version: Technical Report UT-CS-03-510,
University of Tennessee, September, 2003.

http://www.cs.utk.edu/˜plank/plank/papers/CS-03-510 .html .

A Practical Analysis of Low-Density Parity-Check Erasure Codes for
Wide-Area Storage Applications

James S. Plank and Michael G. Thomason∗

Abstract

As peer-to-peer and widely distributed storage systems
proliferate, the need to perform efficient erasure coding,
instead of replication, is crucial to performance and ef-
ficiency. Low-Density Parity-Check (LDPC)codes have
arisen as alternatives to standard erasure codes, such as
Reed-Solomon codes, trading off vastly improved decod-
ing performance for inefficiencies in the amount of data
that must be acquired to perform decoding. The scores
of papers written on LDPC codes typically analyze their
collectiveand asymptoticbehavior. Unfortunately, their
practical application requires the generation and analysis
of individualcodes forfinite systems.

This paper attempts to illuminate the practical consid-
erations of LDPC codes for peer-to-peer and distributed
storage systems. The three main types of LDPC codes
are detailed, and a huge variety of codes are generated,
then analyzed using simulation. This analysis focuses on
the performance ofindividual codes forfinite systems,
and addresses several important heretofore unanswered
questions about employing LDPC codes in real-world sys-
tems.

1 Introduction

Peer-to-peer and widely distributed file systems typically
employ replication to improve both the performance and
fault-tolerance of file access. Specifically, consider a file
system composed of storage nodes distributed across the
wide area, and consider multiple clients, also distributed
across the wide area, who desire to access a large file. The
standard strategy that file systems employ is one where the
file is partitioned inton blocks of a fixed size, and these
blocks are replicated and distributed throughout the sys-
tem. Such a scenario is depicted in Figure 1, where a single
file is partitioned into eight blocks numbered one through
eight, and each block is replicated on four of eight storage

∗This material is based upon work supported by the National
Science Foundation under grants ACI-0204007, ANI-0222945, and
EIA-9972889, and the Department of Energy under grant DE-FC02-
01ER25465. Department of Computer Science, University of Tennessee,
[plank,thomason]@cs.utk.edu .

servers. Three separate clients are shown accessing the file
in its entirety by attempting to download each of the eight
blocks from a nearby server.

1

1 2

3

41
5

6

6

7

8

8
1 3

64

2 4
5 8

2 3
5 7 2

7 8
5

3 4
6 7

C1

C2
C3

Figure 1: A widely distributed file system hosting a file
partitioned into eight blocks, each block replicated four
times. Three clients are depicted accessing the file from
different network locations.

Replicated systems such as these provide both fault-
tolerance and improved performance over non-replicated
storage systems. However, the costs are high. First, each
block must be replicatedm times to tolerate the failure of
anym − 1 servers. Second, clients must find close copies
of each of the file’s blocks, which can be difficult, and the
failure or slow access of any particular block can hold up
the performance of the entire file’s access [AW03].

Erasure encodingschemes (schemes originally devel-
oped for communication on thebinary erasure channel
(BEC)) improve both the fault-tolerance and downloading
performance of replicated systems [WK02, ZL02]. For ex-
ample, with Reed-Solomon erasure encoding, instead of
storing the blocks of the files themselves,n + m encod-
ings of the blocks are calculated, and these are stored in-
stead. Now the clients need only downloadanyn blocks,
and from these, then blocks of the file may be calculated.
Such a scenario is depicted in Figure 2, where 32 encod-
ing blocks, labeledA throughZ anda throughf are stored,
and the clients need only access the eight closest blocks to
compute the file.

Reed-Solomon coding has been employed effectively

C1

C2
C3

BA
DC

G H
F N

PO

I J
K L Q R

TS

W X
VU

ba
ZY

c
fe
d

E M

Figure 2: The same system as Figure 1, employing Reed-
Solomon coding instead of replication. Again the file is
partitioned into eight blocks, but now 32 encoding blocks
are stored so that clients may employanyeight blocks to
calculate the file.

in distributed storage systems [KBC+00, RWE+01], and
in related functionalities such as fault-tolerant data struc-
tures [LS00], disk arrays [BM93] and checkpointing sys-
tems [Pla96]. However, it is not without costs. Specifi-
cally, encoding involves breaking each block into words,
and each word is calculated as the dot product of two
length-n vectors under Galois Field arithmetic, which is
more expensive than regular arithmetic. Decoding in-
volves the inversion of ann × n matrix, and then each
of the file’s blocks is calculated with dot products as in
encoding. Thus, asn grows, the costs of Reed-Solomon
coding induce too much overhead [BLMR98].

In 1997, Lubyet al published a landmark paper detail-
ing a coding technique that thrives where Reed-Solomon
coding fails [LMS+97]. Their codes, later termed “Tor-
nado Codes,” calculatem coding blocks from then file
blocks in linear time using only cheap exclusive-or (par-
ity) operations. Decoding is also performed in linear time
using parity; however, rather than requiring anyn blocks
for decoding as in Reed-Solomon coding, they require
fn blocks, wheref is anoverhead factorthat is greater
than one, but approaches one asn approaches infinity. A
content-distribution system called “Digital Fountain” was
built on Tornado Code technology, and in 1998 its authors
formed a company of the same name.

Tornado Codes are instances of a class of codes called
Low-Density Parity-Check (LDPC)codes, which have a
long history dating back to the 60’s [Gal63], but have re-
ceived renewed attention since the 1997 paper. Since 1998,
the research on LDPC codes has taken two paths – Aca-
demic research has resulted in many publications about
LDPC codes [RGCV03, WK03, SS00, RU03], and Dig-
ital Fountain has both published papers [BLM99, Lub02,
Sho03] and received patents on various aspects of coding

techniques.1

LDPC codes are based on graphs, which are used to
define codes based solely on parity operations. Nearly all
published research on LDPC codes has had the same mis-
sion – to define codes that approach “channel capacity”
asymptotically. In other words, they define codes where
the overhead factor,f , approaches one asn approaches in-
finity. It has been shown [LMS+97] that codes based on
regular graphs – those where each node has a constant in-
coming and outgoing cardinality – do not have this prop-
erty. Therefore, the “best” codes are based on randomly
generated irregular graphs. A class of irregular graphs is
defined, based on probability distributions of node cardi-
nalities, and then properties are proven about the ensemble
characteristics of this class. The challenge then becomes
to design probability distributions that generate classesof
graphs that approach channel capacity. Hundreds of such
distributions have been published in the literature and on
the web (see Table 1 for 80 examples).

Although the probabilistic method [ASE92] with ran-
dom graphs leads to powerful characterizations of LDPC
ensembles, generating individual graphs from these prob-
ability distributions is a non-asymptotic, non-ensemble
activity. In other words, while the properties of infi-
nite collections of infinitely sized graphs is known, and
while there has been some work in finite-length analy-
sis [DPT+02], the properties of individual, finite-sized
graphs, especially for small values ofn, have not been ex-
plored to date. Moreover, these properties have profound
practical consequences.

Addressing aspects of these practical consequences is
the goal of this paper. Specifically, we detail how three
types of LDPC graphs are generated from given probabil-
ity distributions, and describe a method of simulation to
analyze individual LDPC graphs. Then we generate a wide
variety of LDPC graphs and analyze their performance in
order to answer the following five practical questions:

1. What kind of overhead factors (f) can we expect
for LDPC codes for small and large values ofn?

2. Are the three types of codes equivalent, or do they
perform differently?

3. How do the published distributions fare in produc-
ing good codes for finite values ofn?

4. Is there a great deal of random variation in code
generation from a given probability distribution?

5. How do the codes compare to Reed-Solomon cod-
ing?

1U.S. Patents #6,073,250, #6,081,909, #6,163,870, #6,195,777,
#6,320,520 and #6,373,406. Please see Technical Report [PT03] for a
thorough discussion of patent infringement issues involved with LDPC
codes.

In answering each question, we pose a challenge to
the community to perform research that helps systems re-
searchers make use of these codes. It is our hope that
this paper will spur researchers on LDPC codes to in-
clude analyses of the non-asymptotic properties of indi-
vidual graphs based on their research.

Additionally, for the entire parameter suite that we test,
we publish probability distributions for the best codes, so
that other researchers may duplicate and employ our re-
search.

2 Three Types of LDPC Codes

Three distinct types of LDPC codes have been described
in the academic literature. All are based on bipartite
graphs that are randomly generated from probability distri-
butions. We describe them briefly here. For detailed pre-
sentations on these codes, and standard encoding/decoding
algorithms, please see other sources [LMS+97, JKM00,
Sho00, RU03, WK03].

The graphs haveL+R nodes, partitioned into two sets –
the left nodes,l1, . . . , lL, and theright nodes,r1, . . . , rR.
Edges only connect left nodes to right nodes. A class of
graphsG is defined by two probability distributions,Λ and
P . These are vectors composed of elementsΛ1, Λ2, . . .

andP1, P2, . . . such that
∑

i Λi = 1 and
∑

i P = 1. Let g
be a graph inG. Λi is the probability that a left node ing
has exactlyi outgoing edges, and similarly,Pi is the prob-
ability that a right node ing has exactlyi incoming edges.2

GivenL, R, Λ andP , generating a graphg is in theory
a straightforward task [LMS+97], We describe our gener-
ation algorithm in section 4 below. For this section, it suf-
fices that given these four inputs, we can generate bipartite
graphs from them.

To describe the codes below, we assume that we haven

equal-sized blocks of data, which we wish to encode
into n + m equal-sized blocks, which we will distribute
on the network. The nodes of LDPC graphs hold such
blocks of data, and therefore we will use the term “node”
and “block” interchangeably. Nodes can either initialize
their block’s values from data, or they may calculate them
from other blocks. The only operation used for these cal-
culations is parity, as is common in RAID Level 5 disk
arrays [CLG+94]. Each code generation method uses its
graph to define an encoding of then data blocks inton+m

blocks that are distributed on the network.
To decode, we assume that we download thefn closest

blocks,B1, . . . Bfn, in order. From these, we can calculate
the originaln data blocks.

2An alternate and more popular definition is to define probability dis-
tributions of the edges rather than the nodes using two vectors λ andρ.
The definitions are interchangeable since(Λ, P) may be converted easily
to (λ, ρ) and vice versa.

Systematic Codes:With Systematic codes,L = n and
R = m. Each left nodeli holds thei-th data block, and
each right noderi is calculated to be the exclusive-or of
all the left nodes that are connected to it. A very simple
example is depicted in Figure 3(a).

Systematic codes cancascade, by employingd > 1
levels of bipartite graphs,g1, . . . , gd, where the right nodes
of gi are also the left nodes ofgi+1. The graph of level 1
hasL = n, and those nodes contain then data blocks. The
remaining blocks of the encoding are right-hand nodes of
thed graphs. Thus,m =

∑d

i=1
Ri. A simple three-level

cascaded Systematic code is depicted in Figure 3(b).

l1

l2

l3

l4

r1

r2

r3 r3=l2+l3+l4

r2 = l1+l2+l3

r1 = l1+l3+l4

(a) (b)

Figure 3: (a) Example 1-level Systematic code forn = 4,
m = 3. (b) Example 3-level Systematic code forn = 8,
m = 8.

Encoding and decoding of both regular and cascading
Systematic codes are straightforward operations and are
both linear time operations in the number of edges in the
graph.

Gallager (Unsystematic) Codes:Gallager codes were
introduced in the early 1960’s [Gal63]. With these codes,
L = n + m, andR = m. The first step of creating a
Gallager code is to useg to generate a(n + m) × n ma-
trix M . This is employed to calculate then + m encoding
blocks from the originaln data blocks. These blocks are
stored in the left nodes ofg. The right nodes ofg do not
hold data, but instead areconstraintnodes — eachri has
the property (guaranteed by the generation ofM) that the
exclusive-or of all nodes incident to it is zero. A simple
Gallager code is depicted in Figure 4(a).

Encoding is an expensive operation, involving the gen-
eration ofM , and calculation of the encoding blocks. For-
tunately, if the graph is low density (i.e. the average car-
dinality of the nodes is small),M is a sparse matrix, and
its generation and use for encoding and decoding is not
as expensive as a dense matrix (as is the case with Reed-
Solomon coding). Decoding is linear in the number of
edges in the graph. Fortunately,M only needs to be gen-
erated once per graph, and then it may be used for all en-
coding/decoding operations.

l1

l2

l3

l4

l5

l6

l7

r1

r2

r3

l2+l3+l4+l6=0

l1+l2+l3+l7=0

l2+l4+l5+l7=0

l1

l2

l3

l4

r2

r3

r1
z1

z2

z3

(a) (b)

Figure 4: (a) Example Gallager code forn = 4, m = 3.
Note that the right nodes define constraints between the
left nodes, and do not store encoding blocks. (b) Example
IRA code forn = 4, m = 3. The left and accumulator
nodes are stored as the encoding blocks. The right nodes
are just used for calculations.

IRA Codes: Irregular Repeat-Accumulate (IRA)Codes
are Systematic codes, asL = n andR = m, and the in-
formation blocks are stored in the left nodes. However, an
extra set ofm nodes,z1, . . . , zm, are added to the graph in
the following way. Each noderi has an edge tozi. Ad-
ditionally, each nodezi has an edge tozi+1, for i < m.
These extra nodes are calledaccumulatornodes. For en-
coding, only blocks in the left and accumulator nodes are
stored – the nodes inR are simply used to calculate the
encodings and decodings, and these calculations proceed
exactly as in the Systematic codes. An example IRA graph
is depicted in Figure 4(b).

3 Asymptotic Properties of Codes

All three classes of LDPC codes have undergone asymp-
totic analyses that proceed as follows. ArateR = n

n+m

is selected, and thenΛ andP vectors are designed. From
these, it may be proven that graphs generated from the dis-
tributions inΛ andP can asymptoticallyachieve capacity.
In other words, they may be successfully decoded withfn

downloaded blocks, wheref approaches 1 from above asn

approaches∞.
Unfortunately, in the real world, developers of wide-

area storage systems cannot break up their data into in-
finitely many pieces. Limitations on the number of phys-
ical devices, plus the fact that small blocks of data do not
transmit as efficiently as large blocks, dictate thatn may
range from single digits into the thousands. Therefore, a
major question about LDPC codes (addressed byQuestion
1 above) is how well they perform whenn is in this range.

Name Source # of Rate:[1
3
, 1

2
, 2

3
]

Codes
L97A [LMS+97] 2 [0,1,1]
L97B [LMS+97] 8 [0,4,4]
S99 [Sho99] 19 [4,7,8]
SS00 [SS00] 3 [0,3,0]
M00 [McE00] 14 [0,6,8]
WK03 [WK03] 6 [0,6,0]
RU03 [RU03] 2 [0,2,0]
R03 [RGCV03] 8 [0,8,0]
U03 [Urb03] 22 [6,9,7]

Name Λmax Pmax Developed
for

L97A 1,048,577 30,050 Systematic
L97B 8-47 16-28 Systematic
S99 2-3298 6-13 Gallager
SS00 9-12 7-16 Gallager
M00 2-20 3-8 IRA
WK03 11-50 8-11 Gallager*
RU03 8-13 6-7 Gallager
R03 100 8 IRA*
U03 6-100 6-19 Gallager

Table 1: The 80 published probability distributions (Λ and
P) used to generate codes.

4 Assessing Performance

Our experimental methodology is as follows. For each of
the three LDPC codes, we have written a program to ran-
domly generate a bipartite graphg that defines an instance
of the code, givenn, m, Λ, P , and a seed for a random
number generator. The generation follows the methodol-
ogy sketched in [LMS+97]:

For each left nodeli, its number of outgoing edgesξi

is chosen randomly fromΛ, and for each right noderi, its
number of incoming edgesιi is chosen randomly fromP .
This yields two total number or edges,TL =

∑L

i=1
ξi and

TR =
∑R

i=1
ιi which may well differ byD > 0. Suppose

TL > TR. To rectify this difference, we select a “shift”
factors such that0 ≤ s ≤ 1. Then we subtractsD edges
randomly from the left nodes (modifying eachξi accord-
ingly), and add(1−s)D edges randomly to the right nodes
(modifying eachιi accordingly). This yields a total ofT
total edges coming from the left nodes and going to the
right nodes.

Now, we define a new graphg′ with T left nodes,T
right nodes and a random matching ofT edges between
them. We useg′ to defineg, by having the firstξ1 edges
of g′ define the edges ing coming froml1. The nextξ2

edges ing′ define the edges coming froml2, and so on.
The right edges ofg are defined similarly by the right

edges ofg′ andιi.
At the end of this process, there is one potential problem

with g — there may be duplicate edges between two nodes,
which serve no useful purpose in coding or decoding. We
deal with this problem by deleting duplicate edges. An
alternative method is to swap edges between nodes until
no duplicate edges exist. We compared these two meth-
ods and found that neither outperformed the other, so we
selected the edge deletion method since it is more efficient.

We evaluate each random graph by performing a Monte
Carlo simulation of over 1000 random downloads, and cal-
culating the average number of blocks required to success-
fully reconstruct the data. This is reported as the overhead
factor f above. In other words, ifn = 100, m = 100,
and our simulation reports thatf = 1.10, then on average,
110 random blocks of the 200 total blocks are required to
reconstruct the 100 original blocks of data from the graph
in question.

Theoretical work on LDPC codes typically calculates
the percentage of capacityof the code, which is1

f
100%.

We believe that for storage applications, the overhead fac-
tor is a better metric, since it quantifies how many block
downloads are needed on average to acquire a file.

5 Experiments

Code Generation: The theoretical work on LDPC codes
gives little insight into how theΛ andP vectors that they
design will perform for smaller values ofn. Therefore we
have performed a rather wide exploration of LDPC code
generation. First, we have employed 80 different sets ofΛ
andP from published papers on asymptotic codes. We
call the codes so generatedpublishedcodes. These are
listed in Table 1, along with the codes and rates for which
they were designed. The WK03 distributions are for Gal-
lager codes on AWGN (Additive White Gaussian Noise)
channels, and the R03 distributions are for IRA codes on
AWGN and binary symmetric channels. In other words,
neither is designed for the BEC. We included the former as
a curiosity and discovered that they performed very well.
We included the latter because distributions for IRA codes
are scarce.

Second, we have written a program that generates ran-
dom Λ andP vectors, determines the ten best pairs that
minimize f , and then goes through a process of picking
randomΛ’s for the ten bestP ’s and picking randomP ’s
for the ten bestΛ’s. This process is repeated, and the ten
bestΛ/P pairs are retained for subsequent iterations. Such
a methodology is suggested by Lubyet al [LMS98]. We
call the codes generated from this techniqueMonte Carlo
codes.

Third, we observed that picking codes from some prob-
ability distributions resulted in codes with an extremely

wide range of overhead factors (see section 6.4 below).
Thus, our third mode of attack was to take the best per-
forming instances of the published and Monte Carlo codes,
and use their left and right node cardinalities to define
newΛ’s andP ’s. For example, the Systematic code in Fig-
ure 3(a) can be generated from any number of probability
distributions. However, it defines a probability distribution
whereΛ =< 0, 0.75, 0.25 > andP =< 0, 0, 1 >. These
new Λ’s andP ’s may then be employed to generate new
codes. We call the codes so generatedderivedcodes.

Tests: The range of potential tests to conduct is colos-
sal. As such, we limited it in the following way. We focus
on three rates:R ∈ { 1

3
, 1

2
, 2

3
}. In other words,m = 2n,

m = n, andm = n
2

. These are the rates most studied
in the literature. For each of these rates, we generated the
three types of codes from each of the 80 published distri-
butions for all evenn between 2 and 150, and forn ∈ {250,

500, 1250, 2500, 5000, 12500, 25000, 50000, 125000}3. For
Systematic codes, we tested cascading levels from one to
six.

For Monte Carlo codes, we tested all three codes with
all three rates for evenn ≤ 50. As shown in section 6.2 be-
low, this code generation method is only useful for smalln.

Finally, for each value ofn, we used distributions de-
rived the best current codes for all three coding methods
(and all six cascading levels of Systematic codes) to gen-
erate codes for the ten nearest values ofn with the same
rate. The hope is that good codes for one value ofn can be
employed to generate good codes for nearby values ofn.

In sum, this makes for over 100,000 different data
points, each of which was repeated with over 100 differ-
ent random number seeds. The optimal code and overhead
factor for each data point was recorded and the data is di-
gested in the following section.

6 Results

Our computational engine is composed of 160 machines
(Sun workstations running Solaris, Dell Pentium worksta-
tions running Linux, and a Macintosh PowerBook running
OSX) which ran tests continuously for over a month. We
organize our results by answering each of the questions
presented in Section 1 above.

6.1 Question 1

What kind of overhead factors can we expect for LDPC
codes for small and large values ofn?

All of our data is summarized in Figure 5. For each
value ofn andm, the coding and generation method that

3One exception isn = 125000 for R = 1

3
, due to the fact that these

graphs often exceeded the physical memory of our machines.

produces the smallest overhead factor is plotted.

1 10 100 1000 10000 100000
n

1.00

1.05

1.10

1.15

1.20

Ov
er

he
ad

 F
ac

to
r

Rate = 1/3
Rate = 1/2
Rate = 2/3

Figure 5: The best codes for all generation methods for
1 ≤ n ≤ 125, 000, andR = 1

3
, 1

2
, 2

3
.

All three curves of Figure 5 follow the same pattern.
The overhead factor starts at 1 whenm = 1 or n = 1,
and the Systematic codes become simple replication/parity
codes with perfect performance. Then the factor increases
with n until n reaches roughly twenty at which point it
levels out untiln increases to roughly 100. At that point,
the factor starts to decrease asn increases, and it appears
that it indeed goes to one asn gets infinitely large.

Although we only test three rates, it certainly appears
that the overhead factor grows as the rate approaches zero.
This is intuitive. At one end, any code with a rate of
one will have an overhead factor of one. At the other,
consider a one-level Systematic code withn = 3 and
m = ∞. There are only seven combinations of the left
nodes to which a right node may be connected. Therefore,
the right nodes will be partitioned into at mostm

7
groups,

where each node in the group is equivalent. In other words,
any download sequence that contains more than one block
from a node group will result in overhead. Clearly, this
argues for a higher overhead factor.

Challenge for the Community: The shape of the
curves in Figure 5 suggests that there is a lower bound for
overhead factor as a function ofn andm (or alternatively
as a function ofn andR). It is a challenge to the theo-
retical community to quantify this lower bound forfinite
values ofn and m, and then to specify exact methods for
generating optimal or near optimal codes.

Distributions: So that others may take advantage of
our simulations, we publish theΛ andP values used to
generate the codes depicted in Figure 5 athttp://www.

cs.utk.edu/˜plank/ldpc .

6.2 Question 2

Are the three types of codes equivalent, or do they
perform differently?

They perform differently. Figure 6 shows the best per-
forming of the three different codes forR = 1

2
(the other

rates are similar [PT03], and are omitted for brevity). For
small values ofn, Systematic codes perform the best.
However, whenn roughly equals 100, the IRA codes start
to outperform the others, and the Gallager codes start to
outperform the Systematic codes. This trend continues to
the maximum values ofn.

1 10 100 1000 10000 100000
n

1.00

1.05

1.10

1.15

O
ve

rh
ea

d
F

ac
to

r

Systematic
Gallager
IRA

Figure 6: Comparing methods,R = 1

2

Unfortunately, since the theoretical work on LDPC
codes describes only asymptotic properties, little insight
can be given as to why this pattern occurs. One curi-
ous point is the relationship between one-level Systematic
codes and Gallager codes. It is a trivial matter to con-
vert a one-level Systematic code into an equivalent Gal-
lager code by addingm left nodes,ln+1, . . . , ln+m to the
Systematic graph, andm edges of the form(ln+i, ri) for
1 ≤ i ≤ m. This fact would seem to imply that overhead
factors for one-level Systematic codes would be similar to,
or worse than Gallager codes. However, whenn < 50,
the one-level Systematic codes vastly outperform the oth-
ers; the Gallager codes perform the worst. To explore this
point, we performed this conversion on a Systematic graph
wheren = m = 20, and the overhead factor is 1.16. The
node cardinalities of the equivalent Gallager graph were
then used to generate values ofΛ andP , which in turn
were used to generate 500 new Gallager graphs with the
exact same node cardinalities. Theminimumoverhead fac-
tor of these graphs was 1.31 (the average was 1.45, and
the maximum was 1.58). This suggests that for smaller
graphs, perhapsΛ andP need to be augmented with some
other metric so that optimal codes can be generated easily.

Challenge to the community: A rigorous compari-
son of the practical utility of the three coding methods
needs to be performed. In particular, a computationally
attractive method that yields (near) optimal codes for fi-

nite n would be exceptionally useful. This is highlighted
by the fact that one-level Systematic codes vastly outper-
form Gallager codes for smalln, even though equivalent
Gallager codes may be constructed from the Systematic
codes.

6.3 Question 3

How do the published distributions fare in producing
good codes for finite values ofn?

In the next two graphs, we limit our scope toR = 1

2
,

as the results for the other two rates are similar. First, we
present the performance of the three code generation meth-
ods for the three coding methods for smalln in Figure 7.
As in the other graphs, the best performing instance for
each value ofn is plotted.

0 50 100

150

n

1.00

1.05

1.10

1.15

1.20

1.25

O
ve

rh
ea

d
F

ac
to

r

Systematic

Monte Carlo

0 50 100

150

n
Gallager

Published

0 50 100

150

n
IRA

Derived

Figure 7: Performance of various codes forn ≤ 150 when
R = 1

2
.

In all coding methods, the Monte Carlo generation
method produces better codes than the published distribu-
tions whenn is roughly less than 15. At that point, the
exponential number of possibleΛ/P combinations drasti-
cally reduces the effectiveness of Monte Carlo code gen-
eration. From that point untiln is in the high double-
digits, the performance of the published codes is worse
than the derived codes. Asn grows past 100, the derived
and published codes perform roughly equally. Thus, for
smalln(< 100), the answer to Question 3 is clearlyinad-
equately.

Figure 8 addresses which published distributions per-
form well in generating small codes. Each graph plots four
curves – the best codes generated from distributions de-
signed for the particular code and rate, the best codes gen-
erated from distributions designed for the particular code,

0 50 100

150

n

1.00

1.05

1.10

1.15

1.20

O
ve

rh
ea

d
F

ac
to

r

Systematic

0 50 100

150

n
Gallager

0 50 100

150

n
IRA

Same Code, Same Rate
Same Code, Different Rate

Different Code
Best instance

Figure 8: Performance of published distributions forn ≤
150 whenR = 1

2
.

but not for the rate, the best codes generated from distri-
butions designed for other codes, and a reference curve
showing the best codes from Figure 7.

In all three graphs, the worst codes were generated from
distributions designed for the particular code, but for a dif-
ferent rate. In both the Gallager and IRA codes, the best
codes were generated from distributions designed for the
code and rate; and in the Systematic codes, the best codes
were clearly derived from distributions designed forother
codes. Clearly, the derivation of good Systematic codes
for smalln is not well understood at this point.

100

1000

10000

100000

n

1.00

1.05

1.10

1.15

1.20

1.25

O
ve

rh
ea

d
F

ac
to

r

Rate = 1/3

Syst. Published
Syst. Derived

100

1000

10000

100000

n

1.00

1.05

1.10

1.15

Rate = 1/2

Gallager Published
Gallager Derived

100

1000

10000

100000

n

1.00

1.05

1.10

Rate = 2/3

IRA Published
IRA Derived

Figure 9: Performance of all codes and rates for largen.

For largen, we plot the best published and derived
codes for all rates and coding methods in Figure 9. Note
that in each graph, the y-axis has a different scale. There
are several interesting features of these graphs. In the

middle graph, whereR = 1

2
, the published distributions

perform best relative to the derived distributions. This is
not surprising, since the bulk of the published distribu-
tions (46 of the 80) are forR = 1

2
. For R = 2

3
, all

three coding methods perform similarly in their best in-
stances. ForR = 1

3
, it is not surprising that the published

distributions fare poorly in relation to the derived distribu-
tions, since only 10 of the 80 published distributions are
for R = 1

3
, and these are only for Gallager codes. It is

interesting that given this fact, the derived IRA codes sig-
nificantly outperform the others. It is also interesting that
the published IRA codes forR = 2

3
perform so poorly in

comparison to the derived codes.
As in the results on smalln, in analyzing which dis-

tributions produce good graphs for largen, we found that
for IRA and Gallager codes, the best codes are produced
by distributions designed specifically for the code and rate.
For Systematic codes, the best codes are produced by dis-
tributions for other codes. We omit the data here for
brevity. It may be obtained in [PT03].

6.4 Question 4

Is there a great deal of random variation in code
generation from a given probability distribution?

Obviously, this depends on the distribution, and how the
distribution is utilized. In Table 2, we select six probability
distributions in order to test their variation in code genera-
tion. For each of the distributions, we generated over 1000
random codes forn = 125, 000, and present a digest of
the results in Figure 10. For each distribution we draw a
Tukey plot [Tuf83], which shows the quartiles for the data
and its mean.

Source Code Rate Rate Λ P

Designed Used range range
S99 Gallager 2/3 2/3 2 6
S99* Gallager 2/3 1/2 2 6
RU03 Gallager 1/2 1/2 2-13 7
U03 Gallager 1/2 1/2 2-100 10-11
R03 IRA 1/2 1/2 2-100 8

L97A Syst. 1/2 2/3 3-1M 11-30K

Table 2: Range of code generation for given probability
distributions.

The first distribution, S99, from [Sho99], is for a regular
graph, where the left nodes each have two outgoing edges,
and the right nodes have six incoming edges. As such, we
expect little random deviation, which is borne out by the
experiments. (We do expect some, because of the random
nature of graph generation and of the downloading simu-
lation).

S
99

S
99*

R
U

03

U
03

R
03

L97A

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

O
ve

rh
ea

d
F

ac
to

r

Max

3rd Quartile

1st Quartile

Mean
Median

Max

Figure 10: The variation in code generation for six selected
distributions,n = 125, 000.

S99* uses the same distribution, but for a different rate.
As described in Section 4, when the total number of edges
generated by the left and right nodes do not match, edges
are added to or subtracted from random nodes until they
do match. Thus, even a regular distribution such as this
one, when employed for the wrong rate as in this instance,
can generate a wide variety of graphs. It is interesting that
this distribution produces better codes for the wrong rate,
both in the best and median case, than the rate for which it
is developed. It is also interesting that this regular graph,
which theoretically should achieve an asymptotic overhead
factor of 1

0.68731
= 1.45 for R = 2

3
[Sho99], in actuality

achieves a far better one for both rates.

The next two distributions, RU03 and U03, are for Gal-
lager graphs with rate1

2
. RU03 isright regular, meaning

all right-hand nodes have the same number of incoming
edges, which is a desirable property, because it simplifies
code analysis and distribution generation [Sho99, RU03].
U03 is nearly right regular. Both distributions generate
codes with a large spread in performance; however, both
have the desirable quality that their medians are very close
to their minimum values. In other words, one does not
have to generate many codes to get one that performs op-
timally or near optimally.

The next distribution, for IRA graphs, is also right regu-
lar, but has far less desirable generation properties, as ithas
a very large range of overhead factors, and its median is ex-
tremely high. The last distribution, for two-level System-
atic codes, is one whose nodes have an exceptionally large
range of cardinalities – over a million for left nodes (al-
though withn = 125, 000, the range is reduced to 32,769),
and over 30,000 for right nodes. Interestingly, though, its
range of overhead factors is less than R03, although it is
still a large range.

While more distributions can be displayed, the bottom
line remains the same — some distributions yield good
codes with only a few iterations of code generation. Oth-
ers require a longer time to generate good codes. Clearly,
one must generate multiple instances of codes to find one
that performs well for given values ofn andm.

Challenge To The Community: Besides asymptotic
performance, some measure of how quickly a distribution
yields good codes in practice should be developed. While
distributions such as R03 for IRA graphs and L97A for
Systematic graphs do produce excellent codes, they only
do so in relatively rare cases, and thus are difficult to uti-
lize.

6.5 Question 5

How do the codes compare to Reed-Solomon coding?

The Digital Fountain authors have demonstrated that
Tornado codes greatly outperform Reed-Solomon codes
for R = 1

2
and largen [BLMR98]. On the other end of

the spectrum, the implementers of OceanStore, a highly
distributed file system, selected Reed-Solomon coding for
their erasure-based archival service, employing small val-
ues ofn and a rate of1

4
[RWE+01]. In the middle of these

two extremes resides a gray area, which is exacerbated by
the fact that the literature on LDPC codes is heavy on the-
ory and light on practice.

Answering this question thoroughly is beyond the scope
of this paper. However, as a “teaser,” we present example
results of a basic simulation, where timings of wide-area
downloads to a client (Dell Precision 330, with an Intel
Pentium 4 processor) on a wireless network were com-
bined with timings of the processor reconstructing those
blocks using both LDPC codes, and a public-domain im-
plementation of Reed-Solomon codes [Pla03]. These tim-
ings were used to calculate the average time to download a
1 GB file using Reed-Solomon coding and the three kinds
of LDPC codes. The results are plotted in Figure 11.

For each value ofn, we break the file inton equal size
blocks, and calculate the appropriate number of coding
blocks. We then use our timings and best LDPC codes to
calculate the average download times given that the down-
loaded blocks arrive in random order. We plot results for
all n ≤ 150. We include the “perfect” download time in
these graphs – this is the optimal time to download the file
without coding (or erasures).

For all rates, Reed-Solomon coding outperforms the
LDPC codes for small values ofn (n < 36 for R = 1

3
,

n < 26 for R = 1

2
, andn < 12 for R = 2

3
). This is due

to the perfect overhead factor of Reed-Solomon codes as
compared to the LDPC codes. However, the performance
of Reed-Solomon coding rapidly deteriorates because of
its expensive arithmetic operations and itsO(n3) matrix

0 50 100

150

n

900

1000

1100

1200

1300

S
ec

on
ds

Rate = 1/3

0 50 100

150

n

900

1000

1100

1200

1300
Rate = 1/2

0 50 100

150

n

900

1000

1100

1200

1300
Rate = 2/3

Reed-Solomon
Perfect

Systematic
GallagerIRA

Figure 11: Example comparison of LDPC and Reed-
Solomon codes downloading a 1 GB file to a client on a
wireless network.

inversion. Focusing solely on the LDPC codes, the Sys-
tematic codes outperform the IRA codes, which in turn
outperform the Gallager codes. This is due to the fact
that the underlying graphs have fewer edges – the Gallager
graphs havem more left nodes than the others, and the
IRA graphs have an extra2m− 1 edges for the accumula-
tor nodes.

The complete simulation (in [PT03]) gives the fol-
lowing insights with regard to Question 5: As down-
load speeds improve, rates increase, andn increases,
LDPC codes significantly outperform Reed-Solomon
codes. However, whenn is small and the download speeds
are slow, Reed-Solomon coding can significantly outper-
form LDPC codes.

Challenge to the Community: The simulation used to
produce this example was simplistic in that it employed
simple equations based on average values. In reality,
download speeds can vary greatly from block to block, fol-
lowing non-trivial probability distributions. A better anal-
ysis of Question 5 needs to be performed, which either
performs actual downloads of data on the wide-area net-
work, or employs download traces to simulate downloads.
Additionally, Cauchy Reed-Solomon coding [BKK+95]
should be evaluated, as it performs arithmetic operations
in GF (21) for all values ofn andm.

7 Conclusion

This paper has performed a practical exploration of the
utility of LDPC codes for wide-area network storage ap-
plications. While the asymptotic properties of these codes
have been well studied, we have attempted to illuminate
their performance for finite systems by addressing five

questions, whose answers we summarize below:
Question 1:The overhead factor of LDPC codes, while

asymptotically approaching 1, reaches its maximum value
whenn is in the range of 10 to 100. This maximum in-
creases as the rate decreases, roughly summarized as 1.20
for R = 1

3
, 1.15 for R = 1

2
and 1.10 forR = 2

3
.

Question 2: The three types of codes perform differ-
ently. Systematic codes perform the best forn < 100.
IRA codes perform the best forn ≥ 100.

Question 3:Codes derived adaptively from other codes
perform better than those derived from published distribu-
tions. Systematic codes in particular do not perform well
from the distributions designed for them.

Question 4: Some distributions produce codes that
vary widely in performance. Others produce codes that
are more consistent with one another. Properties like right-
regularity do not appear to make a difference.

Question 5: While there are practical situations where
Reed-Solomon coding clearly outperforms LDPC codes
for small values ofn, asn grows, the LDPC codes vastly
outperform Reed-Solomon coding.

From these questions, we can draw the following bottom
line conclusions:

Conclusion #1: While Λ and P suffice for deriving
codes with asymptotically good performance, their use as
generators of finite codes and indicators of finite code per-
formance is lacking. In the course of this research, we
have compiled a mass of codes which perform well, but
these have come about by brute force Monte Carlo tech-
niques. The theoretical community is challenged to derive
more effective techniques for generating finite codes.

Conclusion #2: Clearly, LDPC codes, even subopti-
mal ones, are very important alternatives to Reed-Solomon
codes. A more thorough analysis comparing the perfor-
mance of these two types of codes needs to be performed,
with the goal of providing storage system users with rec-
ommendations for the optimal coding technique, value
of n, and value ofm, given their system’s performance
and failure parameters.

One limitation of the LDPC codes in this paper is that
they have not been designed to adjust to different rates. It
is easy to envision a situation where a file already broken
into n blocks is spread amongn + m storage servers, and
thenm′ new servers are added to the system. If the cod-
ing method that stores the originaln+m blocks can adapt
efficiently to a rate of n

n+m+m′
, then adding new coding

blocks to the system is a straightforward and efficient op-
eration. However, if the coding technique must be altered
to accommodate the new rate, then old coding blocks must
be discarded, and new ones calculated in their place, which
will be inefficient. Reed-Solomon codes have the feature
that they adapt to any rate, although the same inefficien-

cies pointed out by section 6.5 apply. New codes called
LT codes and Raptor codes, that adapt to any rate with
optimal asymptotic performance have been developed by
Luby and Shokrollahi [Lub02, Sho03]. It is a subject of
future work to perform a practical analysis of these codes.

References
[ASE92] N. Alon, J. W. Spencer, and P. Erdos.The Probabilistic Method. John

Wiley & Sons, New York, 1992.
[AW03] M. S. Allen and R. Wolski. The Livny and Plank-Beck Problems:

Studies in data movement on the computational grid. InSC2003.
[BKK +95] J. Blomeret al. An XOR-based erasure-resilient coding scheme. Tech.

Rep. TR-95-048, Int. Computer Science Inst., August 1995.
[BLM99] J. W. Byerset al. Accessing multiple mirror sites in parallel: Using

tornado codes to speed up downloads. InIEEE INFOCOM, 1999.
[BLMR98] J. Byers, M. Lubyet al. A digital fountain approach to reliable distri-

bution of bulk data. InACM SIGCOMM ’98, pages 56–67, 1998.
[BM93] W. A. Burkhard and J. Menon. Disk array storage systemreliability.

In 23rd Int. Symp. on Fault-Tolerant Comp., pages 432–441, 1993.
[CLG+94] P. M. Chenet al. RAID: High-performance, reliable secondary stor-

age.ACM Computing Surveys, 26(2):145–185, June 1994.
[DPT+02] C. Di et al. Finite-length analysis of low-density parity-check codes

on the binary erasure channel.IEEE Trans. Infor. Thy., 48:1570–1579,
2002.

[Gal63] R. G. Gallager.Low-Density Parity-Check Codes. MIT Press, Cam-
bridge, MA, 1963.

[JKM00] H. Jin, A. Khandekar, and R. McEliece. Irregular repeat-accumulate
codes. In2nd Int. Symp. on Turbo codes and Related Topics,2000.

[KBC+00] J. Kubiatowiczet al. Oceanstore: An architecture for global-scale
persistent storage. InProceedings of ACM ASPLOS. Nov. 2000.

[LMS+97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann. Practical loss-resilient codes. In29th Annual ACM Symposium
on Theory of Computing,, pages 150–159, 1997.

[LMS98] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random
processes via and-or tree evaluation. In9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 1998.

[LS00] W. Litwin and T. Schwarz. Lh*rs: a high-availabilityscalable dis-
tributed data structure using Reed Solomon codes. In2000 ACM SIG-
MOD, pages 237–248, 2000.

[Lub02] M. Luby. LT codes. InIEEE Symp. on Found. of Comp. Sci., 2002.
[McE00] R. J. McEliece. Achieving the Shannon Limit: A progress report.

Plenary Talk, 38th Allerton Conference, October 2000.
[Pla96] J. S. Plank. Improving the performance of coordinated checkpointers

on networks of workstations using RAID techniques. In15th Sympo-
sium on Reliable Distributed Systems, pages 76–85, October 1996.

[Pla03] J. S. Plank. GFLIB - C procedures for Galois Field arithmetic and
Reed-Solomon coding.http://www.cs.utk.edu/˜plank/
plank/gflib/index.html , 2003.

[PT03] J. S. Plank and M. G. Thomason. On the practical use of LDPC erasure
codes for distributed storage applications. Technical Report CS-03-
510, University of Tennessee, September 2003.

[RGCV03] A. Roumyet al. Design methods for irregular repeat accumulate
codes. InIEEE Int. Symp. on Information Theory, Yokohoma, 2003.

[RU03] T. Richardson and R. Urbanke. Modern coding theory. Draft from
lthcwww.epfl.ch/papers/ics.ps , August 2003.

[RWE+01] S. Rheaet al. Maintenance-free global data storage.IEEE Internet
Computing, 5(5):40–49, 2001.

[Sho99] M. A. Shokrollahi. New sequences of linear time erasure codes ap-
proaching the channel capacity. InProceedings of AAECC-13, Lecture
Notes in CS 1719, pages 65–76, New York, 1999. Springer-Verlag.

[Sho00] M. A. Shokrollahi. Codes and graphs.Lecture Notes in Computer
Science, 1770, 2000.

[Sho03] A. Shokrollahi. Raptor codes. Technical Report DR2003-06-001, Dig-
ital Fountain, 2003.

[SS00] M. A. Shokrollahi and R. Storn. Design of efficient erasure codes with
differential evolution. InIEEE Int. Symp. on Infor. Theory, 2000.

[Tuf83] E. R. Tufte.The Visual Display of Quantitative Information. Graphics
Press, Cheshire, Connecticut, 1983.

[Urb03] R. Urbankeet al. LdcpOpt - a fast and accurate degree distribution
optimizer for LPDC ensembles.http://lthcwww.epfl.ch/
research/ldpcopt/index.php , 2003.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison.1st Int. Work. on Peer-to-Peer Sys., 2002.

[WK03] S. B. Wicker and S. Kim.Fundamentals of Codes, Graphs, and Itera-
tive Decoding. Kluwer Academic Publishers, Norwell, MA, 2003.

[ZL02] Z. Zhang and Q. Lian. Reperasure: Replication protocol using erasure-
code in peer-to-peer storage network. In21st IEEE Symposium on Re-
liable Distributed Systems (SRDS’02), pages 330–339, October 2002.

