
G-commerce: Market Formulations Controlling Resource Allocation on the
Computational Grid

Rich Wolski, James S. Plank, Todd Bryan
Computer Science Department

University of Tennessee

John Brevik
Mathematics and Computer Science Department

College of the Holy Cross

Abstract

In this paper, we investigate G-commerce — compu-
tational economies for controlling resource allocation in
Computational Grid settings. We define hypothetical re-
source consumers (representing users and Grid-aware ap-
plications) and resource producers (representing resource
owners who “sell” their resources to the Grid). We then
measure the efficiency of resource allocation under two dif-
ferent market conditions: commodities markets and auc-
tions. We compare both market strategies in terms of price
stability, market equilibrium, consumer efficiency, and pro-
ducer efficiency. Our results indicate that commodities mar-
kets are a better choice for controlling Grid resources than
previously defined auction strategies.

1. Introduction

A new computing paradigm known as the Computational
Grid [13, 3] articulates a vision of distributed computing
in which applications “plug” into a “power grid” of com-
putational resources when they execute, dynamically draw-
ing what they need from the global supply. While a great
deal of research concerning the software mechanisms that
will be necessary to bring Computational Grids to fruition
is underway [3, 12, 16, 7, 21], little work has focused on
the resource control policies that are likely to succeed. Al-
most all Grid resource allocation and scheduling research
espouses one of two paradigms: centralized omnipotent re-
source control [14, 16, 18] or localized application con-
trol [8, 4, 2, 15]. The first is certainly not a scalable so-
lution and the second can clearly lead to unstable resource
assignments as “Grid-aware” applications adapt to compete
for resources.

In this paper, we investigate G-commerce – a method of
dynamic Grid resource allocation built on the notion of a

This work was supported, in part, by NSF grants EIA-9975020, EIA-
9975015, ACI-9876895.

market economy. Framing the resource allocation problem
in economic terms is attractive for several reasons. First, re-
source usage is not free. Second, the dynamics of Grid per-
formance response are, as of yet, difficult to model. As re-
source load fluctuates, applications can adjust their resource
usage at machine speeds, forming a feedback control loop
with a potentially non-linear response. By formulating Grid
resource usage in market terms, we are able to draw upon
a large body of analytical research from the field of eco-
nomics and apply it to the understanding of emergent Grid
behavior. Last, if resource owners are to be convinced to
federate their resources to the Grid, they must be able to
account for the relative costs and benefits of doing so.

We focus on two broad categories of G-commerce for-
mulations: commodities markets and auctions. Modeling
the Grid as a commodities market is natural since the Grid
strives to allow applications to treat disparate resources as
interchangeable commodities. On the other hand, auctions
require little in the way of global price information, and they
are easy to implement in a distributed setting. Both types
of economies have been studied as strategies for distributed
resource brokering [10, 22, 17, 5, 6, 9]. Our goal is to en-
hance our deeper understanding of how these economies
will fare as resource brokering mechanisms for Computa-
tional Grids.

We evaluate commodities markets and auctions with re-
spect to four criteria: Grid-wide price stability, market
equilibrium, application efficiency, and resource efficiency.
Price stability is critical to ensure scheduling stability. If the
price fluctuates wildly, application and resource schedulers
that base their decisions on the state of the economy will
follow suit, again leading to poor performance, and there-
fore ineffectiveness of the Grid as a computational infras-
tructure. Equilibrium measures the degree to which prices
are fair. If the overall market cannot be brought into equi-
librium, the relative expense or worth of a particular trans-
action cannot be trusted, and again the Grid is not doing
its job. Application efficiency measures how effective the
Grid is as a computational platform, and resource efficiency
measures how well the Grid manages its resources. Poor ap-

plication and/or resource efficiency will mean that the Grid
is not succeeding as a computational infrastructure.

The remainder of this paper is organized as follows. In
the next section, we discuss the specific market formula-
tions we use in this study. Section 3 describes the simula-
tion methodology we use and the results we obtain for dif-
ferent hypothetical market parameterizations. In Section 4
we conclude and point to future work.

2. G-commerce — Market Economies for the
Grid

In formulating a computational economy for the Grid,
we assume that the following premise must be true: The
relative worth of a resource is determined by its supply and
the demand for it. This assumption is important because it
rules out pricing schemes that are based on arbitrarily de-
cided priorities. While there are several plausible scenarios
in which such Draconian policies are appropriate (e.g. users
are funded to use a specific machine as part of their indi-
vidual research projects), from the perspective of the Grid,
the resource allocation problem under these conditions has
been solved.

Next, we assume that relative worth, and not price, is
determined by supply and demand. Supply and demand
are functions of price, and relative worth is determined by
some optimization function over the space of prices. For
example, in this paper, we will consider the price to be rep-
resentative of relative worth at the price-point that equal-
izes supply and demand – that is, at market equilibrium.
Conversely, at a non-equilibrium price-point (where supply
does not equal demand), price either overstates or under-
states relative worth.

Another important aspect of our approach is that we do
not restrict the definition of currency or the rules governing
its supply. If users or applications are given currency from
outside the system, we would expect inflationary price be-
havior, but the market will remain intact. Also, it is possible
to segregate computational consumers and producers. In a
“true” market, producers are expected to spend their profits
(somewhere) within the economy eventually. While we be-
lieve our results remain valid for this more restricted case,
in this work we model producers and consumers as disjoint
entities.

Finally, and most pragmatically, if we are to simulate
a computational economy we must ultimately hypothesize
supply and demand functions for our simulated produc-
ers and consumers respectively. Individual supply and de-
mand functions are difficult to measure at best, particularly
since there are no existing Computational Grid economies
at present. Our admittedly less satisfactory approach is
to define supply and demand functions that represent each
simulated producer and consumer’s “self-interest.” An indi-

vidual consumer buys only if the purchase is a “good deal”
for that consumer. Analogously, producers sell only when
a sale is in their best interest. We believe resource deci-
sions based on self-interest are inescapable in any federated
resource system.

2.1. Producer Models

We simulate two different commodity producers in this
study: CPU and disk storage. This set of simulated produc-
ers is used to compare commodity and auction-based mar-
ket settings. While the results should generalize to include
a variety of other commodities, networks present a special
problem. For the moment we ignore networks and instead
allow CPU and disk requests to be serviced by any provider,
regardless of network connectivity.

In this study, a CPU represents a computational engine
with a fixed speed. A CPU producer agrees to sell to the
Grid some number of fixed “slots” of the CPU it controls.
The number of slots depends on the speed of the producer’s
CPU (a faster CPU will provide more slots than a slower
one), and what fraction of the CPU the producer wishes to
supply to the Grid. When a job occupies a CPU, it is guar-
anteed to get whatever percentage of the CPU will provide
the dedicated speed. Each CPU producer differs in the total
number of slots it is willing to sell to the Grid.

To determine supply at a given price-point, each CPU
calculates

(1)

where is the total amount of Grid currency (here-
after referred to as $G which is pronounced “Grid bucks”),

is an incrementing clock, and is the to-
tal number of process slots the CPU owner is willing to sup-
port. The value is the average $G per time unit
per slot the CPU has made from selling to the Grid. In our
study, CPU producers will only sell if the current price of
a CPU slot exceeds the value, and when they
sell, they sell all unoccupied slots. That is, the CPU will sell
all of its available slots when it will turn a profit (per slot)
with respect to the average profit over time.

The model we use for a disk producer is similar to that
for the CPU producer, except that disks sell some number
of fixed-sized “files” that applications may use for storage.
The calculation for disk files is

(2)

where is the total number of files a disk producer
is willing to sell to the Grid. If the current price for a file is
greater than the , a disk producer will sell all of
its available files.

Note that the resolution of CPU slots and file sizes is
variable. Since our markets transact business at the com-

2

modity level, however, we hypothesize that any real imple-
mentation for the Grid will need to work with larger-scale
aggregations of resources for reasons of efficiency. For the
simulations described in Section 3 we choose values for
these aggregations that we believe reflect a market formula-
tion that is currently implementable.

2.2. Consumers and Jobs

Consumers express their needs to the market in the form
of jobs. Each job specifies both a size and an occupancy
duration for each resource to be consumed. Each consumer
also sports a budget of $G that it can use to pay for the re-
sources needed by its jobs. Consumers are given an initial
budget and a periodic allowance, but they are not allowed to
hold $G over from one period until the next. This method
of budget refresh is inspired by the allocation policies cur-
rently in use at the NSF Partnerships for Advanced Compu-
tational Infrastructure (PACIs), where allocations are per-
ishable.

When a consumer wishes to purchase resources for a job,
it declares the size of the request for each commodity, but
not the duration. At the time a producer agrees to sell to a
consumer, a price is fixed that will be charged to the con-
sumer for each simulated time unit until the job completes.
Consider in example a consumer wishing to buy a CPU slot
for 100 simulated minutes and a disk file for 300 simulated
minutes to service a particular job. If the consumer wishes
to buy each for a particular price, it declares to the market
a demand of 1 CPU slot and 1 disk slot, but does not re-
veal the 100 and 300 minute durations. A CPU producer
wishing to sell at the CPU price agrees to accept the job un-
til either the job completes or the consumer’s budget goes
to zero (as does the disk producer for the disk job). Once
the sales are transacted, the consumer’s budget is decre-
mented by the agreed-upon price every simulated minute,
and each producer’s revenue account is incremented by the
same amount. If the job completes, the CPU producer will
have accrued 100 times the CPU price, the disk producer
will have accrued 300 times the disk price, and the con-
sumer’s budget will have been decremented by the sum of
100 times the CPU price and 300 times the disk price.

In defining this method of conducting resource transac-
tions, we make several assumptions. First, we assume that
in an actual Grid setting resource producers or suppliers will
commit some fraction of their resource to the Grid, and that
fraction is slowly changing. Once committed, the fraction
“belongs” to the Grid so producers are not concerned with
occupancy. We are also assuming that neither consumers
nor producers are malicious and that both honor their com-
mitments. In practice, this requirement might be satisfied
with secure authentication methods and libraries.

The consumer demand function is somewhat more com-

plex than the CPU and disk supply functions. Consumers
must purchase enough CPU and disk resource for each job
they wish to run. If they cannot afford the request for only
one type, they do not express demand for the other. That
is, the demand functions for CPU and disks are strongly
correlated, but the supply functions are not. This relation-
ship between supply and demand functions constitutes the
most difficult of market conditions. Most market systems
make weaker assumptions about the difference in correla-
tion. By addressing the more difficult case, we believe our
work more closely resembles what can be realized in prac-
tice.

To determine their demand at a given price, each con-
sumer first calculates the average rate at which it would
have spent $G for the jobs it has run so far if it had been
charged the current price. It then computes how many $G
it can spend per simulated time unit until the next budget
refresh. That is, it computes

(3)

(4)

where is the total amount of work performed
so far using commodity , is the current price for
commodity , is the amount left to
spend before the budget refresh, is the budget re-
fresh time, and is the current time. When
is greater than or equal to , a consumer will ex-
press demand. Note that the demand function does not con-
sider past price performance. Rather, consumers act oppor-
tunistically based on the amount of money left to spend be-
fore a budget refresh.

Consumers, in our simulations, generate work as a func-
tion of time. We arbitrarily fix some simulated period to
be a “simulated day.” At the beginning of each day, every
consumer generates a random number of jobs. By doing so,
we hope to model the diurnal user behavior that is typical
in large-scale computational settings. In addition, each con-
sumer can generate a single new job every time step with a
pre-determined probability. Consumers maintain a queue of
jobs waiting for service before they are accepted by produc-
ers. When calculating demand, they compute and

and demand as many jobs from this queue as
they can afford.

To summarize, for our G-commerce simulations,

all entities except the market-maker act individually in
their respective self-interests,

producers consider long-term profit and past perfor-
mance when deciding to sell,

consumers are given periodic budget replenishments
and spend opportunistically, and

3

consumers introduce work loads in bulk at the begin-
ning of each simulated day, and randomly throughout
the day.

We believe that this combination of characteristics captures
likely producer and consumer traits in real Grid settings.

2.3. Commodities Markets and Dynamic Pricing

To implement a market economy, we require a pricing
methodology that produces a system of price adjustments
which bring about market equilibrium (i.e. equalizes sup-
ply and demand). From a theoretical standpoint, a mar-
ket economy is a system involving producers, consumers,
several commodities, and supply and demand functions for
each commodity which are determined by the set of market
prices for the various commodities [11]. A unique equi-
librium price is guaranteed to exist in this framework by a
theorem of Debreu ([11], Chapter 5), the proof of which
is non-constructive and involves topological methods. In
[20], Smale produced a means for proving the existence of
equilibrium which also entails a scheme for price adjust-
ments to reach it.

If commodity prices are represented as a price vector
, where stands for the price of

the commodity, we can define excess demand for the
commodity as the demand minus the supply. As defined,

may be positive or negative; negative excess demand can
be interpreted simply as excess supply. We assume that the
markets for these commodities may be interrelated, so that
each is a function of all of the prices , that is, of the
vector . Smale’s theorem says given a market consisting
of interrelated commodities with price vector and as-
sociated excess demand vector an equilibrium
point with such that exists [24]. Moreover,
for any value of , we can form the matrix of partial
derivatives

Then for any value of which has the same sign as the
determinant of , we can obtain economic equilibrium
by always obeying the differential equation

(5)

Observe that taking and applying the Euler dis-
cretization at positive integer values of reduces this pro-
cess to the Newton-Raphson method for solving ;
for this reason, Smale refers to this process as “global New-
ton.”

Obtaining the partial derivatives necessary to carry out
Smale’s process in an actual economy is impossible; how-
ever, within the framework of our simulated economy, we

are able to get good approximations for the partials at a
given price vector by polling the producers and consumers.
We will refer, conveniently but somewhat inaccurately, to
this price adjustment scheme as Smale’s method. The obvi-
ous drawback to the such a scheme is that it relies on polling
aggregate supply and demand repeatedly to obtain the par-
tial derivatives of the excess demand functions. In practice,
we do not wish to assume that such polling information will
be available.

A theoretically attractive way to circumvent this diffi-
culty is to approximate each excess demand function
by a polynomial in which fits recent price
and excess demand vectors and to use the partial deriva-
tives of these polynomials in Equation 5. In simulations,
this method does not, in general, produce prices which ap-
proach equilibrium. The First Bank of G is a price adjust-
ment scheme which both is practicable and gives good re-
sults; this scheme involves using tâtonnement [23] until
prices get “close” to equilibrium, in the sense that excess
demands have sufficiently small absolute value, and then
using the polynomial method for “fine tuning.” Thus, the
First Bank of G approximates Smale’s method but is imple-
mentable in real-world Grid settings since it hypothesizes
excess demand functions and need not poll the market for
them. Our experience is that fairly high-degree polynomi-
als are required to capture excess demand behavior with the
sharp discontinuities described above. For all simulations
described in Section 3, we use a degree 17 polynomial.

2.4. Auctions

Auctions have been extensively studied as resource al-
location strategies for distributed computing systems. In a
typical auction system (e.g. [10, 22, 17, 5]), resource pro-
ducers (typically CPU producers) auction themselves using
a centralized auctioneer and sealed-bid, second-price auc-
tions. This and other auction variants are described in [5].

When consumers simply desire one commodity, for ex-
ample CPUs in Popcorn [17], auctions provide a conve-
nient, straightforward mechanism for clearing the market-
place. But when an application (the consumer in a Grid
Computing scenario) desires multiple commodities, it must
place simultaneous bids in multiple auctions, and may only
be successful in a few of these. When this happens, it must
expend currency on the resources that it has obtained while
it waits to obtain the others.

Also, while a commodities market presents an applica-
tion with a resource’s worth in terms of its price, thus al-
lowing the application to make meaningful scheduling deci-
sions, an auction is more unreliable in terms of both pricing
and the ability to obtain a resource, and may therefore re-
sult in poor scheduling decisions and more inefficiency for
consumers.

4

To gain a better understanding of how auctions fare in
comparison to commodities markets, we implement the fol-
lowing simulation of an auction-based resource allocation
mechanism for computational grids. At each time step,
CPU and disk producers submit their unused CPU and file
slots to a CPU and a disk auctioneer. These are accompa-
nied by a minimum selling price, which is the average profit
per slot, as detailed in Section 2.1 above. Consumers use
the demand function as described in Section 2.2 to define
their bid prices, and as long as they have money to bid on a
job, and a job for which to bid, they bid on each commodity
needed by their oldest uncommenced job.

Once the auctioneers have received all bids for a time
step, they cycle through all the commodities in a random
order, performing one second-price auction per commod-
ity. In each auction, the highest-bidding consumer gets the
commodity if the bid price is greater than the commodity’s
minimum price. If there is no second-highest bidder, then
the price of the commodity is the average of the commod-
ity’s minimum selling price and the consumer’s bid price.
Auctions are transacted in this manner for every commod-
ity, and this process is repeated at every time step.

Note our structuring of the auctions requires that each
consumer can have at most one job for which it is currently
bidding. When it obtains all the resources for that job, it im-
mediately starts bidding on its next job. When a time step
expires and all auctions for that time step have been com-
pleted, there may be several consumers whose jobs have
some resources allocated and some unallocated, as a result
of failed bidding. These consumers have to pay for their al-
located resources while they wait to start bidding in the next
time step.

While the auctions determine transaction prices based on
individual bids, the supply and demand functions used by
the producers and consumers to set ask and bid prices are
the same functions we use in the commodities market for-
mulations. Thus, we can compare the market behavior and
individual producer and consumer behavior in both auction
and commodity market settings.

3. Simulations and Results

We compare commodities markets and auctions using
the producers and consumers described in Section 2.1 in
two overall market settings. In the first, which we term
under-demand, producers are on average capable of sup-
porting enough demand to service all of the jobs consumers
can afford. Recall that our markets do not include resale
components. Consumers do not make money. Instead,
$G are given to them periodically much the in the same
way that PACIs dole out machine-time allocations. Simi-
larly, producers do not spend money. Once gathered, it is
hoarded. The under-demand case corresponds to a working

CPUs 100
disks 100
CPU slots per CPU [2 .. 10]
disk files per disk [1 .. 15]
CPU job length [1 .. 60] time units
disk job length [1 .. 60] time units
simulated day 1440 time units
allowance period [1 .. 10] days
jobs submitted at day-break [1 .. 100]
new job probability 10%
allowance $G
Bank of G Polynomial Degree 17

factor .01

Table 1. Invariant simulation parameters for
this study

Grid economy in which the allocations correctly match the
available resources. That is, when the rate that $G are allo-
cated to consumers roughly matches the rate at which they
introduce work to the Grid. In the over-demand case, con-
sumers wish to buy more resource than is available. That
is, they generate work fast enough to keep all producers
almost completely busy thereby creating a work back-log.
Table 1 completely describes the invariant simulation pa-
rameters we chose for both cases. For the under-demand
simulation, we defined consumers to use the CPUs
and disks, where each consumer submitted a random num-
ber of jobs (between and) at every day-break, and
had a 10% chance of submitting a new job every time unit.
The over-demand simulation specified of the same con-
sumers, with all other parameters held constant.

Using our simulated markets, we wish to investigate
three questions with respect to commodities markets and
auctions: Do the theoretical results from Smale’s work [19]
apply to plausible Grid simulations? Can we approxi-
mate Smale’s method with one which is practically imple-
mentable? Are auctions or commodities markets a better
choice for Grid computational economies?

If Smale’s results apply, they dictate that an equilibrium
price-point must exist (in a commodity market formula-
tion), and they provide a methodology for finding those
prices that make up the price-point. Assuming Smale’s
results apply, we also wish to explore methodologies that
achieve Smale’s results, but which are implementable in
real Grid settings. Lastly, recent work in Grid economies [1,
14, 18] and much previous work in computational eco-
nomic settings [10, 17, 5, 22] has centered on auctions as
the appropriate market formulation. We wish to determine
whether commodities markets are a better alternative to auc-
tions.

5

3.1. Market Conditions

Figure 1 shows the CPU and disk prices for Smale’s
method in our simulated Grid economy over time
units. The diurnal nature of consumer job submission is

0 2000 4000 6000 8000 10000

Time (s)

0

100

200

300

400

500

P
ri

ce

Figure 1. Smale’s prices for the under-
demand case. Solid line is CPU price, and
dotted line is disk price in $G

evident from the price fluctuations. Every 1440 “minutes”
each consumer generates between 1 and 100 new jobs caus-
ing demand and prices to spike. However, Smale’s method
is able to find an equilibrium price for both commodities
quickly, as is evidenced in Figure 2. Notice that the ex-

0 2000 4000 6000 8000 10000

Time (s)

0

1000

2000

3000

4000

5000

E
xc

es
s

D
em

an
d

Figure 2. Smale’s CPU excess demand for the
under-demand case. The units are CPU slots.

cess demand spikes in conjunction with the diurnal load,
but is quickly brought to zero by the pricing shown in Fig-
ure 1 where is hovers until the next cycle. Disk excess de-
mand is similar and is thus omitted for brevity. Again, mar-
ket equilibrium is quickly achieved despite the cyclic and
non-smooth aggregate supply and demand functions imple-
mented by the producers and consumers.

In Figure 3 we show the pricing determined by our engi-
neering approximation to Smale’s method — the First Bank
of G (see Section 2.3 for details). The First Bank of G pric-

0 2000 4000 6000 8000 10000

Time (s)

0

100

200

300

400

500

P
ri

ce

Figure 3. First Bank of G prices for the under-
demand case. Solid line is CPU price, and
dotted line is disk price in $G

ing closely approximates the theoretically achievable results
generated by Smale’s method in our simulated environment.
Figure 4 shows CPU excess demand measures generated by
First Bank of G pricing over the simulated period. While the
excess demands for both commodities are not as tightly con-
trolled as with Smale’s method, the First Bank of G keeps
prices very near equilibrium.

The pricing determined by auctions is quite different,
however, as depicted in Figure 5 (we show only CPU price
as disk price is almost identical). In the figure, we show
the average price paid by all consumers for CPU during
each auction round. We use the average price for all auc-
tions as being representative of the “global” market price.
Even though this price is smoothed as an average (some
consumers pay more and some pay less during each time
step), it shows considerably more variance than the com-
modity market set prices. The spikes in workload are not
reflected in the price, and the variance seems to increase (i.e.
the price becomes less stable) over time. Furthermore, disk
pricing (not shown) is virtually identical. Disk resources
are more plentiful in our simulations so disk prices should

6

0 2000 4000 6000 8000 10000

Time (s)

0

1000

2000

3000

4000

5000
E

xc
es

s
D

em
an

d

Figure 4. First Bank of G CPU excess demand
for the under-demand case. The units are
CPU slots.

be lower in a healthy economy. The auction fails to capture
this relationship, but the commodities market (both theoret-
ically and practically) correctly determines a higher price
for the scarce resource.

Excess demand for an auction is more difficult to mea-
sure since prices are negotiated between individual buyers
and sellers. As an approximation, we consider the sum of
unsatisfied bids and the number of auctions that did not
make a sale as a measure of market equilibrium. The ab-
solute value of this measure fulfills our notion of absolute
excess demand for an auction. In terms of absolute excess
demand, auctions never set prices which satisfy the market.
For space reasons our results cannot be presented here, but
they can be viewed in full elsewhere [24].

From these graphs we conclude that Smale’s method is
appropriate for modeling hypothetical Grid market and that
the First Bank of G is a reasonable (and implementable) ap-
proximation of this method. These results are somewhat
surprising given the discrete and sharply changing sup-
ply and demand functions used by our producers and con-
sumers. Smale’s proofs assume continuous functions and
readily available partial derivatives. We also note that auc-
tioneering, while attractive from an implementation stand-
point, does not produce stable pricing or market equilib-
rium. If Grid resource allocation decisions are based on
auctions, they will share this instability and lack of fairness.
Conversely, a commodities market formulation, at least in
simulation, performs better from the standpoint of the Grid
as a whole. These results agree with those reported in [22]
which indicate that auctions are locally advantageous, but
may exhibit volatile emergent behavior system wide.

For the over-demanded market case, we increased the

0 2000 4000 6000 8000 10000
Time (min)

0

100

200

300

400

500

P
ri

ce

Using Auctions

CPU

Figure 5. Auction prices for the under-
demand case, average CPU price only, in $G

number of consumers to 500 leaving all other parameters
fixed. The results were similar prompting us to omit their
bulk, although the full results are available [24]. For our
current purposes we will assert that as in the underdemand
case, Smale’s method provided price stability and tight con-
trol of excess demand, while the First Bank of G closely ap-
proximated Smale’s method. Auctions generated unstable
price series and provided poor control of excess demand.

3.2. Efficiency

While commodities markets using Smale’s method of
price determination appear to offer better theoretical and
simulated economic properties (equilibrium and price sta-
bility) than auctions do, we also wish to consider the effect
of the two pricing schemes on producer and consumer effi-
ciency. To do so, we report the average percentage of time
each resource is occupied as a utilization metric for suppli-
ers, and the average number of jobs/minute each consumer
was able to complete as a consumer metric. Table 2 sum-
marizes these values for both the over- and under-demand
cases. In terms of efficiency, Smale’s method is best and
the First Bank of G achieves almost the same results. Both
are significantly better than the auction in all metrics ex-
cept disk utilization in the over-demanded case. In general,
however, Smale’s method and the First Bank of G approx-
imation both outperform the auction in the simulated Grid
setting.

7

efficiency metric under- over-
demand demand

Smale consumer jobs/min 0.14 j/m 0.05 j/m
B of G consumer jobs/min 0.13 j/m 0.04 j/m
auction consumer jobs/min 0.07 j/m 0.03 j/m

Smale CPU utilization % 60.7% 98.2%
B of G CPU utilization % 60.4% 93.9%
auction CPU utilization % 35.2% 85.5%

Smale disk utilization % 54.7% 88.3%
B of G disk utilization % 54.3% 84.6%
auction disk utilization % 37.6% 85.1%

Table 2. Consumer and Producer efficiencies

4. Conclusions and Future Work

We investigate two market strategies for setting prices in
a computational economy: commodities markets and auc-
tions. Commodities markets are a natural choice given the
fundamental tenets of the Grid [13]. Auctions, however,
are simple to implement and widely studied. We are inter-
ested in which methodology is most appropriate for Grid
settings. To investigate this question, we examine the over-
all price stability, market equilibrium, producer efficiency,
and consumer efficiency achieved by three methods in sim-
ulation. Our results show that Smale’s results hold for our
simulated Grid environment, despite badly behaved excess
demand functions, and that the First Bank of G achieves re-
sults only slightly less desirable. In all cases, auctions are
an inferior choice.

References

[1] D. Abramson, J. Giddy, I. Foster, and L. Kotler. High Per-
formance Parametric Modeling with Nimrod/G: Killer Ap-
plication for the Global Grid ? In Proceedings of the Intl.
Parallel and Distributed Processing Symposium, May 2000.

[2] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. Schedul-
ing parallel applications in networks of mixed uniproces-
sor/multiprocessor workstations. In Proceedings of ISCA
11th Conference on Parallel and Distributed Computing,
September 1998.

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,
L. J. Dennis Gannon, K. Kennedy, C. Kesselman, D. Reed,
L. Torczon, , and R. Wolski. The grads project: Software
support for high-level grid application development. Techni-
cal Report Rice COMPTR00-355, Rice University, February
2000.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing 1996, 1996.

[5] J. Bredin, D. Kotz, and D. Rus. Market-based resource con-
trol for mobile agents. In Second Intl. Conf. on Autonomous
Agents, pages 197–204. ACM Press, May 1998.

[6] J. Bredin, D. Kotz, and D. Rus. Utility driven mobile-agent
scheduling. Technical Report PCS-TR98-331, Dartmouth
College, Computer Science, Hanover, NH, October 1998.

[7] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems. The Intl. J. of
Supercomputer Applications and High Performance Com-
puting, 1997.

[8] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the Grid. In Proceedings of SC00, November 2000.

[9] J. Q. Cheng and M. P. Wellman. The WALRAS algorithm:
A convergent distributed implementation of general equilib-
rium outcomes. Computational Economics, 12:1–24, 1998.

[10] B. Chun and D. E. Culler. Market-based propor-
tional resource sharing for clusters. Millenium Project
Research Report, http://www.cs.berkeley.edu/
˜bnc/papers/market.pdf, Sep 1999.

[11] G. Debreu. Theory of Value. Yale University Press, 1959.
[12] I. Foster and C. Kesselman. Globus: A metacomputing in-

frastructure toolkit. Intl. Journal of Supercomputer Applica-
tions, 1997.

[13] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
Inc., 1998.

[14] I. Foster, A. Roy, and L. Winkler. A quality of service archi-
tecture that combines resource reservation and application
adaptation. In Proceedings of TERENA Networking Confer-
ence, 2000. to appear.

[15] J. Gehrinf and A. Reinfeld. Mars - a framework for minimiz-
ing the job execution time in a metacomputing environment.
Proceedings of Future general Computer Systems, 1996.

[16] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver,
and P. F. Reynolds. Legion: The next logical step toward
a nationwide virtual computer. Technical Report CS-94-21,
University of Virginia, 1994.

[17] N. Nisan, S. London, O. Regev, and N. Camiel. Globally
distributed computation over the Internet — the POPCORN
project. In Intl. Conf. on Distributed Computing Systems,
1998.

[18] B. Rajkumar. economygrid home page http:
//www.computingportals.org/projects/
economyManager.xml.html.

[19] S. Smale. Dynamics in general equilibrium theory. Ameri-
can Economic Review, 66(2):284–294, May 1976.

[20] S. Smale. Convergent process of price adjustment and
global newton methods. Contributions to Economic Anal-
ysis, 105:191–205, 1977.

[21] T. Tannenbaum and M. Litzkow. The condor distributed pro-
cessing system. Dr. Dobbs Journal, February 1995.

[22] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational
economy. IEEE Trans. on Software Engineering, 18(2):103–
117, February 1992.

[23] L. Walras. Elements of pure economics; or, The theory of
social wealth. Allen and Unwin, 1954.

[24] R. Wolski, J. Plank, J. Brevik, and T. Bryan. G-commerce
– market formulations controlling resource allocation on the
computational grid. Technical Report UT-CS-00-450, Uni-
versity of Tennessee, October 2000.

8

