
Netsolve: An Environment for Deploying Fault-Tolerant Computing

James S. Plank Henri Casanova Jack J. Dongarra Terry Moore

Department of Computer Science, University of Tennessee, Knoxville, TN 37996

The Issue of Deployment
Consider the plight of the scientific user. In the world of

uniprocessor workstations, his/her life is relatively simple.
Software packages such as Matlab enable users to solve
a wide variety of numerical problems with a convenient
and flexible user interface. For less standard problems, a
programmer may obtain software solutions from a repos-
itory like Netlib. These typically take the form of simple
C/FORTRAN subroutines, and are very simple to incorpo-
rate into a programming platform. In short, life is good.

Unfortunately, for large problems, uniprocessors are not
powerful enough, and often do not contain enough memory
to provide solutions in a reasonable time frame. For this
reason, programmers must turn to parallel and distributed
computing platforms.

In parallel computing environments, multiple machines
are combined to provide a computing entity that has
enough processing power and memory to solve large prob-
lems in a reasonable time frame. However, these envi-
ronments bring about many more problems, such as het-
erogeneity, data distribution, distributed ownership of re-
sources, storage availability and component failures.

All of these issues make it difficult for a user to use a
parallel computing platform like a single workstation. Any
usable software must take all of these issues into account,
which means that managing the computing platform be-
comes as big of an issue as performing the actual compu-
tation. When we look at the success stories of scientific
computation on parallel platforms, they inevitably take the
limited form of dedicated parallel machines like the Cray
T3E or IBM SP2, or collections of workstations that are
treated as dedicated parallel machines using software such
as PVM or MPI. And even these present a very large chal-
lenge to any end-user who is not proficient at porting soft-
ware and writing code.

So where does fault-tolerance fit into the equation? It
doesn’t. The same variety of obstacles that makes these
platforms difficult to use also hinders the deployment of
support for fault tolerance. Although many paradigms and
algorithms for fault-tolerant distributed computing have

plank@cs.utk.edu. This material is based upon work supported
by NSF grant CCR-9703390, NSF and Technology Center Cooperative
Agreement CCR-8809615 and DOE contract DE-AC05-840R21400

reply

choice

choice

reply

 of

Client

Network

 Servers

Client

Agent

Scalar Server

request

Scalar Server

Agent

request

MPP Servers

Figure 1: Overview of NetSolve

been developed and tested, and in some cases made avail-
able as public-domain libraries, the average scientific user
sees no benefits. With momentum gaining for the computa-
tional power grid, where disparate computational resources
are combined and made available to a wide user base, the
issue of deploying support for fault-tolerance becomes of
paramount importance.

Introducing NetSolve
NetSolve [1] is a software environment for networked

computing. The design of NetSolve allows users to make
use of the variety of computational resources at their dis-
posal using familiar interfaces from the world of unipro-
cessor computing (e.g. Matlab, simple procedure calls).
NetSolve uses a client-agent-server paradigm as depicted
in Figure 1. NetSolve users are the clients, and the com-
putational resources are the servers. A server may be a
uniprocessor, a MPP (Massively Parallel Processor), or a
networked cluster of machines. When a user wants a cer-
tain computational task to be performed, he/she contacts
an agent with the request. Each agent maintains informa-
tion such as availability, load, and supported software, on
a collection of servers. When a request from a user comes
in, the agent selects a server to perform the task, and the
server responds to the client’s request.

The user’s computation is performed remotely at the
server. This means that the user sends his/her data to the
server, and the server uses its own software to perform the
computation. When the server finishes the computation, it

1

sends the result back to the client, and contacts the agent to
notify it of the completion of the task.

As shown in Figure 1 there may be multiple NetSolve
agents on the network, and different clients may contact
different agents depending on their locations. The agents
exchange information about their server pools, and allow
access from any client to any server if advantageous.

NetSolve and Fault-Tolerance
NetSolve’s design is not radically novel. Depending on

the perspective, it may be viewed as an enhanced client-
server architecture, or an enhanced RPC (remote procedure
call) environment. However, the three-part design achieves
a logical separation that allows each part to do what it does
best without worrying about the details of the other parts.
Specifically, the clients simply specify the computations,
without worrying about how they get done. The servers
simply perform the computations. Each server may opti-
mize its computations for its own architecture, and most
importantly, for each class of computation, the software is
ported to a server once, by the server’s administrator — the
client need not be involved. Finally, the agents act as re-
source brokers, performing tasks that are not logical for the
clients or servers to perform.

Due to this modular design, NetSolve’s ability to de-
ploy fault-tolerance is immense, and exists on two levels.
The first is called intra-server fault-tolerance. Here, the in-
dividual servers employ fault-tolerance in their individual
computations. This can take any form: checkpointing and
rollback recovery, ABFT, backward error assertions, TMR,
global replicated stores, etc. The important thing to note
is that the fault-tolerance is part of the computational soft-
ware, and thus is ported once by the server’s administrator.
The client is totally uninvolved, except that he/she reaps
the benefits of fault-tolerant computation, perhaps unknow-
ingly!

The second level is inter-server fault-tolerance, where a
failure of one server is noted by an agent, and the server’s
computation is moved to another server. This can take the
simple form of restarting the computation from the begin-
ning on a new server, or having the state of the old server
made available so that the new server may restart the com-
putation from the middle. This requires that failed servers
can make their state available to the agents, or that some
form of storage servers be employed so that a server may
save its state outside of its own scope.

Current Status
At present, NetSolve exists as a prototype that is be-

ing used in several research institutions. This prototype
implements NetSolve’s client-agent-server model and in-
cludes a suite of software for a variety of clients and
servers. Currently, the clients may be Matlab scripts,
or C/Fortran/Java programs. The following software has

been made available as a standard suite for NetSolve
servers: ARPACK, FitPack, ItPack, MinPack, FFTPACK,
LAPACK, and QMR. Parallel servers have been developed
that implement ScaLAPACK [2]. NetSolve has been ported
to every major Unix platform. Windows 95/NT versions of
the client are available and a server is being developed.

The prototype includes primitive forms of intra-server
and inter-server fault-tolerance. The intra-server fault-
tolerance takes the form of servers composed of pools of
workstations managed by Condor [5]. Condor uses check-
pointing and rollback recovery to move computations off
machines that are unavailable due to failure, load, or own-
ership, and onto machines that are free and relatively idle.
The inter-server fault-tolerance takes the form of agents
detecting server failures by a time-out mechanism, and
restarting the clients’ computations on other servers.

Thus, although the mechanisms for fault-tolerance are
currently very simple, they do represent a major step in
deploying fault-tolerance to scientific users, since the Net-
Solve prototype is in use at several institutions. More-
over, through integration with projects such as Globus [3]
and Legion [4], NetSolve is gaining momentum as a ma-
jor enabling application of the computational grid, and will
thereby deliver fault-tolerance to a large audience.

Research
The fault-tolerant research of the NetSolve team is di-

vided into two categories: research on NetSolve and re-
search with NetSolve. Research on Netsolve focuses on
the development of storage servers, and the interaction of
agents, servers and storage servers to enable inter-server
fault-tolerance and migration. Research with NetSolve
focuses on implementing a wide variety of fault-tolerant
servers. We are currently working on fault-tolerant parallel
ScaLAPACK servers that employ disk-based checkpoint-
ing, diskless checkpointing, and checksum/reverse compu-
tation. We plan to explore other forms of fault-tolerant
servers including persistent stores, farming paradigms and
recoverable DSM. Once implemented, the performance of
these techniques may be compared directly, then deployed.

References
[1] H. Casanova and J. Dongarra. NetSolve: A network server for solving compu-

tational science problems. The International Journal of Supercomputer Appli-
cations and High Performance Computing, 11(3):212–223, 1997.

[2] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear
algebra library for distributed memory concurrent computers. In Proceedings
of the Fourth Symposium on the Frontiers of Massively Parallel Computation,
pages 120–127. IEEE Publishers, 1992.

[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications (to appear), 1998.

[4] M. J. Lewis and A. Grimshaw. The core legion object model. In Fifth IEEE
International Symposium on High Performance Distributed Computing, 1996.

[5] T. Tannenbaum and M. Litzkow. The Condor distributed processing system. Dr.
Dobb’s Journal, #227:40–48, February 1995.

NetSolve’s home page is http://www.cs.utk.edu/netsolve/.

