
A Performance Evaluation and Examination of
Open-Source Erasure Coding Libraries For Storage

James S. Plank †
Jianqiang Luo ‡

Catherine D. Schuman†
Lihao Xu ‡

Zooko Wilcox-O’Hearn ∗

Appearing in:

FAST-09: 7th USENIX Conference on File and Storage Technologies,

San Francisco, CA, February, 2009.

† EECS Department
University of Tennessee

Knoxville, TN 37996

‡ Computer Science Department
Wayne State University

∗ AllMyData, Inc.

Contact Author: James S. Plank: plank@cs.utk.edu.

Paper home: http://www.cs.utk.edu/˜plank/plank/papers/FAST-2009.html

1

A Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries For Storage

James S. Plank
University of Tennessee

plank@cs.utk.edu

Jianqiang Luo
Wayne State University

Catherine D. Schuman
University of Tennessee

Lihao Xu
Wayne State University

Zooko Wilcox-O’Hearn
AllMyData, Inc.

Abstract
Over the past five years, large-scale storage installations
have required fault-protection beyond RAID-5, leading
to a flurry of research on and development of erasure
codes for multiple disk failures. Numerous open-source
implementations of various coding techniques are avail-
able to the general public. In this paper, we perform
a head-to-head comparison of these implementations in
encoding and decoding scenarios. Our goals are to com-
pare codes and implementations, to discern whether the-
ory matches practice, and to demonstrate how parameter
selection, especially as it concerns memory, has a signifi-
cant impact on a code’s performance. Additional benefits
are to give storage system designers an idea of what to
expect in terms of coding performance when designing
their storage systems, and to identify the places where
further erasure coding research can have the most im-
pact.

1 Introduction

In recent years, erasure codes have moved to the fore
to prevent data loss in storage systems composed of
multiple disks. Storage companies such as Allmy-
data [1], Cleversafe [7], Data Domain [36], Network Ap-
pliance [22] and Panasas [32] are all delivering prod-
ucts that use erasure codes beyond RAID-5 for data
availability. Academic projects such as LoCI [3],
Oceanstore [29], and Pergamum [31] are doing the same.
And of equal importance, major technology corporations
such as Hewlett Packard [34], IBM [12, 13] and Mi-
crosoft [15, 16] are performing active research on erasure
codes for storage systems.

Along with proprietary implementations of erasure
codes, there have been numerous open source implemen-
tations of a variety of erasure codes that are available
for download [7, 19, 23, 26, 33]. The intent of most
of these projects is to provide storage system developers

with high quality tools. As such, there is a need to un-
derstand how these codes and implementations perform.

In this paper, we compare the encoding and decoding
performance of five open-source implementations of five
different types of erasure codes: Classic Reed-Solomon
codes [28], Cauchy Reed-Solomon codes [6], EVEN-
ODD [4], Row Diagonal Parity (RDP) [8] and Minimal
Density RAID-6 codes [5, 24, 25]. The latter three codes
are specific to RAID-6 systems that can tolerate exactly
two failures. Our exploration seeks not only to compare
codes, but also to understand which features and param-
eters lead to good coding performance.

We summarize the main results as follows:

• The special-purpose RAID-6 codes vastly outper-
form their general-purpose counterparts. RDP per-
forms the best of these by a narrow margin.

• Cauchy Reed-Solomon coding outperforms classic
Reed-Solomon coding significantly, as long as at-
tention is paid to generating good encoding matri-
ces.

• An optimization called Code-Specific Hybrid Re-
construction [14] is necessary to achieve good de-
coding speeds in many of the codes.

• Parameter selection can have a huge impact on how
well an implementation performs. Not only must
the number of computational operations be consid-
ered, but also how the code interacts with the mem-
ory hierarchy, especially the caches.

• There is a need to achieve the levels of improvement
that the RAID-6 codes show for higher numbers of
failures.

Of the five libraries tested, Zfec [33] implemented the
fastest classic Reed-Solomon coding, and Jerasure [26]
implemented the fastest versions of the others.

2 Nomenclature and Erasure Codes

It is an unfortunate consequence of the history of era-
sure coding research that there is no unified nomencla-
ture for erasure coding. We borrow terminology mostly
from Hafner et al [14], but try to conform to more classic
coding terminology (e.g. [5, 21]) when appropriate.

Our storage system is composed of an array of n
disks, each of which is the same size. Of these n disks, k
of them hold data and the remaining m hold coding in-
formation, often termed parity, which is calculated from
the data. We label the data disks D0, . . . , Dk−1 and the
parity disks C0, . . . , Cm−1. A typical system is pictured
in Figure 1.

Figure 1: A typical storage system with erasure coding.

We are concerned with Maximum Distance Separa-
ble (MDS) codes, which have the property that if any m
disks fail, the original data may be reconstructed [21].
When encoding, one partitions each disk into strips of
a fixed size. Each parity strip is encoded using one
strip from each data disk, and the collection of k + m
strips that encode together is called a stripe. Thus, as
in Figure 1, one may view each disk as a collection of
strips, and one may view the entire system as a collec-
tion of stripes. Stripes are each encoded independently,
and therefore if one desires to rotate the data and parity
among the n disks for load balancing, one may do so by
switching the disks’ identities for each stripe.

2.1 Reed-Solomon (RS) Codes
Reed-Solomon codes [28] have the longest history. The
strip unit is a w-bit word, where w must be large enough
that n ≤ 2w + 1. So that words may be manipulated
efficiently, w is typically constrained so that words fall
on machine word boundaries: w ∈ {8, 16, 32, 64}. How-
ever, as long as n ≤ 2w + 1, the value of w may be
chosen at the discretion of the user. Most implementa-
tions choose w = 8, since their systems contain fewer
than 256 disks, and w = 8 performs the best. Reed-
Solomon codes treat each word as a number between 0
and 2w − 1, and operate on these numbers with Galois

Field arithmetic (GF (2w)), which defines addition, mul-
tiplication and division on these words such that the sys-
tem is closed and well-behaved [21].

The act of encoding with Reed-Solomon codes is sim-
ple linear algebra. A Generator Matrix is constructed
from a Vandermonde matrix, and this matrix is multiplied
by the k data words to create a codeword composed of
the k data and m coding words. We picture the process
in Figure 2 (note, we draw the transpose of the Generator
Matrix to make the picture clearer).

Figure 2: Reed-Solomon coding for k = 4 and m = 2.
Each element is a number between 0 and 2w − 1.

When disks fail, one decodes by deleting rows of GT ,
inverting it, and multiplying the inverse by the surviving
words. This process is equivalent to solving a set of inde-
pendent linear equations. The construction of GT from
the Vandermonde matrix ensures that the matrix inver-
sion is always successful.

In GF (2w), addition is equivalent to bitwise
exclusive-or (XOR), and multiplication is more com-
plex, typically implemented with multiplication tables
or discrete logarithm tables [11]. For this reason, Reed-
Solomon codes are considered expensive. There are sev-
eral open-source implementations of RS coding, which
we detail in Section 3.

2.2 Cauchy Reed-Solomon (CRS) Codes
CRS codes [6] modify RS codes in two ways. First,
they employ a different construction of the Generator
matrix using Cauchy matrices instead of Vandermonde
matrices. Second, they eliminate the expensive multipli-
cations of RS codes by converting them to extra XOR
operations. Note, this second modification can apply to
Vandermonde-based RS codes as well. This modifica-
tion transforms GT from a n × k matrix of w-bit words
to a wn×wk matrix of bits. As with RS coding, w must
be selected so that n ≤ 2w + 1.

Instead of operating on single words, CRS coding op-
erates on entire strips. In particular, strips are partitioned
into w packets, and these packets may be large. The act
of coding now involves only XOR operations – a coding
packet is constructed as the XOR of all data packets that

2

have a one bit in the coding packet’s row of GT . The
process is depicted in Figure 3, which illustrates how the
last coding packet is created as the XOR of the six data
packets identified by the last row of GT .

Figure 3: CRS example for k = 4 and m = 2.

To make XORs efficient, the packet size must be a
multiple of the machine’s word size. The strip size is
therefore equal to w times the packet size. Since w no
longer relates to the machine word sizes, w is not con-
strained to [8, 16, 32, 64]; instead, any value of w may be
selected as long as n ≤ 2w.

Decoding in CRS is analogous to RS coding — all
rows of GT corresponding to failed packets are deleted,
and the matrix is inverted and employed to recalculate
the lost data.

Since the performance of CRS coding is directly re-
lated to the number of ones in GT , there has been re-
search on constructing Cauchy matrices that have fewer
ones than the original CRS constructions [27]. The Jera-
sure library [26] uses additional matrix transformations
to improve these matrices further. Additionally, in the
restricted case when m = 2, the Jerasure library uses re-
sults of a previous enumeration of all Cauchy matrices to
employ provably optimal matrices for all w ≤ 32 [26].

2.3 EVENODD and RDP
EVENODD [4] and RDP [8] are two codes developed for
the special case of RAID-6, which is when m = 2. Con-
ventionally in RAID-6, the first parity drive is labeled P ,
and the second is labeled Q. The P drive is equivalent to
the parity drive in a RAID-4 system, and the Q drive is
defined by parity equations that have distinct patterns.

Although their original specifications use different
terms, EVENODD and RDP fit the same paradigm as
CRS coding, with strips being composed of w packets.
In EVENODD, w is constrained such that k + 1 ≤ w
and w+1 is a prime number. In RDP, w+1 must be prime
and k ≤ w. Both codes perform the best when (w−k) is
minimized. In particular, RDP achieves optimal encod-
ing and decoding performance of (k−1) XOR operations
per coding word when k = w or k +1 = w. Both codes’
performance decreases as (w − k) increases.

2.4 Minimal Density RAID-6 Codes
If we encode using a Generator bit-matrix for RAID-
6, the matrix is quite constrained. In particular, the
first kw rows of GT compose an identity matrix, and in
order for the P drive to be straight parity, the next w
rows must contain k identity matrices. The only flex-
ibility in a RAID-6 specification is the composition of
the last w rows. In [5], Blaum and Roth demonstrate
that when k ≤ w, these remaining w rows must have
at least kw + k − 1 ones for the code to be MDS. We
term MDS matrices that achieve this lower bound Mini-
mal Density codes.

There are three different constructions of Minimal
Density codes for different values of w:

• Blaum-Roth codes when w + 1 is prime [5].

• Liberation codes when w is prime [25].

• The Liber8tion code when w = 8 [24].

These codes share the same performance characteris-
tics. They encode with (k − 1) + k−1

2w XOR operations
per coding word. Thus, they perform better when w
is large, achieving asymptotic optimality as w → ∞.
Their decoding performance is slightly worse, and re-
quires a technique called Code-Specific Hybrid Recon-
struction [14] to achieve near-optimal performance [25].

The Minimal Density codes also achieve near-optimal
updating performance when individual pieces of data are
modified [27]. This performance is significantly better
than EVENODD and RDP, which are worse by a factor
of roughly 1.5 [25].

2.5 Anvin’s RAID-6 Optimization
In 2007, Anvin posted an optimization of RS encoding
for RAID-6 [2]. For this optimization, the row of GT

corresponding to the P drive contains all ones, so that
the P drive may be parity. The row corresponding to
the Q drive contains the number 2i in GF (2w) in col-
umn i (zero-indexed), so that the contents of the Q drive
may be calculated by successively XOR-ing drive i’s
data into the Q drive and multiplying that sum by two.
Since multiplication by two may be implemented much
faster than general multiplication in GF (2w), this op-
timizes the performance of encoding over standard RS
implementations. Decoding remains unoptimized.

3 Open Source Libraries

We test five open source erasure coding libraries. These
are all freely available libraries from various sources
on the Internet, and range from brief proofs of concept

3

(e.g. Luby) to tuned and supported code intended for use
in real systems (e.g. Zfec). We also tried the Schifra open
source library [23], which is free but without documen-
tation. We were unable to implement an encoder and
decoder to perform a satisfactory comparison with the
others. We present them chronologically.
Luby: CRS coding was developed at the ICSI lab in

Berkeley, CA in the mid 1990’s [6]. The authors released
a C version of their codes in 1997, which is available
from ICSI’s web site [19]. The library supports all set-
tings of k, m, w and packet sizes. The matrices employ
the original constructions from [6], which are not opti-
mized to minimize the number of ones.
Zfec: The Zfec library for erasure coding has been in

development since 2007, but its roots have been around
for over a decade. Zfec is built on top of a RS coding
library developed for reliable multicast by Rizzo [30].
That library was based on previous work by Karn et
al [18], and has seen wide use and tuning. Zfec is based
on Vandermonde matrices when w = 8. The latest ver-
sion (1.4.0) was posted in January, 2008 [33]. The library
is programmable, portable and actively supported by the
author. It includes command-line tools and APIs in C,
Python and Haskell.
Jerasure: Jerasure is a C library released in 2007

that supports a wide variety of erasure codes, including
RS coding, CRS coding, general Generator matrix and
bit-matrix coding, and Minimal Density RAID-6 cod-
ing [26]. RS coding may be based on Vandermonde or
Cauchy matrices, and w may be 8, 16 or 32. Anvin’s
optimization is included for RAID-6 applications. For
CRS coding, Jerasure employs provably optimal encod-
ing matrices for RAID-6, and constructs optimized ma-
trices for larger values of m. Additionally, the three Min-
imal Density RAID-6 codes are supported. To improve
performance of the bit-matrix codes, especially the de-
coding performance, the Code-Specific Hybrid Recon-
struction optimization [14] is included. Jerasure is re-
leased under the GNU LGPL.
Cleversafe: In May, 2008, Cleversafe exported the

first open source version of its dispersed storage sys-
tem [7]. Written entirely in Java, it supports the same
API as Cleversafe’s proprietary system, which is notable
as one of the first commercial distributed storage systems
to implement availability beyond RAID-6. For this pa-
per, we obtained a version containing just the the erasure
coding part of the open source distribution. It is based on
Luby’s original CRS implementation [19] with w = 8.
EVENODD/RDP: There are no open source versions

of EVENODD or RDP coding. However, RDP may be
implemented as a bit-matrix code, which, when com-
bined with Code-Specific Hybrid Reconstruction yields
the same performance as the original specification of the
code [16]. EVENODD may also be implemented with a

bit-matrix whose operations may be scheduled to achieve
the code’s original performance [16]. We use these ob-
servations to implement both codes as bit-matrices with
tuned schedules in Jerasure. Since EVENODD and RDP
codes are patented, this implementation is not available
to the public, as its sole intent is for performance com-
parison.

4 Encoding Experiment

We perform two sets of experiments – one for encoding
and one for decoding. For the encoding experiment, we
seek to measure the performance of taking a large data
file and splitting and encoding it into n = k + m pieces,
each of which will reside on a different disk, making the
system tolerant to up to m disk failures. Our encoder
thus reads a data file, encodes it, and writes it to k +
m data/coding files, measuring the performance of the
encoding operations.

Figure 4: The encoder utilizes a data buffer and a coding
buffer to encode a large file in stages.

Since memory utilization is a concern, and since large
files exceed the capacity of most computers’ memo-
ries, our encoder employs two fixed-size buffers, a Data
Buffer partitioned into k blocks and a Coding Buffer par-
titioned into m blocks. The encoder reads an entire data
buffer’s worth of data from the big file, encodes it into the
coding buffer and then writes the contents of both buffers
to k + m separate files. It repeats this process until the
file is totally encoded, recording both the total time and
the encoding time. The high level process is pictured in
Figure 4.

The blocks of the buffer are each partitioned into s
strips, and each strip is partitioned either into words
of size w (RS coding, where w ∈ {8, 16, 32, 64}),
or into w packets of a fixed size PS (all other codes
– recall Figure 3). To be specific, each block D i

(and Cj) is partitioned into strips DSi,0, . . . , DSi,s−1.

4

(and CSj,0, . . . , CSj,s−1), each of size wPS. Thus,
the data and coding buffer sizes are dependent on
the various parameters. Specifically, the data buffer
size equals (kswPS) and the coding buffer size
equals (mswPS).

Encoding is done on a stripe-by-stripe basis. First,
the data strips DS0,0, . . . , DSk−1,0 are encoded into the
coding strips CS0,0, . . . , CSm−1,0. This completes the
encoding of stripe 0, pictured in Figure 5. Each of the s
stripes is successively encoded in this manner.

Figure 5: How the data and coding buffers
are partitioned, and the encoding of Stripe 0
from data strips DS0,0, . . . , DSk−1,0 into coding
strips CS0,0, . . . , CSm−1,0.

Thus, there are multiple parameters that the encoder
allows the user to set. These are k, m, w (subject to the
code’s constraints), s and PS. When we mention setting
the buffer size below, we are referring to the size of the
data buffer, which is (kswPS).

4.1 Machines for Experimentation
We employed two machines for experimentation. Nei-
ther is exceptionally high-end, but each represents
middle-range commodity processors, which should be
able to encode and decode comfortably within the I/O
speed limits of the fastest disks. The first is a Macbook
with a 32-bit 2GHz Intel Core Duo processor, with 1GB
of RAM, a L1 cache of 32KB and a L2 cache of 2MB.
Although the machine has two cores, the encoder only
utilizes one. The operating system is Mac OS X, version
10.4.11, and the encoder is executed in user space while
no other user programs are being executed. As a base-
line, we recorded a memcpy() speed of 6.13 GB/sec and
an XOR speed of 2.43 GB/sec.

The second machine is a Dell workstation with an Intel
Pentium 4 CPU running at 1.5GHz with 1GB of RAM,
an 8KB L1 cache and a 256KB L2 cache. The operating
system is Debian GNU Linux revision 2.6.8-2-686, and

the machine is a 32-bit machine. The memcpy() speed
is 2.92 GB/sec and the XOR speed is 1.32 GB/sec.

4.2 Encoding with Large Files
Our intent was to measure the actual performance of en-
coding a large video file. However, doing large amounts
of I/O causes a great deal of variability in performance
timings. We exemplify with Figure 6. The data is from
the Macbook, where we use a 256 MB video file for
input. The encoder works as described in Section 4
with k = 10 and m = 6. However, we perform no real
encoding. Instead we simply zero the bytes of the coding
buffer before writing it to disk. In the figure, we modify
the size of the data buffer from a small size of 64 KB to
256 MB – the size of the video file itself.

64 K
B

128 K
B

256 K
B

512 K
B

1 M
B

2 M
B

4 M
B

8 M
B

16 M
B

32 M
B

64 M
B

128 M
B

256 M
B

Data Buffer Size

20

30

40

50

Ti
m

e
(s

ec
)

Figure 6: Times to read a 256 MB video, peform a
dummy encoding when k = 10 and m = 6, and write
to 16 data/coding files.

In Figure 6, each data point is the result of ten runs
executed in random order. A tukey plot is given, which
has bars to the maximum and minimum values, a box en-
compassing the first to the third quartile, hash marks at
the median and a dot at the mean. While there is a clear
trend toward improving performance as the data buffer
grows to 128 MB, the variability in performance is colos-
sal: between 15 and 20 seconds for many runs. Running
Unix’s split utility on the file reveals similar variability.

Because of this variability, the tests that follow remove
the I/O from the encoder. Instead, we simulate reading
by filling the buffer with random bytes, and we simulate
writing by zeroing the buffers. This reduces the vari-
ability of the runs tremendously – the results that follow
are all averages of over 10 runs, whose maximum and
minimum values differ by less than 0.5 percent. The
encoder measures the times of all coding activites us-
ing Unix’s gettimeofday(). To confirm that these times

5

are accurate, we also subtracted the wall clock time of a
dummy control from the wall clock time of the encoder,
and the two matched to within one percent.

Figure 6 suggests that the size of the data buffer can
impact performance, although it is unclear whether the
impact comes from memory effects or from the file sys-
tem. To explore this, we performed a second set of tests
that modify the size of the data buffer while performing
a dummy encoding. We do not graph the results, but
they show that with the I/O removed, the effects of mod-
ifying the buffer size are negligible. Thus, in the results
that follow, we maintain a data buffer size of roughly 100
KB. Since actual buffer sizes depend on k, m, w and PS,
they cannot be affixed to a constant value; instead, they
are chosen to be in the ballpark of 100 KB. This is large
enough to support efficient I/O, but not so large that it
consumes all of a machine’s memory, since in real sys-
tems the processors may be multitasking.

4.3 Parameter Space
We test four combinations of k and m – we will denote
them by [k, m]. Two combinations are RAID-6 scenar-
ios: [6,2] and [14,2]. The other two represent 16-disk
stripes with more fault-tolerance: [12,4] and [10,6]. We
chose these combinations because they represent values
that are likely to be seen in actual usage. Although
large and wide-area storage installations are composed
of much larger numbers of disks, the stripe sizes tend to
stay within this medium range, because the benefits of
large stripe sizes show diminishing returns compared to
the penalty of extra coding overhead in terms of encod-
ing performance and memory use. For example, Clever-
safe’s widely dispersed storage system uses [10,6] as its
default [7]; Allmydata’s archival online backup system
uses [3,7], and both Panasas [32] and Pergamum [31] re-
port keeping their stripe sizes at or under 16.

For each code and implementation, we test its perfor-
mance by encoding a randomly generated file that is 1
GB in size. We test all legal values of w ≤ 32. This
results in the following tests.

• Zfec: RS coding, w = 8 for all combinations
of [k, m].

• Luby: CRS coding, w ∈ {4, . . . , 12} for all combi-
nations of [k, m], and w = 3 for [6,2].

• Cleversafe: CRS coding, w = 8 for all combina-
tions of [k, m].

• Jerasure:

– RS coding, w ∈ {8, 16, 32} for all combina-
tions of [k, m]. Anvin’s optimization is in-
cluded for the RAID-6 tests.

– CRS coding, w ∈ {4, . . . , 32} for all combi-
nations of [k, m], and w = 3 for [6,2].

– Blaum-Roth codes, w ∈ {6, 10, 12} for [6,2]
and w ∈ {16, 18, 22, 28, 30} for [6,2] and
[14,2].

– Liberation codes, w ∈ {7, 11, 13} for [6,2]
and w ∈ {17, 19, 23, 29, 31} for [6,2] and
[14,2].

– The Liber8tion code, w = 8 for [6,2].

• EVENODD: Same parameters as Blaum-Roth codes
in Jerasure above.

• RDP: Same parameters as EVENODD.

4.4 Impact of the Packet Size
Our experience with erasure coding led us to experi-
ment first with modifying the packet sizes of the en-
coder. There is a clear tradeoff: lower packet sizes have
less tight XOR loops, but better cache behavior. Higher
packet sizes perform XORs over larger regions, but cause
more cache misses. To exemplify, consider Figure 7,
which shows the performance of RDP on the [6,2] con-
figuration when w = 6, on the Macbook. We test every
packet size from 4 to 10000 and display the speed of en-
coding.

10 100 1000 10000

Packet Size (Bytes)

0

500

1000

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

1500

2000 N
orm

alized Encoding
Speed (M

B/sec)

Figure 7: The effect of modifying the packet size on RDP
coding, k = 6, m = 2, w = 6 on the Macbook.

We display two y-axes. On the left is the encoding
speed. This is the size of the input file divided by the time
spent encoding and is the most natural metric to plot. On
the right, we normalize the encoding speed so that we
may compare the performance of encoding across con-
figurations. The normalized encoding speed is calculated
as:

(Encoding Speed) m(k − 1)
k

. (1)

This is derived as follows. Let S be the file’s size and t
be the time to encode. The file is split and encoded

6

into m + k files, each of size S
k . The encoding process

itself creates Sm
k bytes worth of coding data, and there-

fore the speed per coding byte is Sm
kt . Optimal encoding

takes k−1 XOR operations per coding drive [35]; there-
fore we can normalize the speed by dividing the time
by k − 1, leaving us with Sm(k−1)

kt , or Equation 1 for
the normalized encoding speed.

The shape of this curve is typical for all codes on both
machines. In general, higher packet sizes perform bet-
ter than lower ones; however there is a maximum perfor-
mance point which is achieved when the code makes best
use of the L1 cache. In this test, the optimal packet size
is 2400 bytes, achieving a normalized encoding speed of
2172 MB/sec. Unfortunately, this curve does not mono-
tonically increase to nor decrease from its optimal value.
Worse, there can be radical dips in performance between
adjacent packet sizes, due to collisions between cache
entries. For example, at packet sizes 7732, 7736 and
7740, the normalized encoding speeds are 2133, 2066
and 2129 MB/sec, respectively. We reiterate that each
data point in our graphs represents over 10 runs, and the
repetitions are consistent to within 0.5 percent.

0 10 20 30
0

2000
4000
6000
8000

Be
st

 P
ac

ke
t

Si
ze

 (b
yt

es
)

MacBook

0 10 20 30
0

2000
4000
6000
8000

0 10 20 30
0

2000
4000
6000
8000

[6,2]
[14,2]

0 10 20 30
w

0
1000
2000
3000
4000

Be
st

 P
ac

ke
t

Si
ze

 (b
yt

es
)

RDP

Dell

0 10 20 30
w

0
1000
2000
3000
4000

Minimum
Density

0 10 20 30
w

0
1000
2000
3000
4000

CRS
(Jerasure)

Figure 8: The effect of modifying w on the best packet
sizes found.

We do not attempt to find the optimal packet sizes for
each of the codes. Instead, we perform a search algo-
rithm that works as follows. We test a region r of packet
sizes by testing each packet size from r to r +36 (packet
sizes must be a multiple of 4). We set the region’s perfor-
mance to be the average of the five best tests. To start our
search, we test all regions that are powers of two from 64
to 32K. We then iterate, finding the best region r, and
then testing the two regions that are halfway between the
two values of r that we have tested that are adjacent to r.
We do this until there are no more regions to test, and se-

lect the packet size of all tested that performed the best.
For example, the search for the RDP instance of Figure 7
tested only 202 packet sizes (as opposed to 2500 to gen-
erate Figure 7) to arrive at a packet size of 2588 bytes,
which encodes at a normalized speed of 2164 MB/sec
(0.3% worse than the best packet size of 2400 bytes).

One expects the optimal packet size to decrease
as k, m and w increase, because each of these increases
the stripe size. Thus smaller packets are necessary for
most of the stripe to fit into cache. We explore this effect
in Figure 8, where we show the best packet sizes found
for different sets of codes – RDP, Minimum Density, and
Jerasure’s CRS – in the two RAID-6 configurations. For
each code, the larger value of k results in a smaller packet
size, and as a rough trend, as w increases, the best packet
size decreases.

4.5 Overall Encoding Performance
We now present the performance of each of the codes
and implementations. In the codes that allow a packet
size to be set, we select the best packet size from the
above search. The results for the [6,2] configuration are
in Figure 9.

Although the graphs for both machines appear similar,
there are interesting features of both. We concentratefirst
on the MacBook. The specialized RAID-6 codes outper-
form all others, with RDP’s performance with w = 6
performing the best. This result is expected, as RDP
achieves optimal performance when k = w.

The performance of these codes is typically quantified
by the number of XOR operations performed [5, 4, 8,
25, 24]. To measure how well number of XORs matches
actual performance, we present the number of gigabytes
XOR’d by each code in Figure 10.

On the MacBook, the number of XORs is an excellent
indicator of performance, with a few exceptions (CRS
codes for w ∈ {21, 22, 32}). As predicted by XOR
count, RDP’s performance suffers as w increases, while
the Minimal Density codes show better performance. Of
the three special-purpose RAID-6 codes, EVENODD
performs the worst, although the margins are not large
(the worst performing EVENODD encodes at 89% of the
speed of the best RDP).

The performance of Jerasure’s implementation the
CRS codes is also excellent, although the choice of w
is very important. The number of ones in the CRS gen-
erator matrices depends on the number of bits in the
Galois Field’s primitive polynomial. The polynomials
for w ∈ {8, 12, 13, 14, 16, 19, 24, 26, 27, 30, 32} have
one more bit than the others, resulting in worse perfor-
mance. This is important, as w ∈ {8, 16, 32} are very
natural choices since they allow strip sizes to be powers
of two.

7

4 8 12 16 20 24 28 32

 w

RDP
EVENODD
CRS: Jerasure
CRS: Luby
CRS: Cleversafe

MacBook:

Minimal Density
RS-Opt: Jerasure
RS: Zfec
RS: Jerasure

0

500

1000

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

1500

2000 N
orm

alized Encoding
Speed (M

B/sec)

4 8 12 16 20 24 28 32

 wDell:

0

200

400

600

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

N
orm

alized Encoding
Speed (M

B/sec)

Figure 9: Encoding performance for [6,2].

Returning back to figure 9, the Luby and Cleversafe
implementations of CRS coding perform much worse
than Jerasure. There are several reasons for this. First,
they do not optimize the generator matrix in terms of
number of ones, and thus perform many more XOR op-
erations, from 3.2 GB of XORs when w = 3 to 13.5
GB when w = 12. Second, both codes use a dense,
bit-packed representation of the generator matrix, which
means that they spend quite a bit of time performing bit
operations to check matrix entries, many of which are
zeros and could be omitted. Jerasure converts the matrix
to a schedule which eliminates all of the matrix traver-
sal and entry checking during encoding. Cleversafe’s
poor performance relative to Luby can most likely be at-
tributed to the Java implementation and the fact that the
packet size is hard coded to be very small (since Clever-
safe routinely distributes strips in units of 1K).

Of the RS implementations, the implementation tai-
lored for RAID-6 (labeled “RS-Opt”) performs at a much
higher rate than the others. This is due to the fact that

4 8 12 16 20 24 28 32

w

1.6

1.8

2.0

2.2

X
O

Rs
 p

er
fo

rm
ed

 (G
B) CRS: Jerasure

Minimal Density
EVENODD
RDP

Figure 10: Gigabytes XOR’d by each code in the [6,2]
tests. The number of XORs is independent of the ma-
chine used.

it does not perform general-purpose Galois Field multi-
plication over w-bit words, but instead performs a ma-
chine word’s worth of multiplication by two at a time.
Its performance is better when w ≤ 16, which is not
a limitation as w = 16 can handle a system with a to-
tal of 64K drives. The Zfec implementation of RS cod-
ing outperforms the others. This is due to the heavily
tuned implementation, which performs explicit loop un-
rolling and hard-wires many features of GF (28) which
the other libraries do not. Both Zfec and Jerasure use pre-
computed multiplication and division tables for GF (28).
For w = 16, Jerasure uses discrete logarithms, and
for w = 32, it uses a recursive table-lookup scheme. Ad-
ditional implementation options for the underlying Ga-
lois Field arithmetic are discussed in [11].

The results on the Dell are similar to the MacBook
with some significant differences. The first is that larger
values of w perform worse relative to smaller values, re-
gardless of their XOR counts. While the Minimum Den-
sity codes eventually outperform RDP for larger w, their
overall performance is far worse than the best performing
RDP instance. For example, Liberation’s encoding speed
when w = 31 is 82% of RDP’s speed when w = 6, as
opposed to 97% on the MacBook. We suspect that the
reason for this is the smaller L1 cache on the Dell, which
penalizes the strip sizes of the larger w.

The final difference between the MacBook and the
Dell is that Jerasure’s RS performance for w = 16 is
much worse than for w = 8. We suspect that this is be-
cause Jerasure’s logarithm tables are not optimized for
space, consuming 1.5 MB of memory, since there are six
tables of 256 KB each [26]. The lower bound is two 128
KB tables, which should exhibit better behavior on the
Dell’s limited cache.

Figure 11 displays the results for [14,2] (we omit
Cleversafe since its performance is so much worse than
the others). The trends are similar to [6,2], with the ex-

8

4 8 12 16 20 24 28 32

 w

RDP
EVENODD
CRS: Jerasure
CRS: Luby

MacBook:

Minimal Density
RS-Opt: Jerasure
RS: Jerasure
RS: Zfec

0

500

1000

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

1500

2000

N
orm

alized Encoding
Speed (M

B/sec)

4 8 12 16 20 24 28 32

 wDell:

0

200

400

600

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

N
orm

alized Encoding
Speed (M

B/sec)

Figure 11: Encoding performance for [14,2].

ception that on the Dell, the Minimum Density codes
perform significantly worse than RDP and EVENODD,
even though their XOR counts follow the performance of
the MacBook. The definition of the normalized encoding
speed means that if a code is encoding optimally, its nor-
malized encoding speed should match the XOR speed. In
both machines, RDP’s [14,2] normalized encoding speed
comes closest to the measured XOR speed, meaning that
in implementation as in theory, this is an extremely effi-
cient code.

Figure 12 displays the results for [12,4]. Since this
is no longer a RAID-6 scenario, only the RS and CRS
codes are displayed. The normalized performance of
Jerasure’s CRS coding is much worse now because the
generator matrices are more dense and cannot be opti-
mized as they can when m = 2. As such, the codes per-
form more XOR operations than when k = 14. For ex-
ample, when w = 4 Jerasure’s CRS implementation per-
forms 17.88 XORs per coding word; optimal is 11. This
is why the normalized coding speed is much slower than
in the best RAID-6 cases. Since Luby’s code does not
optimize the generator matrix, it performs more XORs

4 8 12 16 20 24 28 32

 w

CRS: Jerasure
CRS: Luby

MacBook:

RS: Jerasure
RS: Zfec

0

100

200

300

400

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

500

1000

N
orm

alized Encoding
Speed (M

B/sec)

4 8 12 16 20 24 28 32

 wDell:

0

50

100

150

200

En
co

di
ng

 S
pe

ed
 (M

B/
se

c)

0

200

400

600

800

N
orm

alized Encoding
Speed (M

B/sec)

Figure 12: Encoding performance for [12,4].

(23.5 per word, as opposed to 17.88 for Jerasure), and as
a result is slower.

The RS codes show the same performance as in the
other tests. In particular, Zfec’s normalized performance
is roughly the same in all cases. For space purposes, we
omit the [10,6] results as they show the same trends as
the [12,4] case. The peak performer is Jerasure’s CRS,
achieving a normalized speed of 1409 MB/sec on the
MacBook and 869.4 MB/sec on the Dell. Zfec’s nor-
malized encoding speeds are similar to the others: 528.4
MB/sec on the MacBook and 380.2 MB/sec on the Dell.

5 Decoding Performance

To test the performance of decoding, we converted the
encoder program to perform decoding as well. Specif-
ically, the decoder chooses m random data drives, and
then after each encoding iteration, it zeros the buffers for
those drives and decodes. We only decode data drives
for two reasons. First, it represents the hardest decoding
case, since all of the coding information must be used.
Second, all of the libraries except Jerasure decode only

9

the data, and do not allow for individual coding strips to
be re-encoded without re-encoding all of them. While we
could have modified those libraries to re-encode individ-
ually, we did not feel that it was in the spirit of the evalu-
ation. Before testing, we wrote code to double-check that
the erased data was decoded correctly, and in all cases it
was.

4 8 12 16 20 24 28 32

 w

RDP
EVENODD
CRS: Jerasure
CRS: Luby
CRS: Cleversafe

MacBook:

Minimal Density
RS-Opt: Jerasure
RS: Zfec
RS: Jerasure

0

500

1000

D
ec

od
in

g
Sp

ee
d

(M
B/

se
c)

0

500

1000

1500

2000 N
orm

alized D
ecoding

Speed (M
B/sec)

4 8 12 16 20 24 28 32

 wDell:

0

200

400

600

D
ec

od
in

g
Sp

ee
d

(M
B/

se
c)

0

500

1000

N
orm

alized D
ecoding

Speed (M
B/sec)

Figure 13: Decoding performance for [6,2].

We show the performance of two configurations: [6,2]
in Figure 13 and [12,4] in Figure 14. The results are
best viewed in comparison to Figures 9 and 12. The re-
sults on the MacBook tend to match theory. RDP de-
codes as it encodes, and the two sets of speeds match
very closely. EVENODD and the Minimal Density codes
both have slightly more complexity in decoding, which is
reflected in the graph. As mentioned in [24], the Minimal
Density codes benefit greatly from Code-Specific Hybrid
Reconstruction [14], which is implemented in Jerasure.
Without the optimization, the decoding performance of
these codes would be unacceptable. For example, in the
[6,2] configuration on the MacBook, the Liberation code

for w = 31 decodes at a normalized rate of 1820 MB/sec.
Without Code-Specific Hybrid Reconstruction, the rate is
a factor of six slower: 302.7 MB/sec. CRS coding also
benefits from the optimization. Again, using an example
where w = 31, normalized speed with the optimization
is 1809 MB/s, and without it is 261.5 MB/sec.

The RS decoders perform identically to their encoding
counterparts with the exception of the RAID-6 optimized
version. This is because the optimization applies only to
encoding and defaults to standard RS decoding. Since
the only difference between RS encoding and decoding
is the inversion of a k × k matrix, the fact that encoding
and decoding performance match is expected.

On the Dell, the trends between the various codes fol-
low the encoding tests. In particular, larger values of w
are penalized more by the small cache.

4 8 12 16 20 24 28 32

 w

CRS: Jerasure
CRS: Luby

MacBook:

RS: Jerasure
RS: Zfec

0

100

200

300

400

D
ec

od
in

g
Sp

ee
d

(M
B/

se
c)

0

500

1000

N
orm

alized D
ecoding

Speed (M
B/sec)

4 8 12 16 20 24 28 32

 wDell:

0

50

100

150

200

250

D
ec

od
in

g
Sp

ee
d

(M
B/

se
c)

0

200

400

600

800

N
orm

alized D
ecoding

Speed (M
B/sec)

Figure 14: Decoding performance for [12,4].

In the [12,4] tests, the performance trends of the CRS
codes are the same, although the decoding proceeds more
slowly. This is more pronounced in Jerasure’s imple-
mentation than in Luby’s, and can be explained by XORs.
In Jerasure, the program attempts to minimize the num-
ber of ones in the encoding matrix, without regard to the

10

decoding matrix. For example, when w = 4, CRS encod-
ing requires 5.96 GB of XORs. In a decoding example,
it requires 14.1 GB of XORs, and with Code-Specific
Hybrid Reconstruction, that number is reduced to 12.6.
Luby’s implementation does not optimize the encoding
matrix, and therefore the penalty of decoding is not as
great.

As with the [6,2] tests, the performance of RS coding
remains identical to decoding.

6 XOR Units

This section is somewhat obvious, but it does bear
mentioning that the unit of XOR used by the encod-
ing/decoding software should match the largest possible
XOR unit of the machine. For example, on 32-bit ma-
chines like the MacBook and the Dell, the long and int
types are both four bytes, while the char and short types
are one and two bytes, respectively. On 64-bit machines,
the long type is eight bytes. To illustrate the dramatic
impact of word size selection for XOR operations, we
display RDP performance for the [6,2] configuration (w
= 6) on the two 32-bit machines and on a an HP dc7600
workstation with a 64-bit Pentium D860 processor run-
ning at 2.8 GHz. The results in Figure 15 are expected.

long
int
short
char

0
1000
2000
3000

N
or

m
al

iz
ed

 E
nc

od
in

g
Sp

ee
d

(M
B/

se
c)

64-Bit HP

int
short
char

0
1000
2000
3000

32-Bit Macbook

int
short
char

0
1000
2000
3000

32-Bit Dell

Figure 15: Effect of changing the XOR unit of RDP en-
coding when w = 6 in the [6,2] configuration.

The performance penalty at each successively smaller
word size is roughly a factor of two, since twice as many
XORs are being performed. All the libraries tested in
this paper perform XORs with the widest word possible.
This also displays how 64-bit are especially tailored for
these types of operations.

7 Conclusions

Given the speeds of current disks, the libraries explored
here perform at rates that are easily fast enough to build
high performance, reliable storage systems. We offer the
following lessons learned from our exploration and ex-
perimentation:

RAID-6: The three RAID-6 codes, plus Jerasure’s
implementation of CRS coding for RAID-6, all perform
much faster than the general-purpose codes. Attention
must be paid to the selection of w for these codes: for
RDP and EVENODD, it should be as low as possible;
for Minimal Density codes, it should be as high as the
caching behavior allows, and for CRS, it should be se-
lected so that the primitive polynomial has a minimal
number of ones. Note that w ∈ {8, 16, 32} are all bad
for CRS coding. Anvin’s optimization is a significant im-
provement ot generalized RS coding, but does not attain
the levels of the special-purpose codes.

CRS vs. RS: For non-RAID-6 applications, CRS cod-
ing performs much better than RS coding, but now w
should be chosen to be as small as possible, and atten-
tion should be paid to reduce the number of ones in the
generator matrix. Additionally, a dense matrix represen-
tation should not be used for the generator matrix while
encoding and decoding.

Parameter Selection: In addition to w, the packet
sizes of the codes should be chosen to yield good cache
behavior. To achieve an ideal packet size, experimenta-
tion is important; although there is a balance point be-
tween too small and too large, some packet sizes per-
form poorly due to direct-mapped cache behavior, and
therefore finding an ideal packet size takes more effort
than executing a simple binary search. As reported by
Greenan with respect to Galois Field arithmetic [11], ar-
chitectural features and memory behavior interact in such
a way that makes it hard to predict the optimal param-
eters for encoding operations. In this paper, we semi-
automate it by using the region-based search of Sec-
tion 4.4.

Minimizing the Cache/Memory Footprint: On
some machines, the implementation must pay attention
to memory and cache. For example, Jerasure’s RS im-
plementation performs poorly on the Dell when w = 16
because it is wasteful of memory, while on the MacBook
its memory usage does not penalize as much. Part of
Zfec’s better performance comes from its smaller mem-
ory footprint. In a similar vein, we have seen improve-
ments in the performance of the XOR codes by re-
ordering the XOR operations to minimize cache replace-
ments [20]. We anticipate further performance gains
through this technique.

Beyond RAID-6: The place where future research
will have the biggest impact is for larger values of m.
The RAID-6 codes are extremely successful in delivering
higher performance than their general-purpose counter-
parts. More research needs to be performed on special-
purpose codes beyond RAID-6, and implementations
need to take advantage of the special-purpose codes that
already exist [9, 10, 17].

11

Multicore: As modern architectures shift more uni-
versally toward multicore, it will be an additional chal-
lenge for open source libraries to exploit the opportuni-
ties of multiple processors on a board. As demonstrated
in this paper, attention to the processor/cache interaction
will be paramount for high performance.

8 Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0615221
and IIS-0541527. The authors are greatly indebted to
Ilya Volvolski and Jason Resch from Cleversafe for pro-
viding us with the erasure coding core of their open
source storage dispersal system. The authors also thank
Hakim Weatherspoon for his helpful and detailed com-
ments on the paper.

References

[1] ALLMYDATA. Unlimited online backup, storage,
and sharing. http://allmydata.com, 2008.

[2] ANVIN, H. P. The mathematics of RAID-
6. http://kernel.org/pub/linux/kernel/
people/hpa/raid6.pdf, 2007.

[3] BECK, M., ARNOLD, D., BASSI, A., BERMAN,
F., CASANOVA, H., DONGARRA, J., MOORE,
T., OBERTELLI, G., PLANK, J. S., SWANY, M.,
VADHIYAR, S., AND WOLSKI, R. Logistical com-
puting and internetworking: Middleware for the use
of storage in communication. In Third Annual In-
ternational Workshop on Active Middleware Ser-
vices (AMS) (San Francisco, August 2001).

[4] BLAUM, M., BRADY, J., BRUCK, J., AND
MENON, J. EVENODD: An efficient scheme for
tolerating double disk failures in RAID architec-
tures. IEEE Transactions on Computing 44, 2
(February 1995), 192– 202.

[5] BLAUM, M., AND ROTH, R. M. On lowest den-
sity MDS codes. IEEE Transactions on Information
Theory 45, 1 (January 1999), 46–59.

[6] BLOMER, J., KALFANE, M., KARPINSKI, M.,
KARP, R., LUBY, M., AND ZUCKERMAN, D. An
XOR-based erasure-resilient coding scheme. Tech.
Rep. TR-95-048, International Computer Science
Institute, August 1995.

[7] CLEVERSAFE, INC. Cleversafe Dispersed Stor-
age. Open source code distribution: http://
www.cleversafe.org/downloads, 2008.

[8] CORBETT, P., ENGLISH, B., GOEL, A., GR-
CANAC, T., KLEIMAN, S., LEONG, J., AND
SANKAR, S. Row diagonal parity for double disk
failure correction. In 3rd Usenix Conference on
File and Storage Technologies (San Francisco, CA,
March 2004).

[9] FENG, G., DENG, R., BAO, F., AND SHEN, J.
New efficient MDS array codes for RAID Part I:
Reed-Solomon-like codes for tolerating three disk
failures. IEEE Transactions on Computers 54, 9
(September 2005), 1071–1080.

[10] FENG, G., DENG, R., BAO, F., AND SHEN, J.
New efficient MDS array codes for RAID Part II:
Rabin-like codes for tolerating multiple (≥ 4) disk
failures. IEEE Transactions on Computers 54, 12
(Decemeber 2005), 1473–1483.

[11] GREENAN, K., MILLER, E., AND SCHWARTZ,
T. J. Optimizing Galois Field arithmetic for diverse
processor architectures and applications. In MAS-
COTS 2008: 16th IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems (Baltimore, MD, September
2008).

[12] HAFNER, J. L. WEAVER Codes: Highly fault tol-
erant erasure codes for storage systems. In FAST-
2005: 4th Usenix Conference on File and Stor-
age Technologies (San Francisco, December 2005),
pp. 211–224.

[13] HAFNER, J. L. HoVer erasure codes for disk ar-
rays. In DSN-2006: The International Conference
on Dependable Systems and Networks (Philadel-
phia, June 2006), IEEE.

[14] HAFNER, J. L., DEENADHAYALAN, V., RAO,
K. K., AND TOMLIN, A. Matrix methods for
lost data reconstruction in erasure codes. In FAST-
2005: 4th Usenix Conference on File and Stor-
age Technologies (San Francisco, December 2005),
pp. 183–196.

[15] HUANG, C., CHEN, M., AND LI, J. Pyramid
codes: Flexible schemes to trade space for access
efficienty in reliable data storage systems. In NCA-
07: 6th IEEE International Symposium on Net-
work Computing Applications (Cambridge, MA,
July 2007).

[16] HUANG, C., LI, J., AND CHEN, M. On optimizing
XOR-based codes for fault-tolerant storage appli-
cations. In ITW’07, Information Theory Workshop
(Tahoe City, CA, September 2007), IEEE, pp. 218–
223.

12

[17] HUANG, C., AND XU, L. STAR: An efficient cod-
ing scheme for correcting triple storage node fail-
ures. In FAST-2005: 4th Usenix Conference on File
and Storage Technologies (San Francisco, Decem-
ber 2005), pp. 197–210.

[18] KARN, P. Dsp and fec library. http://www.
ka9q.net/code/fec/, 2007.

[19] LUBY, M. Code for Cauchy Reed-Solomon cod-
ing. Uuencoded tar file: http://www.icsi.
berkeley.edu/˜luby/cauchy.tar.uu,
1997.

[20] LUO, J., XU, L., AND PLANK, J. S. An effi-
cient XOR-Scheduling algorithm for erasure code
encoding. Tech. Rep. Computer Science, Wayne
State University, December 2008.

[21] MACWILLIAMS, F. J., AND SLOANE, N. J. A.
The Theory of Error-Correcting Codes, Part I.
North-Holland Publishing Company, Amsterdam,
New York, Oxford, 1977.

[22] NISBET, B. FAS storage systems: Lay-
ing the foundation for application avail-
ability. Network Appliance white paper:
http://www.netapp.com/us/library/
analyst-reports/ar1056.html, February
2008.

[23] PARTOW, A. Schifra Reed-Solomon ECC Li-
brary. Open source code distribution: http:
//www.schifra.com/downloads.html,
2000-2007.

[24] PLANK, J. S. A new minimum density RAID-6
code with a word size of eight. In NCA-08: 7th
IEEE International Symposium on Network Com-
puting Applications (Cambridge, MA, July 2008).

[25] PLANK, J. S. The RAID-6 Liberation codes. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies (San Jose, February 2008),
pp. 97–110.

[26] PLANK, J. S., SIMMERMAN, S., AND SCHUMAN,
C. D. Jerasure: A library in C/C++ facilitating era-
sure coding for storage applications - Version 1.2.
Tech. Rep. CS-08-627, University of Tennessee,
August 2008.

[27] PLANK, J. S., AND XU, L. Optimizing Cauchy
Reed-Solomon codes for fault-tolerant network
storage applications. In NCA-06: 5th IEEE Inter-
national Symposium on Network Computing Appli-
cations (Cambridge, MA, July 2006).

[28] REED, I. S., AND SOLOMON, G. Polynomial
codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8
(1960), 300–304.

[29] RHEA, S., WELLS, C., EATON, P., GEELS, D.,
ZHAO, B., WEATHERSPOON, H., AND KUBIA-
TOWICZ, J. Maintenance-free global data storage.
IEEE Internet Computing 5, 5 (2001), 40–49.

[30] RIZZO, L. Effective erasure codes for reliable com-
puter communication protocols. ACM SIGCOMM
Computer Communication Review 27, 2 (1997),
24–36.

[31] STORER, M. W., GREENAN, K. M., MILLER,
E. L., AND VORUGANTI, K. Pergamum: Replac-
ing tape with energy efficient, reliable, disk-based
archival storage. In FAST-2008: 6th Usenix Confer-
ence on File and Storage Technologies (San Jose,
February 2008), pp. 1–16.

[32] WELCH, B., UNANGST, M., ABBASI, Z., GIB-
SON, G., MUELLER, B., SMALL, J., ZELENKA,
J., AND ZHOU, B. Scalable performance of the
Panasas parallel file system. In FAST-2008: 6th
Usenix Conference on File and Storage Technolo-
gies (San Jose, February 2008), pp. 17–33.

[33] WILCOX-O’HEARN, Z. Zfec 1.4.0. Open source
code distribution: http://pypi.python.
org/pypi/zfec, 2008.

[34] WYLIE, J. J., AND SWAMINATHAN, R. Determin-
ing fault tolerance of XOR-based erasure codes ef-
ficiently. In DSN-2007: The International Confer-
ence on Dependable Systems and Networks (Edin-
burgh, Scotland, June 2007), IEEE.

[35] XU, L., AND BRUCK, J. X-Code: MDS array
codes with optimal encoding. IEEE Transactions
on Information Theory 45, 1 (January 1999), 272–
276.

[36] ZHU, B., LI, K., AND PATTERSON, H. Avoiding
the disk bottleneck in the Data Domain deduplica-
tion file system. In FAST-2008: 6th Usenix Confer-
ence on File and Storage Technologies (San Jose,
February 2008), pp. 269–282.

13

