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Abstract

The challenge of efficiently retrieving files that are bro-
ken into segments and replicated across the wide-area is of
prime importance to wide-area, peer-to-peer, and Grid file
systems. Two differing algorithms addressing this challenge
have been proposed and evaluated. While both have been
successful in differing performance scenarios, there has
been no unifying work that can view both algorithms under
a single framework. In this paper, we define such a frame-
work, where download algorithms are defined in terms of
four dimensions: the number of simultaneous downloads,
the degree of work replication, the failover strategy, and the
server selection algorithm. We then explore the impact of
varying parameters along each of these dimensions.

1. Introduction

In wide-area, peer-to-peer and Grid file systems [6-9,11,
13, 16-18], the storage servers that hold data for users are
widely distributed. To tolerate failures and to take advan-
tage of proximity to a variety of clients, files on these sys-
tems are typically broken into blocks, which are then repli-
cated across the wide area. As such, clients are faced with
an extremely complex problem when they desire to access
a file. Specifically:

Given a file that is partitioned into blocks that
are replicated throughout a wide-area file sys-
tem, how can a client retrieve the file with the
best performance?

This problem was named the “Plank-Beck” problem by
Allen and Wolski [1], who denoted it as one of the two
representative data movement problems for computational
grids. In 2003, two major studies of this problem were pub-
lished [1, 12], and each presented a different algorithm:

e A greedy algorithm where a client simultaneously
downloads blocks of the file from random servers, and
uses the progress of the download to specify when a
block’s download should be retried. This is termed
Progress-Driven Redundancy [12].

e An algorithm where the client serially downloads
blocks from the closest location and uses adaptive
timeouts to determine when to retry a download. [1] In
this paper, we call this the Bandwidth-Prediction Strat-

egy.

In a wide-area experiment, Allen and Wolski showed
that the two algorithms performed similarly in their best
cases [1], but their performance could differ significantly.
Beyond that conclusion, neither their work, nor the work
in [12] lends much insight into why the algorithms perform
the way they do, how they relate to one another in a more
fundamental manner, and how one can draw general con-
clusions about them.

In this paper, we attempt to unify this work, providing a
framework under which both algorithms may be presented
and compared. We then explore the following four facets
of the framework and how their modification and inter-
operation impact performance.

1. The number of simultaneous downloads.

2. The degree of work replication.

3. The failover strategy.

4. The selection of server scheduling algorithm.

We conclude that the two most important dimensions
of downloading algorithms are the number of simultaneous
downloads, and the server selection algorithm. The others
do impact performance, but the extent of their impact de-
pends on the number of downloads and the server selection
algorithm.



2. Framework

In this section, a framework is built under which
Progress-Driven Redundancy and the Bandwidth-
Prediction Strategy can both reside.  The object of
this exercise is not to prove ultimately that one approach
is better than the other, but instead to observe the ways in
which the two algorithms are similar and different, and to
explore the successful aspects of each algorithm.

Given a file that is partitioned into blocks that are repli-
cated throughout a file system, the challenge of retrieving it
is composed of four basic dimensions:

e The number of simultaneous downloads: How many
blocks should be retrieved in parallel? The trade-off in
this decision is as follows: too few simultaneous down-
loads may result in the incoming bandwidth not match-
ing that of the client, and in the latency of downloads
having too great an impact; while too many simulta-
neous downloads may result in congestion, either in
the network or at the client. We quantify the number
of simultaneous downloads by the variable T', as si-
multaneous downloads are usually implemented with
multiple threads.

e The degree of work replication: Overall, what per-
centage of the work should be redundant? We assume
that blocks are retrieved in their entirety, or not at all.
Thus, when multiple retrievals of the same block are
begun, any data collected in addition to one complete
copy of the block from one source is discarded. In our
study, work replication is parameterized by the vari-
able R, which is the maximum number of simultane-
ous downloads allowed for any one block.

e The failover strategy: When do we decide that a
block must be retried? Aside from a socket error, time-
out expiration is the simplest way to determine that a
new attempt to retrieve a block must be initiated. How-
ever, if timeouts are the only means of detecting fail-
ure, then they must be accurate if failures are to be han-
dled efficiently. While adaptive timeouts perform as
well as optimally chosen static timeouts [2, 15], their
implementation is more complicated than the imple-
mentation of static timeouts.

An alternative to failure identification via timeouts
is the approach used in Progress-Driven Redundancy,
where the success of a given retrieval attempt is eval-
uated in comparison to the progress of the rest of the
file. When the download of a block is deemed to be
progressing too slowly, additional attempts are simul-
taneously made to retrieve the block. The first attempt
need not be terminated when new attempts begin, and
thus, all of the work of the first attempt is not lost if
it finishes shortly after the new attempts begin. We

quantify the notion of download progress with the pa-
rameter P, which specifies how much progress needs
to be made with the file after a block’s first download
begins before that block requires replication.

e The selection of server scheduling algorithm:
Which replica of a block should be retrieved? When
blocks of a file are distributed, especially over the wide
area, the servers where different copies of the same
block reside have different properties. Each server
possesses two traits by which it may be characterized,
speed and load. A server’s speed is approximately
bandwidth, or more specifically, the time the server
takes to deliver one MB. A server’s load is the hum-
ber of threads currently connected to the server from
our client application. We investigate seven server
scheduling algorithms, each of which is described in
section 3.3

3. Algorithms

Now that a framework is established for the compari-
son of wide-area download algorithms, the Progress-Driven
Redundancy and Bandwidth-Prediction Strategy algorithms
are presented in sections 3.1 and 3.2. Following that, sev-
eral server scheduling algorithms are outlined.

In order to understand the details of the following algo-
rithms, suppose the desired file is subdivided into blocks,
and the blocks are indexed by their offset in the file. Sup-
pose also that each of the file’s blocks is replicated C' times
such that no two copies of the same block reside in the same
place. The algorithms attempt to acquire blocks by the order
of their indices.

3.1. Progress-Driven Redundancy

As originally defined [12], with Progress-Driven Redun-
dancy, a progress number P and a redundancy number
R are selected at startup. Strictly speaking, R cannot be
greater than C'. The number of threads, which determines
the maximum number of simultaneous downloads, is also
chosen. Each block is given a download number initialized
to zero. The download number of a block is incremented
whenever a thread attempts to retrieve one of the block’s
copies. When a thread is ready to select a new block to
download, it first checks to see if a block exists that has a
download number less than R, such that more than P blocks
with higher offsets in the file have already been retrieved. If
such blocks exist, then the thread chooses the block with the
lowest offset that meets these requirements. If not, then the
thread selects the block with the lowest offset whose down-
load number is zero.

Since blocks near the end of the file can never meet the
progress requirement, once a thread finds that no blocks can



be selected according to download number, P, and R; it se-
lects the block with the lowest offset whose download num-
ber is less than R. We call this a “swarm finish”.

Relating back to the previously outlined framework, the
number of threads determines the number of simultaneous
downloads; the redundancy number determines the degree
of work replication; and the progress number determines
the failover strategy. When Progress-Driven Redundancy
was initially presented, it was assumed that the file was fully
replicated at every site, and threads were assigned to indi-
vidual servers [12]. This was augmented in [1] so that server
selection was performed randomly. In this work, we explore
a variety of server selection algorithms.

3.2. Bandwidth-Prediction Strategy

To proceed with the Bandwidth-Prediction Strategy, we
simply need a means to determine which server is the clos-
est, or the fastest. The original authors assume that the Net-
work Weather Service [20] is implemented at each site, and
employ that to determine server speed. Then, the blocks
are retrieved in order, one at a time, from the fastest server.
Timeouts, whose values are determined by the NWS, are
used as the failover strategy. Thus, relating back to the pre-
viously outlined framework, T' is one, R is one, failover is
determined by timeouts, and server selection is done with
an external bandwidth predictor.

3.3. Server Scheduling

The original work on Progress-Driven Redundancy did
not address server scheduling. The work of Allen and Wol-
ski employed the Network Weather Service for the Band-
width Prediction Algorithm, and random server selection
for Progress-Driven Redundancy. In this paper, we explore
a wider variety of server selection algorithms. We assume
either that there is a bandwidth monitoring entity such as
the Network Weather Service, or that the client has access
to previous performance from the various servers, and can
augment that with performance metrics gleaned from the
download itself. With this assumption, we outline seven
server selection algorithms:

1. The random strategy chooses a random server.

2. The forecast algorithm uses monitoring and forecast-
ing to select the server that should have the best per-
formance.

3. The lightest-load algorithm assigns a current load /
to each server. This is equal to the number of threads
currently downloading from the server, and is moni-
tored by the client. With lightest-load, the server with
smallest value of [ is selected. In the case of ties, server
speed is employed, and the fastest server is selected.

Table 1. Ranges of parameters explored

Dimension Range of Parameters

Simultaneous Downloads T € [1, 2,3, 5, 10, 15, 20, 25, 30]

Work Replication R €[1,2,3,4]
Failover Strategy P € 1,2,3,5,10,15, 20, 25, 30],
static timeouts

Server Selection The seven selection strategies

4. The strict-load algorithm enforces tcp-friendliness by
disallowing multiple simultaneous connections to the
same server. It works just like lightest-load, except it
always chooses servers where I = 0. If there are no
unloaded servers, then no servers are selected.

5. The remaining three algorithms use a combination of
load and speed to rank the servers. Specifically, they
select the server with smallest values of time x (a *
I + 1), where time is the predicted time to download
one block of the file when there is no contention. For
a = 0, we call this algorithm fastest.

6. fastest; minimizes time * (I + 1).

7. fastest; /, minimizes time * (/2 + 1).
4. Experiment

During May and June 2004, we conducted a series of
experiments in order to study the dynamics of the Progress-
Driven redundancy algorithm. The goal of the experiments
was to determine the impact of modifying parameters of the
four dimensions when downloading a 100 MB (megabyte)
file distributed on the wide area. Specifically, we tested all
combinations of the ranges of parameters detailed in Ta-
ble 1. Note that R cannot exceed 7', and that if R = 1, then
blocks are only retried upon socket failure (host unreach-
able or socket timeout). For speed determination and pre-
diction, we employed a static list of observed speeds from
each server. For the forecast algorithm, this list was used as
the starting point, and subsequent block download speeds
were fed into the Network Weather Service’s forecasting
software, to yield a prediction of the speed of the next down-
load.

IBP [13] servers were used to store the blocks of the
file. IBP is a software package that makes remote storage
available as a sharable network resource. IBP servers al-
low clients to allocate space on specific servers and then
manage the transfer of data to and from allocations. IBP
servers use TCP sockets and can operate on a wide vari-
ety of architectures. A list of publicly available IBP servers
and their current status can be found on the LoCl website:
http://l1oci .cs.utk.edu. The client machine used
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Table 2. Regions used in regional distribution

Num. Typically

Region Servers Up

Univ. of Alabama (UAB) 7 6-7
Univ. of California- SB (UCSB) 6 4-5
Wisconsin (WISC) 4 2-3
United Kingdom (UK) 7 3-4

for the experiments ran Linux RedHat version 9, had an In-
tel (R) Celeron (R) 2.2 GHz processor, and was located at
the University of Tennessee in Knoxville. The downloads
took place over the commodity Internet. The tests were ex-
ecuted in a random order so that trends due to local or un-
usual network activity were minimized, and each data point
presented is the average of ten runs.

We tested two separate network files. Both are 100 MB
files, broken into one MB blocks. Each block is replicated
at four different servers. The two files differ in the nature of
the replication. The first, which we call regional, has each
block replicated in four network regions. This is typical of
a piece of content that is being managed so that it is cached
in strategically chosen regions. The regions for this file are
detailed in Table 2. Note, there are multiple servers in each
region, and since these are live servers in the wide-area, they

have varying availability, also denoted in the table.

The second file is called hodgepodge, as its blocks
are stored at servers randomly distributed throughout the
globe. Specifically, fifty regionally distinct servers were
chosen, and the blocks of the file were striped across
all fifty servers. A list of the set of servers used for
the hodgepodge distribution along with a more precise
description of the distribution is available in the online
Appendix: http://www.cs.utk.edu/"rcollins/
papers/CS-04-527 Appendix.html. In both files,
no two copies of the same block resided in the same region,
and no blocks were stored at the University of Tennessee,
where the client was located.

5. Results

We present the results first as broad trends for each of the
four dimensions presented. We then explore more specific
questions concerning the interaction between the parame-
ters and some of the details of the downloads.

5.1. Broad Trends for Each Dimension

Figures 1 and 2 show the best performing downloads
when parameters for each dimension are fixed. For exam-
ple, in the leftmost graph of figure 1, T' ranges from one to
thirty, and for each value of T', the combination of P, R and
scheduling algorithm that yields the best average download
performance is plotted.

Two results are clear from the figures. First, the compo-
sition of the file affects both the performance of download-
ing and the optimal set of parameters. The regional file has
an optimal download speed of 82 Mbps (Megabits per sec-
ond), while the hodgepodge file achieves a lower optimal
speed of 66 Mbps. Second, the number of simultaneous
downloads has far more basic impact on the performance of
the algorithm than the choice of R and P. However, it is not
true that bigger values of T" necessarily translate into better
performance. In the regional file, the optimal performance
comes when T' = 10, while in the hodgepodge, it occurs
when T = 30. We surmise that the performance is best
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Figure 3. Best performance of each server scheduling algorithm plotted over threads

when the number of threads can utilize the capacity of the
network. Beyond that, contention and thread context-switch
overhead penalize the employment of more threads.

From figure 2, we conclude that the scheduling algo-
rithms that incorporate some kind of speed prediction are
the most successful. Observe the poor performance of the
random algorithm in both types of file distributions. The
strict-load algorithm also has low overall performance for
both distributions. While in some applications it may be
necessary to adhere to limitations on the number of connec-
tions made to the same server, such limitations clearly hin-
der performance for the following reasons: first, the client
cannot take advantage of multiple network paths from the
server, and second, in cases where a great disparity exists
between the performance of servers, too few downloads are
permitted from the faster servers.

The forecast algorithm performs relatively poorly as
well. A likely explanation of this behavior is that its fore-
casts are too coarse-grained for this application and as a
result, the algorithm cannot adapt quickly enough to the
changing environment. A finer grained forecaster may have
better performance, and it is possible that the coarse fore-
caster would perform better given a bigger file and thus
more history for each server as the download progresses.

While there does not appear to be an optimal scheduling
algorithm per se, the three fastest, algorithms as a whole
outperform the others.

5.2. Interaction of Server Selection and Threads

Figure 3 gives a more in-depth picture of the interac-
tion of the scheduling algorithms and the number of threads.
The best performance of each algorithm given the number
of threads is plotted. The overall trends in figure 2 still
hold in most cases. However, in the regional distribution,
the forecast algorithm experiences a marked degradation
as the number of threads increase. As noted before, the
forecast algorithm appears to adapt too sluggishly to the
changing environment. As the number of threads increases,
the degree to which each server’s performance varies also

increases, due to the fact that a wider range of concurrent
connections can be made to each server.

5.3. Where do the blocks come from?

Figures 4 and 5 display a breakdown of where blocks
came from in some of the the best performing instances of
the fastesty, fastest; and strict-load algorithms. The in-
stances of the regional distribution are broken down over
the regions, while the instances of the hodgepodge distri-
bution are broken down over ranges of average download
speeds. From earlier figures, the strict-load algorithm per-
forms poorly in comparison to the other algorithms. In both
the regional and the hodgepodge distributions, the strict-
load algorithm is forced to retrieve larger percentages of
its blocks from slower servers. The reader may notice that
the average download speed from the UAB region is faster
for the strict-load algorithm than it is for the fastest, and
fastest; algorithms. This is because the strict-load algo-
rithm avoids congestion of TCP streams. However, the fact
that the performance of the other algorithms is faster shows
the availability of more network capacity from these sites
than can be exploited by a single TCP stream.

This behavior is also apparent in figure 5 where the
blocks are split up according to download speed. Notice
that the fastestq algorithm has a larger percentage of blocks
in the 2.0 — 2.9 Mbps range and a smaller percentage of
blocks in the 4.0 — 4.9 Mbps range than the fastest; al-
gorithm even though the fastesty algorithm always chooses
the faster server regardless of that server’s load.

5.4. The Interaction of P and R

The interaction of progress with redundancy is shown
in figures 6 and 7. While better performance does tend to
lean slightly to higher progress numbers in some cases, for
the most part, as long as R > 2, the performance does not
change significantly with progress. In both distributions,
the performance when R = 1 is very close to the perfor-
mance when R = 2,3 or 4, when the fastesty and fastest;
algorithms are used. However, in the strict-load algorithm,
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where optimal choices are not always permitted, the ability
to add redundant work to a block proves to be advantageous.

5.5. When is Aggressive Failover useful?

Given that it is sometimes advantageous to make retries,
how often is a failover necessary? Figures 8 and 9 show
the number of failovers versus the progress number when
R = 2 and there are 10 threads over the regional distribu-
tion and 30 threads over the hodgepodge distribution. The
total number of failovers is shown along with the total num-
ber of useful failovers, that is, the number of times a retry
was attempted and number of times the retry completed be-
fore the original attempt. Clearly, small progress numbers
lead to excessive numbers of failovers, while larger progress
numbers result in a higher percentage of useful failovers. It
is also clear that a higher percentage of retries are useful
to the strict-load algorithm, which is constrained to choose
slow servers at times because of the restriction of permitting
only single TCP streams.

6. Conclusion

Given a file that is distributed across a system, how can
we best leverage the properties of the system to retrieve
the file as quickly as possible? With regard for the two

previously proposed approaches to this problem, Progress-
Driven Redundancy and Bandwidth-Prediction, we have ex-
plored the impact and interrelationships of the following
download parameters: the number of simultaneous down-
loads, the degree of redundancy, the failover strategy, and
the server selection algorithm.

As an obvious result, we found that performance tends
to improve as the number of simultaneous downloads in-
creases to a point, and that the distribution of the file across
the system impacts the way the download parameters per-
form and interact.

With respect to the Bandwidth-Prediction approach,
some form of bandwidth prediction greatly improves per-
formance, and with respect to Progress-Driven Redundancy,
some form of redundancy is very useful when poorly-
performing servers are selected for downloads. Concerning
performance prediction, in our tests, exploiting knowledge
from the client (concerning the load from each server) is
more beneficial to performance than having an external pre-
diction engine try to react to the observed conditions. How-
ever, as stated above, this may be an artifact of the monitor-
ing granularity, and more fine-grained monitoring may lead
to better performance of predictive algorithms.

We anticipate that the results of this work will be im-
plemented in the Logistical Runtime System [4], which al-
ready implements a variant of Progress-Driven Redundancy



- - i
601 60+ 60
[%] [%2] [%2]
oy & 5y
s 40 - Redundancy 1 S 40+ -~ Redundancy 1 s O - Redundancy 1
-#- Redundancy 2 -a Redundancy 2 - Redundancy 2
20+ —-0-Redundancy 3 20+ -~ Redundancy 3 20 -0-Redundancy 3
Redundancy 4 Redundancy 4 Redundancy 4
O e O e O v e
0 10 20 30 0 10 20 30 0 10 20 30
Progress Progress Progress
Fastest-0 Fastest-1 Strict-Load

Figure 6. Relationship of progress and redundancy with 10 threads over the regional distribution

804 80 gl Redundancy 1
—a— Redundancy 2
-0~ Redundancy 3
601 Redundancy 4
2 8
o o]
s Redundancy 1 s Redundancy 1
-=- Redundancy 2 —a- Redundancy 2
20 -~ Redundancy 3 204 -0~ Redundancy 3 204
Redundancy 4 Redundancy4 T
% 10 20 30 % 10 20 30 % 10 20 30
Progress Progress Progress
Fastest-0 Fastest-1 Strict-Load

Figure 7. Relationship of progress and redundancy with 30 threads over the hodgepodge distribution

as the major downloading algorithm for its file system built
upon faulty and time-limited storage servers, and has seen
extensive use as a Video delivery service [3] and medical
visualization back-end [10].

This work does have limitations. First, we did not em-
ploy an external monitoring agent such as the Network
Weather Service. This is because we did not have access to
such as service on the bulk of the machines in our testbed.
With the availability of such a service, we anticipate an im-
provement in the fastest,, algorithms; however, we also an-
ticipate that these algorithms should still incorporate knowl-
edge of server load.

Second, we did not test the performance from multiple
clients. However, we anticipate that the results from the one
client are indicative of performance from generic clients,
when the clients are not co-located with the data.

Third, we did not assess the impact of timeout-based
strategies, which have been shown to be important in some
situations [1, 15]. Instead, we have focused on algorithm
progress and socket timeout as the failover mechanism. We
intend to explore the impact of timeouts as a complemen-
tary failover mechanism in the future.

Finally, erasure codes have arisen as a viable alternative
to replication for both caching and fault-tolerance in wide-
area file systems [5, 14,19, 21]. In future work, we intend
to see how these downloading algorithms apply to file sys-

tems based on erasure codes, what additional considerations
apply, and what the performance impact is.
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