
IBP-Mail: Controlled Delivery of Large Mail Files

Wael R. Elwasif James S. Plank Micah Beck Rich Wolski

Department of Computer Science
University of Tennessee
Knoxville, TN 37996

[elwasif,plank,mbeck,rich]@cs.utk.edu

Appearing in:
NetStore ’99: Network Storage Symposium

Seattle, WA, October, 1999
http://dsi.internet2.edu/netstore99

http://www.cs.utk.edu/˜plank/plank/papers/NS99-IBPM.html

Abstract

IBP-Mail is an improvement to the current state of the art
in mailing large files over the Internet. It arises from the
addition of writable storage to the pool of available Inter-
net resources. With IBP-Mail, a sender registers a large
file with an IBP-Mail agent, and stores it into a network
storage depot. The sender then mails a pointer to the file
to the recipient using the standard SMTP mailing protocol.
When the receiver reads the mail message, he or she con-
tacts the agent to discover the file’s whereabouts, and then
downloads the file. In the meantime, the agent can route
the file to a storage depot close to the receiver.

IBP-Mail allows for an efficient transfer of the file from
sender to receiver that makes use of the asynchronous na-
ture of mail transactions, does not expend extra spooling
resources of the sender or receiver, and utilizes network re-
sources efficiently and safely. In this paper, we detail the
current limitations of mail systems, describe the software
architecture of IBP-Mail and its current implementation,
and give a performance case study.

Currently, IBP-Mail uses network storage servers that
are part of the Internet2 Distributed Storage Infrastructure
project. It is based on the Internet Backplane Protocol
(IBP) that has been developed at the University of Ten-
nessee for the explicit purpose of utilizing network storage
to improve application performance and functionality.

1 Introduction

Electronic mail is the de facto mechanism for communi-
cation on the Internet. In an electronic mail transaction,
a sender desires to transmit a message to one or more re-
cipients. Typically, this is done using the SMTP mailing
protocol [13]. The sender sends his or her message to a
local SMTP daemon which saves the message in its spool-
ing area to a local file. Meanwhile, the SMTP daemon
opens an end-to-end connection with the receiver’s STMP
daemon, and sends the message in its entirety to this dae-
mon. When the message has been received by all recipi-
ent SMTP daemons, the sender daemon deletes it from its
spooling area. The receiver stores the message in its spool-
ing area, where it remains until the recipient asks for it us-
ing a mail client program. The recipient explicitly deletes
the message from its SMTP daemon’s spooling area when
it is done with the message.

Electronic mail works extremely well for most mail-
ing usages. However, the model has limitations when the
sender desires to transmit large data files to one or more
receivers. Given the current network infrastructure, there
are four basic ways that a sender can employ to transmit a
large data file to one or more recipients:

1. Send the file as an encoded mail message

One of the earliest email tools is Unix’s uuencode.
Uuencode transforms any binary data file into an ASCII



message that can be sent and received by virtually all mail
clients. Uudecode then transforms the message back
into a binary data file. Later in time, the MIME proto-
col [4,8,14] was developed as a standard format for attach-
ing non-textual files to mail messages and identifying their
types so that mail clients can bundle multiple data files into
an email message, send them to recipients, and then have
the recipients unbundle them and launch file-specific appli-
cations to act on them.

While the MIME standard has certainly made the task
of sending and receiving files much easier than using
uuencode/uudecode, they share the same fundamen-
tal limitations when the files are very large. First, in order
to work across all SMTP daemons, the files must be en-
coded into printable ASCII, which expands them roughly
by a factor of 1.4. Second, spooler space at both the sender
and the receiver must be expended for the file. Typically,
spooler space is allocated by an institution’s system admin-
istrator and is shared by all users of the system. Often,
there is a limit on the amount of data that may be stored in
the spooler space, meaning that files over a certain size can-
not be sent with MIME or uuencode encoding. More-
over, if a sender sends to multiple recipients, a separate
copy of the mail message will be stored for each recipient,
even if recipients share the same spooling space. There-
fore, for large files, the uuencode/MIME mechanism for
sending the file is often untenable.

2. Store the file locally and mail a pointer

A typical example has the sender storing the file in a lo-
cal HTTP [7] or anonymous FTP [12] server, and mailing
the receiver a pointer to it. When the receiver reads the
mail, he or she downloads the file. This solution solves the
problem of expending spooler resources at the sender and
receiver, but still has limitations. First, the sender may not
have access to an HTTP or FTP server that contains suf-
ficient storage. Second, a significant period of time may
pass between the time that the sender sends the message
and the time that the receiver downloads the file. When
the file is served at a local HTTP or FTP server, this time
is wasted, because the receiver will not start the download
until he or she reads the message. Third, there is no auto-
matic mechanism to inform the sender that the file has been
downloaded, and may therefore be deleted from the server.
And fourth, since HTTP and anonymous FTP downloads
may be initiated by anyone on the Internet and both proto-
cols have directory listing operations, the file may be dis-
covered and read by unintended recipients.

3. Upload the file remotely and mail a pointer

A typical example of this is when the receiver owns an
anonymous FTP server with an incoming directory in
which anonymous users may upload files. The sender then
uploads the file and mails the receiver a pointer to it. The
receiver may then download the file upon reading the mail,
and delete it when the download is finished. This solution
solves many of the problems with the previous two solu-
tions, but has three limitations. First, the sender has to wait
for the file to be stored remotely before he or she may mail
the pointer. Second, the receiver, in allowing anonymous
users to write to his or her FTP server, opens the server to
invasion by malicious users. Finally, the receiver may not
have access to such a server.

4. Save the file to tape and use surface mail

While this solution seems truly primitive, it is sometimes
the only way to transmit very large files from a sender to a
receiver.

The IBP-Mail Solution

The IBP-Mail solution to this problem relies on the exis-
tance of writable storage depots in the network. Given such
depots, the sending of large data files can be performed
with near optimal efficiency. With IBP-Mail, the storage
depots are registered with IBP-Mail agents. The sender
registers with one of these agents and stores the file at a
nearby depot. The sender then mails a message with the
file’s ID, as assigned by the agent. Meanwhile, the agent
attempts to move the file to a depot close to the receiver.
When the receiver reads the message, he or she contacts
the agent to discover the whereabouts of the file, and down-
loads it from the appropriate depot. The file may then be
deleted from the depot.

The IBP-Mail solution exhibits none of the problems of
the above solutions:

The file is not expanded due to mailer limitations.

No extra storage resources are required at the sender
or receiver.

If enough time has passed between the message’s ini-
tiation and the receiver’s reading of the message, the
file should be close to the receiver for quick down-
loading.

The sender does not have to wait for the file to reach
the receiver before sending the message.

Storage resources are not opened to malicious users.



Multiple recipients may downlaod shared copies of
the file.

Additionally, the IBP-Mail model may be extended to al-
low other interesting functionalities such as compression,
data mining, fragmentation of very large data files, and
uses of remote compute cycles.

The remainder of this paper is outlined as follows. First
we discuss the Internet2 Distributed Storage Infrastructure
(I2-DSI) and Internet Backplane Protocol (IBP) projects
and how they address the assumption of the existance of
storage depots in the network. Next, we detail the exact
software architecture of IBP-Mail and its current imple-
mentation. Finally, we present a performance example and
discuss related work.

IBP-Mail exists as an application available to anyone on
the Internet with a web browser with no code porting nec-
essary. Although there is an optimized mail sending pro-
gram for Unix systems, files may be sent using IBP-Mail
by pointing any web browser to http://www.cs.utk.-

edu/˜elwasif/cgi-bin/ibp-mail.cgi. The mail
message which is sent to the receiver contains a web
pointer that allows the receiver to download the file using
any web browser. If the receiver uses a web-enabled mail
client (such as Netscape mail), this is all achieved with one
click of the mouse. Therefore IBP-Mail requires no special
infrastructure for general-purpose use. It currently uses the
I2-DSI deployment machines as storage depots.

2 I2-DSI and IBP

A central assumption of IBP-Mail is that storage exists in
the network. Given the legacy Internet infrastructure, this
is not a valid assumption. However, the infrastructure of
the Internet is changing. The Internet2 Distributed Stor-
age Infrastructure (I2-DSI) [1] project is paving the way
for storage resources to be added to the network commons.
Currently, I2-DSI has received donations of five machines
from IBM that each contain 2 gigabytes of RAM, 72 gi-
gabytes of disk storage and 900 gigabytes of tape stor-
age. These are distributed around the country (Indiana,
North Carolina, South Dakota, Tennessee and Texas), serv-
ing storage to I2-DSI applications. IBP-Mail is one such
application. The logistical backbone (L-Bone) project at
Tennessee [11] is a deployment project whose goal is to
provide storage to Internet applications such as IBP-Mail.
The L-Bone has been designed to encourage machine own-
ers to donate their spare storage resources. If successful,
the L-Bone should easily satisfy the assumption of storage
availability in the network.

The Internet Backplane Protocol (IBP) is a related
project from the University of Tennessee [11]. IBP is soft-

ware that allows applications to manage and make use of
remote storage resources. It is structured as server dae-
mons that run at the storage sites, serving up dedicated
disk, spare disk, and physical memory to IBP clients. IBP
clients can run anywhere on the Internet and do not have to
be authenticated with the IBP servers. Thus, when an IBP
server is running, anyone may use it.

There are several features of IBP’s design that make of-
fering storage as a network resource feasible:

There are no user-defined names. IBP clients al-
locate storage, and if the allocation is successful,
then it returns three capabilities to the client — one
each for reading, writing, and management. These
capabilities are text strings, and may be viewed as
server-defined names for the storage. The elimina-
tion of user-defined names facilitates scalability, since
no global namespace needs to be maintained. Ad-
ditionally, there is no way to query an IBP server
for these capabilities, so unlike an anonymous FTP
server, there is no way for a user to gain access to a
file unless he or she knows its name a priori.

Storage may be constrained to be volatile or time-
limited. An important issue when serving storage to
Internet applications is being able to reclaim the stor-
age. IBP servers may be configured so that the storage
allocated to IBP clients is volatile, meaning it can go
away at any time, or time-limited, meaning that it goes
away after a specified time period.

Clients can direct remote data operations. One of
IBP’s primitive operations is the ability to copy a file
from one IBP server to another. This is ideal for ap-
plications that need to route data from one place to
another, and direct this routing from a third party.

Reference counts are maintined on the files: One
operation that IBP clients may perform with manage-
ment capabilities is an explicit increment and decre-
ment of reference counts for reading and writing.
When the write reference count is zero, the file be-
comes read-only. When the read reference count be-
comes zero, the file is deleted.

3 The Structure of IBP-Mail

IBP-Mail has been designed with three goals in mind.
First, it must work, and be available to general Internet
users with a minimum of effort. Second, it must solve the
problems with mailing large data files as detailed in the In-
troduction. Third, it must facilitate testing. In this section,
we detail the structure of IBP-Mail that allows it to meet
these three goals.



Figure 1: An IBP-Mail Transaction

IBP-Mail consists of three components, as depicted in
Figure 1. These are:

A pool of IBP servers. Only one server is necessary
in the pool for IBP-Mail to work. Ideally the pool will
consist of a collection of servers with wide geographic
distribution.

IBP-RQ: A registration/query server. This is a
server that maintains the state of the IBP server pool.
Servers register with the IBP-RQ server, and clients
may query the IBP-RQ server for information about
servers. More information about the IBP-RQ server
is given below.

IBP-NT: An agent for naming and transport. The
IBP-NT keeps track of where the data file is in the IBP
server pool, and directs the movement of the file from
server to server. More information about the IBP-NT
is given below.

An IBP-Mail transaction takes the following nine steps,
also outlined in Figure 1:

1. The sender contacts an IBP-NT agent. In the current
implementation, there is only one such agent, but mul-
tiple agents are possible. The size of the file is com-
municated to the agent.

2. The IBP-NT agent queries the IBP-RQ server to list
appropriate IBP servers from the server pool that can
store the file.

3. The IBP-NT agent allocates storage for the file on an
IBP server, and receives the capabilities for the stor-
age.

4. The IBP-NT agent creates a name for the transaction
and returns that name, plus the write capability of the
file, to the sender.

5. The sender stores the file into the IBP server.

6. The sender sends mail to the receiver with the name
of the transaction. At the same time, the sender in-
forms the agent that the file has been written to the
IBP server.



7. The receiver presents the name to the IBP-NT agent.

8. The IBP-NT agent returns the read and manage capa-
bilities of the file to the receiver.

9. The receiver downloads the file from the IBP server,
and may delete it if desired, by decrementing the file’s
read reference count. Note that if a file is shared by
multiple recipients, the agent may increment its refer-
ence count to equal the number of recipients, and then
the file will be deleted only after each recipient has
decremented the reference count (or when the time
limit expires).

There are two steps in Figure 1 labeled with an asterisk.
These may be performed by the IBP-NT agent after the
sender stores the file, if the agent determines that it may
be able to move the file close to the receiver. If enough
time passes between steps 6 and 7 (due to the receiver not
reading his or her email instantly), then this time may be
used by the agent to move the file close to the receiver(s),
thereby improving the time for downloading. If a receiver
tries to download the file before it has been copied, it may
do so from the original IBP server, with reduced perfor-
mance.

The current implementation of each individual compo-
nent is described below.

3.1 The IBP-RQ Server

The IBP-RQ server provides basic directory registration
and query services to the IBP-NT agent. The directory part
of the server is a two-level structure, with groups contain-
ing hosts (IBP servers). A host can belong to more than
one group at the same time.

While the directory structure can be implemented using
existing technologies (e.g. LDAP [20]), what sets the IBP-
RQ server apart is the query component. Queries in IBP-
RQ provide a ranking of IBP servers according to selec-
tion criteria embedded into IBP-RQ. Currently, two rank-
ings are implemented: free storage available, and proxim-
ity to a given host. The former is easy to implement given
IBP semantics. The latter is more difficult. Currently, each
IBP server runs a SonarDNS daemon [18], and the IBP-
RQ can force all its servers to perform Sonar performance
queries to the given host. While this implementation is not
a long-term solution (for example, it is not scalable to a
large number of IBP servers), it suffices for our current im-
plementation. Similarly, IBP server failures are currently
not detected, and the IBP-RQ is not a distributed service,
problems which will have to be solved as IBP-Mail scales.

3.2 The IBP-NT Agent

The IBP-NT agent provides naming and transport to IBP-
Mail clients. Currently there is only one, but there could
potentially be many IBP-NT agents working indepen-
dently. A client starts a mail transaction by contacting an
IBP-NT agent and providing initial information about the
transaction: sender location and file size. The agent then
queries the IBP-RQ server to find an IBP server in which
the sender should insert the file. Currently, this query at-
tempts to find a server with enough storage that is closest
to the sender (using Sonar DNS’s metrics for closeness). In
the future, this may be improved to take account of server
load or reliability as well. The agent allocates the storage,
and then stores the capabilities for that storage into a sec-
ond IBP file located at a server on or near the agent’s host.
We will call this the name file. The read capability of name
file is returned to the sender, along with the write capabil-
ity of the first IBP file. The sender stores the data into the
first IBP file, and then sends mail to the receiver with the
capability name file. This capability serves as a name for
the mail transaction.

At the same time, the sender informs the agent that the
IBP file is has been stored, and gives the location(s) of the
receiver(s). Meanwhile, the agent is free to transport the
data file to a server near the receiver (or receivers). This
may be done with a simple third-party IBP copy() call.
When finished, the agent updates the information in the
IBP name file and deletes the initial data file. When the re-
ceiver presents the agent with the name, the agent returns
the read and manage capabilities of the data file, and the
receiver downloads it and decrements the read capability if
desired.

The decision to use IBP for the name file was for flex-
ibility. With this structure, it is possible to have multiple
agents manage the transport, to have agents restart upon
failure without losing information, and even to have the re-
ceiver find the location of the file without contacting the
agent.

The allocation of the data files and the name files are
performed using IBP’s time-limited allocation policy. Cur-
rently, the time limit default is 10 days, and this may be ad-
justed by the sender. As discussed above, the time-limited
allocation is necessary for storage owners to be able to
reclaim their storage resources from the network. It also
solves the lost pointer problem in the case of agent failure
or lost email. Additionally, it frees the sender and receiver
from having to explicitly delete the file. One ramification
of this is that there is a new failure mode for mail – time-
limit expiration on the data file. There are several ways to
address this mode – send warning mail or error reporting
mail back to the sender, send warning mail to the receiver,
allow the sender to extend the time limit, or simply delete



the file.

3.3 The Current Mail Interface

There are currently two sender interfaces to IBP-Mail.
The first is a command-line Unix program that works like
mpack1. for sending MIME mail attachments. It may be
obtained on the web at http://www.cs.utk.edu/˜el-
wasif/ibp-mail. The second interface is web-based.
Senders may use this interface by pointing their web-
browsers to the URL http://www.cs.utk.edu/˜el-

wasif/cgi-bin/ibp-mail.cgi. This is a CGI enabled
web page that allows the sender to specify a file name, plus
a message, and have the message/file sent to a set of recip-
ients using IBP-Mail. File uploading in HTTP requires the
file to go to the server of the web page; therefore the web
interface requires that all attachments be uploaded to Ten-
nessee’s web server and the web server then acts as a proxy
sender of the message. This makes this interface less effi-
cient than the command-line version, since all files must go
through the server at Tennessee. We are working to have
the web server redirect the sender to a closer web server
in a manner analogous to the receiving protocol described
below. We will also write a Windows 95/98/NT sending
program in the near future.

The message that the receiver gets has a MIME-encoded
URL that points to the IBP-NT agent and contains the ca-
pabilities of the name file. The IBP-NT agent must be run-
ning on a host that contains a web server, so that it can
resolve this URL. When the receiver clicks on the URL,
the IBP-NT agent is contacted through a CGI script on its
web server, and it returns a web page with an HTTP redi-
rection link. This link contains a URL for the IBP server
that holds the data file. The receiver’s web browser, upon
receiving the redirection, automatically attempts to get this
new URL. We have written a small HTTP gateway daemon
that can run on IBP hosts so that these redirection requests
may be served directly by IBP. In this way, the receiver’s
browser downloads the data file directly from IBP without
any knowledge of IBP.

An alternative to this interface would be to provide a
standalone application that retrieves IBP-Mail files, which
could be launched as a special MIME type by MIME-
enabled mailers. Or we could modify a mailer such as Pine
or MH to recognize IBP-Mail attachments and download
the files accordingly. We chose the web-based alternative
so that users can receive IBP-Mail files without needing to
install any code; indeed, they do not even have to under-
stand what IBP-Mail is.

1Mpack may be obtained at ftp://ftp.andrew.cmu.edu/
pub/mpack/

4 A Performance Example

As a simple motivating example, suppose a user in the Ten-
nessee computer science department would like to mail her
colleague at Princeton a 9 MB data file. Below we detail
the results of attempting various ways of mailing the file.
These results were obtained during a single working day.
All numbers are the average of at least three tests.

#1: Mailing the file

Attempts to mail the file, using either MIME or
uuencode fail because Princeton’s mail daemon, like
most, restricts the size of incoming mail. In Princeton’s
case messages over 6,000,000 bytes are rejected, meaning
that this file, which becomes 12.2 MB as a MIME attach-
ment and 12.4 MB with uuencode cannot be mailed. The
file can be split into three parts and mailed, but this defeats
the purpose of limiting the size of incoming mail.

#2: Using FTP

Here the user uploads her file to Tennessee’s anonymous
FTP server, cs.utk.edu, which is a relatively low-end
SPARCstation-2 running SunOS 4.1.4. The upload takes 2
minutes and 36 seconds using Sun NFS. The user at Prince-
ton, running on a DEC Alpha, can download the file using
anonymous FTP in three minutes.

#3: Using HTTP

In this case, the user sets a soft link to the file in her World
Wide Web home directory. This takes no time. Tennessee’s
main HTTP server is a much higher end machine than its
anonymous FTP server: a SPARCserver-1000 running So-
laris 5.5.1. The user at Princeton can download the file
using any web browser (lynx was used for the timing) in
29 seconds.

#4: Uploading the file

Uploading the file is not feasible, because the user at Ten-
nessee does not have access to any writable FTP server at
Princeton.

#5: IBP-Mail

To test the performance of IBP-Mail, we set up two IBP
servers: one the I2-DSI machine located at Tennessee, and
another DEC Alpha at Princeton. Storing the file to I2-DSI
machine takes one second. Performing a remote copy from
the I2-DSI IBP server to the Princeton IBP server takes 46
seconds. Retrieving the file at Princeton takes 10 seconds



from the IBP server at Princeton, and 57 seconds from the
I2-DSI machine.

Comparison

A comparison of the solutions to mailing the file is tab-
ulated in Table 1. The times are given in min:sec. In
terms of time spent by the sender, uploading the file to
the HTTP server and using IBP-Mail are rougly equal. In
terms of time spent by the receiver, if the receiver reads the
mail as soon as it is sent and tries to retrieve the file, the
HTTP transaction is quicker than downloading from the
I2-DSI machine. However, if the receiver does not read the
mail until the file has been moved to Princeton (roughly a
minute after it has been sent), then it takes only 10 seconds
to download. Thus, in the typical case, where the receiver
does not read mail instantly, IBP-Mail outperforms upload-
ing the mail to the HTTP server. Additionally, in this typ-
ical case, there will be less variability in the performance
of the download, since the file is on a local network with
IBP-Mail, instead of on a remote HTTP server.

FTP HTTP IBP-Mail
Time to send 2:36 0:00 0:01
Time to retrieve instantly 3:00 0:27 0:57
Time to retrieve later 3:00 0:27 0:10
Manual deletion required Yes Yes No
Data protected No No Yes

Table 1: Comparison of mailing solutions

The last two lines of Table 1 pertain to ease-of-use and
security. With FTP and HTTP, the sender must manually
delete the file when she is certain that the receiver has re-
trieved it. With IBP-Mail, the file is automatically deleted
either by the receiver or by the time-limit on the file. The
“data protected” line concerns who can actually read the
file. With anonymous FTP, anyone who can connect to the
server may discover and read the file. With HTTP, any-
one can read the file, but discovery may be more difficult if
the sender arranges that outside users cannot list the direc-
tory containing the file. However, since the directory must
be world-readable for the web server to serve it, all users
at Tennessee are able to find and read the file. With IBP-
Mail, anyone can read the file, but only if they have access
to the read capability. Since there are no directory seman-
tics exported by IBP, the likelihood of someone discover-
ing the read capability is extremely small. Only the owner
of the IBP server process has access to the file. Currently,
the IBP servers do not encode their data cryptographically.
Eventually, this will be an allocation option for IBP so that
security and performance may be traded off.

Therefore, in this example, IBP-Mail is an attractive so-
lution to mailing large data files in terms of performance,
ease-of-use and security. Of course, this is just one sce-
nario of many. However, it does demonstrate the plausibil-
ity of the idea in a real-world setting.

5 Experimentation and Extensions

IBP-Mail is the first application to use IBP and the L-
Bone. We are planning to perform further experimentation
with IBP-Mail to learn more about how storage can affect
networking performance in applications such as IBP-Mail
that are asynchronous in nature. First, we plan to experi-
ment with server selection policies. Given the structure of
IBP-Mail, server selection can be static, based on perma-
nent network proximity metrics, user hints, or dynamically
measured and/or predicted network performance metrics.
We intend to test all of these policies to determine the pay-
off for adding better performance monitoring and predic-
tion mechanisms into IBP-Mail. We plan to use the Net-
work Weather Service [19] as the base mechanism for per-
formance and prediction.

For extremely large mail files, it may not be possible to
store the file on any one IBP server. One simple extension
of IBP-Mail would be to break the file into fragments and
store them at different IBP servers, perhaps with one or
more encoded fragments that would allow the system to
lose one or more of the mail fragments without losing the
entire file [10].

While IBP-Mail makes use of storage in the network, it
can also benefit from computational elements in the net-
work. For example, compressing mail messages before
sending them between IBP servers may improve perfor-
mance. Additionally, instead of delivering an entire data
file to a receiver, it may be advantageous to mine it in-
stead. For example, a condensed snapshot of a large image
or a low resolution version of a video file may be suffice
for some content-exchange scenarios. We will experiment
with providing such functionalities within the context of
IBP in the future.

A situation where a structure like IBP-Mail should
prove useful is in remote computation environments. For
example, NetSolve is a brokered RPC system that allows
simple clients (such as Matlab or Mathematica) to out-
source large computations to more suitable computational
elements [5]. Some applications make use of NetSolve to
perform multiple similar computations in parallel, coalesc-
ing the results as they complete. Currently, the collection
of results is synchronous and performed by the client pro-
gram. An approach similar to IBP-Mail can be used to get
results from the computational servers back to the client in
an asynchronous manner, or to coalesce results in similar



remote locations remotely by storing them in IBP servers
near the remote comptuation servers. In collaboration with
Dongarra (Tennessee), Berman and Casanova (University
of San Diego), we are exploring the integration of IBP, Net-
Solve and Application Level Scheduling (AppLeS) [2] to
improve performance, functionality and resource utiliza-
tion in brokered RPC systems.

6 Related Work

Mail systems have been around for decades; however most
mail systems work within the structure of SMTP mail. The
Grapevine project [3, 17] developed at Xerox PARC in the
early 1980’s was a distributed mail handling system that
provided functionality beyond simple point-to-point deliv-
ery of email messages. Grapevine, however, required a
substantial administrative overhead as it handled many fea-
tures outside mail transport (e.g. user registration and au-
thentication). It was assumed that servers participating in
a Grapevine system were under control of a single admin-
istrative entity (or several closely cooperating entities). It
is extremely difficult in today’s Internet to satisfy this re-
quirement. IBP-Mail assumes no administrative interven-
tion beyond setting up the various servers that are part of
the system, and requires no special priviliges for its setup
and/or operation.

A more recent project is Porcupine from the University
of Washington [15,16]. Porcupine uses clusters of comput-
ers to handle mail traffic that can be as much as a billion
messages a day. As such, Porcupine is appropriate for or-
ganizations that have huge amounts of incoming mail. Like
Grapevine, Porcupine works within a single administrative
domain, and does not address mail between arbitrary and
perhaps unrelated entities on the Internet.

The External-Body subtype [9] of the MIME protocol
may be used to affect the delivery of an email attachment
through a receiver-initiated action. Through the use of this
subtype, the sender specifies an access protocol that is rec-
ognized by the receiver and the proper protocol handlers
are used to access the actual body of the message. The
use of this technique requires the sender to pre-stage the
message body at a storage site accessible through an ac-
cess protocol (e.g. FTP or HTTP). While this technique
works well for objects that are already accessible through
the protocol in question, it requires additional administra-
tive overhead for those objects that are intended to be ex-
changed only between the sender and the receiver. This
overhead stems from the need to limit access to the object
to the receiver(s), the need to detect when the object has
been retrieved by the receiver to revoke it’s protocol access
(or remove it physically from permanent storage), or the
need to stage the object at a protocol-enabled server.

Click2send.com [6] is a web-based company that
allows users to send large files to other users by uploading
them to a “deposit box” located at click2send.com
and then sending a pointer to a recipient. Like IBP-
Mail, click2send.com provides users with a free
writable network storage depot for sending large files.
The two have similar web interfaces, and like IBP-
Mail, click2send.com files have a time limit after
which they are deleted. The main difference between
click2send.com and IBP-Mail is the use of multiple
storage depots distributed geographically, so that the per-
formance of both sending and receiving may be optimized.
For reference, the performance of click2send.com on
the example in Section 4 is 2 minutes, 44 seconds to de-
posit the file from Tennessee, and 1 minute, 20 seconds
to download it from Princeton (click2send.com is lo-
cated in Mountain View, California).

7 Conclusion

The current model for electronic mail message transfer is
to move data completely from the sender to the receiver
before the recipient is allowed to request access the mes-
sage. Using the Internet Backplace Protocol, we have im-
plemented a more flexible data transport model in which
a message identifier is transmitted immediately to the re-
ceiver while the message data itself traverses a network
of storage depots between sender and receiver. When the
identifier is dereferenced by the receiver, the “nearest”
copy of the data is located and fetched automatically. This
more flexible approach avoids overrunning the receiver’s
spooling space and permits the mail system to optimize
message routing.

The current IBP-Mail prototype is implemented trans-
parently using web-enabled mailers and the I2-DSI storage
backbone which hosts a pool of IBP servers. Although our
model of mail delivery relies upon the availability of dis-
tributed application controllable storage, we believe such
storage services will become more widely deployed as the
Internet evolves. As part of our future work, we plan to
study ways in which the transfer model that we have de-
veloped for IBP-Mail can be applied to other distributed
network applications. Based on our experience developing
the system, we believe that IBP and distributed storage will
prove useful in Computational Grid and Internet comput-
ing settings.

8 Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under grants EIA-9975015,



ACI-9876895 and CCR-9703390, and by the Department
of Energy under grant DE-FC0299ER25396. The authors
thank Terry Moore and Martin Swany for in-depth discus-
sions, and Amy Phillipson for helping with the initial idea.

References

[1] M. Beck and T. Moore. The Internet2 Distributed
Storage Infrastructure project: An architecture for in-
ternet content channels. Computer Networking and
ISDN Systems, 30(22-23):2141–2148, 1998.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and
G. Shao and. Application-level scheduling on dis-
tributed heterogeneous networks. In Supercomputing
’96, November 1996.

[3] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Shroeder. Grapevine: An exercise in distributed com-
puting. Communications of the ACM, 25(4):260–274,
April 1982.

[4] N. Borenstein and N. Freed. MIME (Multipurpose
Internet Mail Extensions): Mechanisms for Specify-
ing and Describing the Format of Internet Message
Bodies. IETF RFC 1521 (http://www.ietf.
org/rfc/rfc1521.txt), September 1993.

[5] H. Casanova and J. Dongarra. NetSolve: A network
server for solving computational science problems.
The International Journal of Supercomputer Applica-
tions and High Performance Computing, 11(3):212–
223, 1997.

[6] Click2send.com, Inc. Click2send. http://www.
click2send.com/, 1999.

[7] R. Fielding, J. Gettys, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Proto-
col – HTTP/1.1. IETF RFC 2068 (http:
//www.ietf.org/rfc/rfc2068.txt),
January 1997.

[8] N. Freed and N. Borenstein. Multipurpose Internet
Mail Extensions (MIME) part one: Format of inter-
net message bodies. IETF RFC 2045 (http://
www.ietf.org/rfc/rfc2045.txt), Novem-
ber 1996.

[9] N. Freed and K. Moore. Definition of the URL
MIME External-Body Access-Type. IETF RFC 2017
(http://www.ietf.org/rfc/rfc2017.
txt), October 1996.

[10] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, September
1997.

[11] J. S. Plank, M. Beck, W. Elwasif, T. Moore,
M. Swany, and R. Wolski. The Internet Back-
plane Protocol: Storage in the network. In NetStore
’99: Network Storage Symposium. Internet2, October
1999.

[12] J. Postel and J. Reynolds. File transfer protocol
(FTP). IETF RFC 959 (http://www.ietf.
org/rfc/rfc0959.txt), October 1985.

[13] J. B. Postel. Simple Mail Transfer Protocol – SMTP.
IETF RFC 821 (http://www.ietf.org/rfc/
rfc0821.txt), August 1992.

[14] P. Resnick and A. Walker. The text/enriched
MIME content-type. IETF RFC 1896 (http://
www.ietf.org/rfc/rfc1896.txt), February
1996.

[15] Y. Saito, B. N. Bershad, and H. M. Levy. Manage-
ability, availability and performance in Porcupine: a
highly-scalable cluster-based mail service. In 17th
ACM Symposium on Operating Systems Principles,
December 1999.

[16] Y. Saito, E. Hoffman, B. Bershad, H. Levy, and
D. Becker. The porcupine scalable mail server. In
8th ACM SIGOPS European Workshop, Sintra, Por-
tugal, September 1998.

[17] M. Schroeder, A. D. Birrell, and F. M. Needham. Ex-
perience with Grapevine: The growth of a distributed
system. ACM Transactions on Computer Systems,
2(1):3–23, February 1984.

[18] M. Swany. Network proximity resolution with
SONAR and SonarDNS. Technical Report CS-99-
429, University of Tennessee, January 1999.

[19] R. Wolski, N. Spring, and J. Hayes. The Network
Weather Service: A distributed resource performance
forecasting service for metacomputing. Future Gen-
eration Computer Systems, 1999.

[20] W. Yeong, T. Howes, and S. Kille. Lightweight
directory access protocol. IETF RFC 1777 (http:
//www.ietf.org/rfc/rfc1777.txt),
March 1995.


